English
新闻公告
More
化学进展 2017, Vol. 29 Issue (6): 637-648 DOI: 10.7536/PC170349 前一篇   后一篇

• 综述 •

氧化石墨烯和石墨烯量子点的两亲性调控及其在Pickering乳液聚合中的应用

卫林峰1, 马建中1*, 张文博2*, 鲍艳1   

  1. 1. 陕西科技大学轻工科学与工程学院 中国轻工业皮革清洁生产重点实验室 西安 710021;
    2. 陕西科技大学 陕西省轻化工助剂化学与技术协同创新中心 西安 710021
  • 收稿日期:2017-03-31 修回日期:2017-05-15 出版日期:2017-06-15 发布日期:2017-06-06
  • 通讯作者: 马建中,e-mail:majz@sust.edu.cn;张文博,e-mail:zhangwenbo@sust.edu.cn E-mail:majz@sust.edu.cn;zhangwenbo@sust.edu.cn
  • 基金资助:
    陕西省科技统筹创新工程计划项目(No.2015KTCL01-11)和陕西科技大学科研启动项目(No.2016BJ-28)资助

The Amphipathy Adjustment of Graphene Oxide and Graphene Quantum Dots and Their Application in Pickering Emulsion Polymerization

Linfeng Wei1, Jianzhong Ma1*, Wenbo Zhang2*, Yan Bao1   

  1. 1. Key Laboratory of Leather Cleaner Production, China National Light Industry, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China;
    2. Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science & Technology, Xi'an 710021, China
  • Received:2017-03-31 Revised:2017-05-15 Online:2017-06-15 Published:2017-06-06
  • Contact: 10.7536/PC170349 E-mail:majz@sust.edu.cn;zhangwenbo@sust.edu.cn
  • Supported by:
    The work was supported by the Science and Technology Coordinating Innovative Engineering Project in Shaanxi Province (No. 2015KTCL01-11) and the Scientific Research Initiation Foundation of Shaanxi University of Science & Technology(No. 2016BJ-28).
氧化石墨烯(Graphene oxide,GO)和石墨烯量子点(Graphene quantum dots,GQDs)与聚合物复合时的分散性较差,用Pickering乳液聚合法可有效解决该问题,这对于提升复合材料的功能性有重要意义。本文归纳了GO和GQDs的制备方法和结构模型,阐述了GO尺寸、离子强度、pH、GO和GQDs结构设计以及单体极性等因素对于GO和GQDs的两亲性调控及其用于Pickering乳液聚合的影响,总结了GO和GQDs用于Pickering乳液聚合的研究进展。GO和GQDs能否作为稳定剂用于Pickering乳液聚合主要与液-液、液-固界面的界面张力大小以及GO和GQDs能否自发地吸附在液-液界面有关,尺寸、离子强度、pH、亲疏水性等均可显著影响液-固界面的界面张力,单体的极性则决定了液-液和液-固界面的界面张力。通过改性、还原等手段对GO和GQDs进行修饰后,可赋予Pickering乳液聚合物导电、导热以及磁响应性等优异性能。最后对GO和GQDs稳定Pickering乳液的研究进行了展望。
Graphene oxide (GO) and graphene quantum dots (GQDs) are difficult to disperse in the polymer homogeneously. Pickering emulsion polymerization can effectively improve the dispersity of GO and GQDs in the polymer matrix, so the performances of composite material are improved. This article summarizes the preparation and structure of GO and GQDs, and expounds the influence of the GO size, ionic strength, pH, GO and GQDs structure designing, monomer polarity and other factors for the adjustment of amphiphilicity of GO and GQDs as well as the Pickering emulsion polymerization. The research progress of GO and GQDs used for improving the function of composite by Pickering emulsion polymerization is summarized. The ability for GO and GQDs to act as stabilizer for Pickering emulsions is related to the interfacial tension of liquid-liquid interfaces and liquid-solid interfaces and whether GO and GQDs can be adsorbed onto the liquid-liquid interfaces thermodynamically. All of the size, ionic strength, pH and structure designing have an effect on the liquid-solid interfacial tension. Hence, monomer polarity can decide the liquid-liquid and liquid-solid interfacial tension. The GO and GQDs can be modified by modification, reduction and other chemical methods, which can endow the polymer with excellent properties such as conductivity, thermal conductivity and magnetic responsivity. At last, the propects of GO and GQDs stabilizing Pickering emulsion are proposed.

