English
新闻公告
More
化学进展 2017, Vol. 29 Issue (8): 814-823 DOI: 10.7536/PC170505 前一篇   后一篇

• 综述 •

金属增强量子点荧光

翟彩华, 陈志良, 吕沙沙, 林毅*, 张志淩, 庞代文   

  1. 武汉大学化学与分子科学学院 生物医学分析化学教育部重点实验室 武汉 430072
  • 收稿日期:2017-05-03 修回日期:2017-06-26 出版日期:2017-08-15 发布日期:2017-07-24
  • 通讯作者: 林毅,E-mail:ylin@whu.edu.cn E-mail:ylin@whu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21275111,21535005)和国家留学基金项目(No.201406275115)资助

Metal-Enhanced Fluorescence from Quantum Dots

Daiwen Pang, Zhiliang Chen, Shasha Lv, Yi Lin*, Zhiling Zhang, Daiwen Pang   

  1. Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
  • Received:2017-05-03 Revised:2017-06-26 Online:2017-08-15 Published:2017-07-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21275111, 21535005) and the China Scholarship Council (No. 201406275115).
量子点具有亮度高和稳定性好等优异的光学性质,在生物检测、活体成像及光电器件开发等领域有着广泛的应用。然而,当前水相量子点尤其是水相近红外荧光量子点的荧光发射强度相对较低,且荧光稳定性有待进一步提高。金属可以使其邻近荧光物质的激发效率提高且辐射衰减速率增加,荧光发射强度较之自由态荧光发射增强,产生金属增强荧光效应。采用金属纳米结构增强量子点的荧光有望为解决上述问题提供有效途径。本文详细介绍了量子点发光机理及金属增强量子点荧光机理,在此基础上讨论了影响金属增强量子点荧光的关键因素,并对相关研究现状及挑战进行了简短的评述。我们相信随着纳米科技的快速发展,金属增强量子点荧光在不远的将来会吸引越来越多的关注并展现出独特的潜力。
Quantum dots (QDs) have been extensively applied in biological detection, in vivo imaging and optoelectronic devices due to their unique optical properties including broad excitation spectra, tunable and narrow emission spectra, high brightness and excellent resistance to photobleaching. Nevertheless, application of aqueous QDs, especially that of aqueous near-infrared fluorescence QDs, is limited by their relatively weak fluorescence and poor stability. Therefore, the development of new approaches for the enhancement of fluorescence of QDs is urgently needed. In recent years, it has been found that the brightness and photostability of QDs can be favorably enhanced by surface plasmon resulted from the nearby metallic nanostructures, which is termed as metal-enhanced fluorescence (MEF). Thus novel strategies for solving the above problems can be proposed based on MEF from QDs, which can be mainly attributed to the increased excitation rate and the increased radiative rate of the excited QDs. In this review, mechanism of MEF, especially that of MEF related to QDs, is introduced based on the near-field interaction between metallic nanostructures and QDs. Key factors affecting the efficiency of fluorescence emission are reviewed, including the distance between metallic nanostructures and QDs, the type of QDs, the composition, shape, and size of metallic nanostructures, and so forth. Current progresses in the application of MEF from QDs are also summarized. Finally, challenges in the development of MEF from QDs are discussed. We believe that with the rapid development of nanoscience and nanotechnology, MEF from QDs will attract more and more attention and show unique potentials in the near future.
Contents
1 Introduction
2 Mechanism
2.1 Luminescence of QDs
2.2 Metal-enhanced fluorescence from QDs
3 Key factors affecting metal-enhanced fluorescence from QDs
3.1 Distance between metallic nanostructures and QDs
3.2 Composition, shape and size of metallic nanostructures
3.3 Types of QDs
4 Applications
5 Conclusion

中图分类号: 