Contents
1 Introduction
2 Graphene oxide
2.1 The preparation of GO
2.2 The structure of GO
2.3 Research progress of GO as Pickering emulsion stabilizer
3 Graphene quantum dots
3.1 The preparation of GQDs
3.2 The structure of GQDs
3.3 Research progress of GQDs as Pickering emulsion stabilizer
4 Conclusion

中图分类号: 

()
[1] Chan I J, Ko J, Yin Z, Kim Y J, Kim Y S. Ind. Eng. Chem. Res., 2016, 55:9433.
[2] Nayak R K, Mahato K K, Routara B C, Ray B C. J. Appl. Polym. Sci., 2016, 133:44274.
[3] Zhao Y H, Zhang Y F, Bai S L. Composites Part A, 2016, 85:148.
[4] Zhang W, Ma J, Gao D, Zhou Y, Li C, Zha J, Zhang J. Prog. Org. Coat., 2016, 94:9.
[5] Kumar P, Yu S, Shahzad F, Hong S M, Kim Y H, Chong M K. Carbon, 2016, 101:120.
[6] Liu C, Yan H, Lv Q, Li S, Niu S. Carbon, 2016, 102:145.
[7] Liu C, Yan H, Chen Z, Yuan L, Liu T. J. Mater. Chem. A, 2015, 3:10559.
[8] Wang X, Hu Y, Song L, Yang H, Xing W, Lu H. J. Mater. Chem., 2011, 21:4222.
[9] Patole A S, Patole S P, Jung S Y, Yoo J B, An J H, Kim T H. Eur. Polym. J., 2012, 48:252.
[10] Pickering S U. J. Chem. Soc. Trans., 1907, 91:2001.
[11] Chen M, Wu L, Zhou S, You B. Macromolecules, 2010, 37:9613.
[12] Li L, Wu G, Yang G, Peng J, Zhao J, Zhu J J. Nanoscale, 2013, 5:4015.
[13] Kyu K J, Bae S, Yi Y, Jin P M, Jin K S, Myoung N, Lee C L, Hee H B, Hyeok P J. Sci. Rep., 2015, 5:11032.
[14] Kovalchuk A, Huang K, Xiang C, Martí A A, Tour J M. ACS Appl. Mater. Interfaces, 2015, 7:26063.
[15] Ooi P C, Lin J, Kim T W, Li F. Org. Electron., 2016, 32:115.
[16] Geim A K, Novoselov K S. Nat. Mater., 2007, 6:183.
[17] Kim J, Cote L J, Kim F, Yuan W, Shull K R, Huang J. J. Am. Chem. Soc., 2010, 132:8180.
[18] Brodie B C. Philos. Trans. R. Soc. London, 2009, 149:249.
[19] Hyon S H, Ikada Y. US 4663358, 1987.
[20] Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958, 80:1339.
[21] McAllister M J, Li J L, Adamson D H, Schniepp H C, Abdala A A, Liu J, Herrera-Alonso M, Milius D L, Car R, Prud'homme R K, Aksay I A. Chem. Mater., 2007, 19:4396.
[22] Li D, Müller M B, Gilje S, Kaner R B, Wallace G G. Nature Nanotech., 2008, 3:101.
[23] Singh V, Joung D, Lei Z, Das S, Khondaker S I, Seal S. Prog. Mater. Sci., 2011, 56:1178.
[24] Liu X, Suk J W, Boddeti N G, Cantley L, Wang L, Gray J M, Hall H J, Bright V M, Rogers C T, Dunn M L. Adv. Mater., 2014, 26:1571.
[25] Vinodgopal K, Neppolian B, Salleh N, Lightcap I V, Grieser F, Ashokkumar M, Ding T T, Kamat P V. Colloids Surf. A, 2012, 409:81.
[26] Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G. Carbon, 2012, 50:4738.
[27] Hofmann U, Holst R. Ber. Dtsch. Chem. Ges., 1939, 72:754.
[28] Ruess G. Monats. Chem., 1947, 76:381.
[29] Scholz W, Boehm H P. Z. Anorg. Allg. Chem., 1969, 369:327.
[30] Nakajima T, Mabuchi A, Hagiwara R. Carbon, 1988, 26:357.
[31] Lerf A, He H, Forster M, Klinowski J. J. Phys. Chem. B, 1998, 102:4477.
[32] Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I. Chem. Mater., 2006, 18:2740.