()
[1] Geddes C D, Lakowicz J R. J Fluoresc., 2002, 12:121.
[2] Aslan K, Wu M, Lakowicz J R, Geddes C D. J. Am. Chem. Soc., 2007, 129:1524.
[3] Hong G S, Tabakman S M, Welsher K, Wang H L, Wang X R, Dai H J. J. Am. Chem. Soc., 2010, 132:15920.
[4] Zong J, Yang X L, Trinchi A, Hardin S, Cole I, Zhu Y H, Li C Z, Muster T, Wei G. Nanoscale, 2013, 5:11200.
[5] Harun N A, Benning M J, Horrocks B R, Fulton D A. Nanoscale, 2013, 5:3817.
[6] 赵兵(Zhao B), 祁宁(Qi N), 张克勤(Zhang K Q). 化学进展(Progress in Chemistry), 2016, 28(11):1615.
[7] Mishra H, Geddes C D. J. Phys. Chem. C, 2014, 118:28791.
[8] Darvill D, Centeno A, Xie F. Phys. Chem. Chem. Phys., 2013, 15:15709.
[9] Bauch M, Toma K, Toma M, Zhang Q W, Dostalek J. Plasmonics., 2014, 9:781.
[10] Dong J, Zhang Z L, Zheng H R, Sun M T. Nanophotonics, 2015, 4:472.
[11] Song J T, Yang X Q, Zhang X S, Yan D M, Wang Z Y, Zhao Y D. ACS Appl. Mater. Interfaces, 2015, 7:17287.
[12] B Koh, Li X Y, Zhang B, Yuan B, Lin Y, Antaris A L, Wan H, Gong M, Yang J, Zhang X D, Liang Y Y, Dai H J. Small, 2016, 12:457.
[13] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Science, 2005, 307:538.
[14] Reschgenger U, Grabolle M, Cavalierejaricot S, Nitschke R, Nann T. Nat. Methods, 2008, 5:763.
[15] Hong Z Y, Lv C, Liu A A, Liu S L, Sun E Z, Zhang Z L, Lei A W, Pang D W. ACS Nano, 2015, 9:11750.
[16] Wen L, Lin Y, Zhang Z L, Lu W, Lv C, Chen Z G, Wang H Z, Pang D W. Biomaterials, 2016, 99:24.
[17] Lv C, Lin Y, Liu A A, Hong Z Y, Wen L, Zhang Z F, Zhang Z L, Wang H Z, Pang D W. Biomaterials, 2016, 106:69.
[18] Liu S L, Wang Z G, Zhang Z L, Pang D W. Chem. Soc. Rev., 2016, 45:1211.
[19] Wen L, Zheng Z H, Liu A A, Lv C, Zhang L J, Ao J, Zhang Z L, Wang H Z, Lin Y, Pang D W. J. Nanobiotechnol., 2017, 15:37.
[20] Liu A A, Zhang Z, Sun E Z, Zheng Z, Zhang Z L, Hu Q X, Wang H Z, Pang D W. ACS Nano, 2016, 10:1147.
[21] Xiong L H, Cui R, Zhang Z L, Yu X, Xie Z X, Shi Y B, Pang D W. ACS Nano, 2014, 8:5116.
[22] Hu J, Wen C Y, Zhang Z L, Xie M, Hu J. Wu M, Pang D W. Anal. Chem., 2013, 85:11929.
[23] Wang J J, Jiang Y Z, Lin Y, Wen L, Lv C, Zhang Z L, Chen G, Pang D W. Anal. Chem., 2015, 87:11105.
[24] Wu M, Zhang Z L, Chen G, Wen C Y, Wu L L, Hu J, Xiong C C, Chen J J, Pang D W. Small, 2015, 11:5280.
[25] Hu J, Zhang Z L, Wen C Y, Tang M, Wu L L, Liu C, Zhu L, Pang D W. Anal. Chem., 2016, 88:6577.
[26] Chen G, Zhu J Y, Zhang Z L, Zhang W, Ren J G, Wu M, Hong Z Y, Lv C, Pang D W, Zhao Y F. Angew. Chem. Int. Ed., 2015, 54:1036.
[27] Gu Y P, Cui R, Zhang Z L, Xie Z X, Pang D W. J. Am. Chem. Soc., 2012, 134:79.
[28] Zhao J Y, Chen G, Gu Y P, Cui R, Zhang Z L, Yu Z L, Tang B, Zhao Y F, Pang D W. J. Am. Chem. Soc., 2016, 138:1893.
[29] 刘锋(Liu F), 朱俊(Zhu J), 魏俊峰(Wei J F), 李毅(Li Y)胡林华(Hu L H), 戴松元(Dai S Y). 化学进展(Progress in Chemistry), 2013, 25(2):1068.
[30] Drexhage K H. J. Lumin., 1970, 1:693.
[31] Lakowicz J R, Chowdhury M H, Ray K, Zhang J, Fu Y, Badugu R, Sabanayagam C R, Nowaczyk K, Szmacinski H, Aslan K, Geddes C D. Proc. SPIE Int. Soc. Opt. Eng., 2006, 6099:609909.
[32] Lakowicz J R. Anal. Biochem., 2005, 337:171.
[33] Geddes C D, Cao H S, Gryczynski I, Gryczynski Z, Fang J Y, Lakowicz J R. J. Phys. Chem. A, 2003, 107:3443.
[34] 吕国伟(Lv G W), 沈红明(Shen H M), 程宇清(Cheng Y Q), 龚旗煌(Gong Q H). 科学通报(Chinese Science Bulletin), 2015, 60(33):3169.
[35] 何鑫(He X), 张梅(Zhang M), 冯晋阳(Feng J Y), 宋明霞(Song M X), 赵修建(Zhao X J). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2011, 40(03):559.
[36] 吕凤婷(Lv F T), 郑海荣(Zheng H R), 房喻(Fang Y). 化学进展(Progress in Chemistry), 2007, 19(02):256.
[37] 孟凡斌(Meng F B), 徐慧(Xu H), 兰伟(Lan W), 刘冲冲(Liu C C), 纪秀翠(Ji X C). 化学通报(Chemistry), 2015, 78(06):489.
[38] 胡军(Hu J). 武汉大学博士论文(Doctoral Dissertation of Wuhan University), 2011.
[39] Smith A M, Nie S M. Acc. Chem. Res., 2010, 43:190.
[40] 童廉明(Tong L M), 徐红星(Xu H X). 物理(Physics), 2012, 41(09):582.
[41] Barnes W L, Dereux A, Ebbesen T W. Nature, 2003, 424:824.
[42] Kelly K L, Coronado E, Zhao L L, Schatz G C. J. Phys. Chem. B, 2003, 107:668.
[43] Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. J. Phys.:Condens. Matter., 2002, 14:597.
[44] Ru E, Grand J, Félidj N. Spectral Profile Modifications in Metal-Enhanced Fluorescence. John Wiley & Sons, Inc, 2010. 25.
[45] Le Ru E C, Etchegoin P G, Grand J, Félidj N, Aubard J. J. Phys. Chem. C, 2007, 111:16076.
[46] Anger P, Bharadwaj P, Novotny L. Phys. Rev. Lett., 2006, 96:113002.
[47] Li G L, Moehwald H, Shchukin D G. Chem. Soc. Rev., 2013, 44:3628.
[48] Khanal B P, Pandey A, Li L, Lin Q L, Bae W K, Luo H M, Klimov V I, Pietryga J M. ACS Nano, 2012, 6:3832.
[49] Liu N G, Prall B S, Klimov V I. J. Am. Chem. Soc., 2006, 128:15362.
[50] Naiki H, Masuhara A, Masuo S, Onodera T, Kasai H, Oikawa H. J. Phys. Chem. C, 2013, 117:2455.
[51] Soganci I M, Nizamoglu S, Mutlugun E, Akin O, Demir H V. Opt. Lett., 2007, 15:14289.
[52] Vion C, Spinicelli P, Coolen L, Schwob C, Frigerio J M. Opt. Express., 2010, 18:7440.
[53] Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S. Nano Lett., 2002, 2:1449.
[54] Chan Y H, Chen J, Wark S E, Skiles S L, Dong H S. ACS Nano, 2009, 3:1735.
[55] Jang E, Son K J, Koh W. Colloid Polym. Sci., 2014, 292:1355.
[56] Tanaka K, Plum E, Ou J Y, Uchino T, Zheludev N I. Phys. Rev. Lett., 2010, 105:227403.
[57] Lin T J, Chuang W J, Cheng S, Chen Y F. Appl. Phys. Lett., 2009, 94:173506.
[58] Chen C W, Wang C H, Wei C M, Chen Y F. Appl. Phys. Lett., 2009, 94:71906.
[59] Pompa P P, Martiradonna L, Torre A D, Carbone L, Mercato L. Sens. Actuators B, 2007, 126:187.
[60] Song J H, Atay T, Shi S F, Urabe H, Nurmikko A V. Nano Lett., 2005, 5:1557.
[61] Akimov A V, Mukherjee A, Yu C L, DE Chang, Zibrov A S. Nature, 2007, 450:402.
[62] Song M, Wu B, Chen G, Liu Y, Ci X T, Wu K, Zeng H P. J. Phys. Chem. C, 2014, 118:8514.
[63] Li Y Q, Guan L Y, Zhang H L, Chen J, Lin S, Ma Z Y, Zhao Y D. Anal. Chem., 2011, 83:4103.
[64] Bermúdez U E, Kreuzer M P, Itzhakov S, Rigneault H, Quidant R. Adv. Mater., 2012, 24:314.
[65] Song H Y, Wong T I, Sadovoy A, Wu L, Bai P. Lab Chip., 2014, 15:253.
[66] Fu Y, Zhang J, Lakowicz J R. Chem. Commun., 2009, 3:313.
[67] Peng B, Li Z P, Mutlugun E, Hernandez M P, Li D H, Zhang Q, Gao Y, Demir H V, Xiong Q H. Nanoscale, 2014, 6:5592.
[68] Nepal D, Drummy L F, Biswas S, Park K, Vaia R A. ACS Nano, 2013, 7:9064.
[69] Chen H D, Xia Y S. Anal. Chem., 2014, 86:11062.
[70] Wu K, Zhang J P, Fan S S, Li J, Zhang C, Qiao K K, Qian L H, Han J B, Tang J, Wang S. Chem. Commun., 2015, 51:141.
[71] Pompa P P, Martiradonna L, Torre A D, Sala F D, Manna L. Nat. Nanotechnol., 2006, 1:126.
[72] Munechika K, Chen Y C, Tillack A F, Kulkarni A P, Jen-La P I, Munro A M, Ginger D S. Nano Lett., 2011, 11:2725.
[73] Munechika K, Chen Y C, Tillack A F, Kulkarni A P, Plante I J, Munro A M, Ginger D S. Nano Lett., 2010, 10:2598.
[74] Zhang L, Song Y K, Fujita T, Zhang Y, Chen M W, Wang T H. Adv. Mater., 2014, 26:1289.
[75] Langhuth H, Frédérick S, Kaniber M, Finley J J, Rührmair U. J. Fluoresc., 2011, 2:539.
[76] Ahmed S R, Cha H R, Park J Y, Park E Y, Lee D, Lee J. Nanoscale Res. Lett., 2012, 7:438.
[77] Lee J, Lytton-Jean A K, Hurst S J, Mirkin C A. Nano Lett., 2007, 7:2112.
[78] Jain P K, Lee K S, El-Sayed I H, El-Sayed M A. J. Phys. Chem. B, 2006, 110:7238.
[79] Zhang J, Fu Y, Chowdhury M H, Lakowicz J R. Journal of Physical Chemistry C Nanomaterials & Interfaces., 2007, 112:18.
[80] Liu Y L, Kang N, Ke X B, Wang D, Ren L, Wang H J. RSC Adv., 2016, 6:27395.
[81] Viste P, Plain J, Jaffiol R, Vial A, Adam P M, Royer P. ACS Nano, 2010, 4:759.
[82] Peng M, Bi G, Cai C F, Guo G X, Wu H Z, Xu Z S. Opt. Lett., 2016, 41:1466.
[83] 王海艳(Wang H Y), 窦秀明(Dou X M), 倪海桥(Ni H Q), 牛智川(Niu Z C), 孙宝权(Sun B Q). 物理学报(Acta Physica Sinica), 2014, 63(02):27801.
[84] Cheng H, Wang C X, Xu Z Z, Lin H H, Zhang C. RSC Adv., 2015, 5:20.
[85] Liang H Y, Zhao H G, Li Z P, Harnagea C, Ma D L. Nanoscale. 2016, 8:4882.
[86] Liu L, Xu X L, Luo T, Liu Y S, Yang Z, Lei J M. Solid State Commun., 2012, 152:1103.
[87] Theodorou I G, Jawad Z A, Qin H, Aboagye E O, Porter A E. Nanoscale, 2016, 8:12869.
[88] Chan Y H, Chen J X, Liu Q S, Wark S E, Dong H S, Batteas J D. Anal. Chem., 2010, 82:3671.
[89] Ahmed S R, Hossain M A, Park J Y, Kim S H, Lee D. Biosens. Bioelectron., 2014, 58:33.
[90] Jiang P, Zhu C N, Zhang Z L, Tian Z Q, Pang D W. Biomaterials, 2012, 33:5130.
[91] Zhu C N, Chen G, Tian Z Q, Wang W, Zhong W Q, Li Z, Zhang Z L, Pang D W. Small, 2017, 13:1602309.
[92] Cho S, Jeon H, Yoo H, Cho K M, Jung W, Kim J, Jung H. Nano Lett., 2015, 15:7273.
[93] 侯元晖(Hou Y H), 朱东亮(Zhu D L), 彭颖(Peng Y), 陈志良(Chen Z L), 翟彩华(Zhai C H), 杨梦丽(Yang M L), 张志淩(Zhang Z L), 林毅(Lin Y).分析科学学报(Journal of Analytical Science), 2017, 33(4):297.
[1] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[2] 吴星辰, 梁文慧, 蔡称心. 碳量子点的荧光发射机制[J]. 化学进展, 2021, 33(7): 1059-1073.
[3] 卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 手性碳量子点的制备及其应用[J]. 化学进展, 2020, 32(4): 381-391.
[4] 徐彦乔, 陈婷, 王连军, 江伟辉, 江莞, 谢志翔. Ⅰ-Ⅲ-Ⅵ 族量子点的制备及其在照明显示领域的应用[J]. 化学进展, 2019, 31(9): 1238-1250.
[5] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[6] 李春雪, 乔宇, 林雪, 车广波. 量子点@金属有机骨架材料的制备及在光催化降解领域的应用[J]. 化学进展, 2018, 30(9): 1308-1316.
[7] 王军丽, 王亚玲, 郑静霞, 于世平, 杨永珍, 刘旭光. 碳量子点激发依赖荧光特性的机理、调控及应用[J]. 化学进展, 2018, 30(8): 1186-1201.
[8] 刘禹杉, 李伟, 吴鹏, 刘守新*. 水热炭化制备碳量子点及其应用[J]. 化学进展, 2018, 30(4): 349-364.
[9] 刘康, 高冠斌*, 孙涛垒*. β-HgS量子点的制备、性质及应用[J]. 化学进展, 2017, 29(7): 776-784.
[10] 卫林峰, 马建中, 张文博, 鲍艳. 氧化石墨烯和石墨烯量子点的两亲性调控及其在Pickering乳液聚合中的应用[J]. 化学进展, 2017, 29(6): 637-648.
[11] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[12] 胡先运, 郭庆生, 刘玉乾, 孙清江, 孟铁宏, 张汝国. 量子点荧光传感器的设计及应用[J]. 化学进展, 2017, 29(2/3): 300-317.
[13] 刘超, 谭瑞琴, 曾俞衡, 王维燕, 黄金华, 宋伟杰. 硅纳米晶的制备及其在太阳电池中的应用研究[J]. 化学进展, 2015, 27(9): 1302-1312.
[14] 黄启同, 林小凤, 李飞明, 翁文, 林丽萍, 胡世荣. 碳量子点的合成与应用[J]. 化学进展, 2015, 27(11): 1604-1614.
[15] 姚秋虹, 林丽萍, 赵婷婷, 陈曦. 异原子掺杂石墨烯量子点的制备、性能及应用[J]. 化学进展, 2015, 27(11): 1523-1530.
阅读次数
全文


摘要

金属增强量子点荧光