[33] Zhang L, Yu J, Yang M, Xie Q, Peng H, Liu Z. Nat. Commun., 2013, 4:1443.
[34] Man S H C, Yusof N Y M, Michael R W, Thickett S C, Zetterlund P B. J. Polym. Sci., Part A:Polym. Chem., 2013, 51:5153.
[35] He Y, Wu F, Sun X, Li R, Guo Y, Li C, Zhang L, Xing F, Wang W, Gao J. ACS Appl. Mater. Interfaces, 2013, 5:4843.
[36] Yang H, Kang D J, Ku K H, Cho H H, Park C H, Lee J, Lee D C, Ajayan P M, Kim B J. ACS Macro Lett., 2014, 3:985.
[37] Song X, Yang Y, Liu J, Zhao H. Langmuir, 2011, 27:1186.
[38] Xie P, Ge X, Fang B, Li Z, Liang Y, Yang C. Colloid Polym. Sci., 2013, 291:1631.
[39] Man S H C, Thickett S C, Whittaker M R, Zetterlund P B. J. Polym. Sci., Part A:Polym. Chem., 2012, 51:47.
[40] Man S H C, Ly D, Whittaker M R, Thickett S C, Zetterlund P B. Polymer, 2014, 55:3490.
[41] Yoon K Y, An S J, Chen Y, Lee J H, Bryant S L, Ruoff R S, Huh C, Johnston K P. J. Colloid Interf. Sci., 2013, 403:1.
[42] Shih C J, Lin S, Sharma R, Strano M S, Blankschtein D. Langmuir, 2012, 28:235.
[43] Yin G, Zheng Z, Wang H, Du Q, Zhang H. J. Colloid Interf. Sci., 2013, 394:192.
[44] Tessonnier J P, Barteau M A. Langmuir, 2012, 28:6691.
[45] Dao T D, Erdenedelger G, Jeong H M. Polymer, 2014, 55:4709.
[46] Wu H, Yi W, Chen Z, Wang H, Du Q. Carbon, 2015, 93:473.
[47] Fei X, Xia L, Chen M, Wei W, Luo J, Liu X. Materials, 2016, 9:731.
[48] Huang Y, Wang X, Jin X, Wang T. J. Therm. Anal. Calorim., 2014, 117:755.
[49] Lin K Y, Yang H, Petit C, Lee W D. J. Colloid Interf. Sci., 2015, 438:296.
[50] Thickett S C, Zetterlund P B. J. Colloid Interf. Sci., 2015, 442:67.
[51] Sun Z, Feng T, Russell T P. Langmuir, 2013, 29:13407.
[52] Medhekar N V, Ramasubramaniam A, Ruoff R S, Shenoy V B. ACS Nano, 2010, 4:2300.
[53] Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A. Adv. Mater., 2012, 24:5333.
[54] Peng J, Gao W, Gupta B K, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany L B, Zhan X, Gao G. Nano Lett., 2012, 12:844.
[55] Dong Y, Guo C X, Chi Y, Li C M. J. Mater. Chem., 2012, 22:8764.
[56] Shinde D B, Pillai V K. Chemistry, 2012, 18:12522.
[57] Shin Y, Lee J, Yang J, Park J, Lee K, Kim S, Park Y, Lee H. Small, 2014, 10:866.
[58] Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, Li B, Tian L, Liu F, Hu R. Chem. Commun., 2011, 47:6858.
[59] Kwon W, Kim Y H, Lee C L, Lee M, Choi H C, Lee T W, Rhee S W. Nano Lett., 2014, 14:1306.
[60] Zhou X, Zhang Y, Wang C, Wu X, Yang Y, Zheng B, Wu H, Guo S, Zhang J. ACS Nano, 2012, 6:6592.
[61] Ponomarenko L A, Schedin F, Katsnelson M I, Yang R, Hill E W, Novoselov K S, Geim A K. Science, 2007, 320:356.
[62] Sun J, Yang S, Wang Z, Shen H, Xu T, Sun L, Li H, Chen W, Jiang X, Ding G. Part. Part. Syst. Char., 2014, 32:434.
[63] Sun H, Ji H, Ju E, Guan Y, Ren J, Qu X. Chem. -Eur. J., 2015, 21:3791.
[64] Tang L, Ji R, Cao X, Lin J, Jiang H, Li X, Teng K S, Chi M L, Zeng S, Hao J. ACS Nano, 2012, 6:5102.
[65] Lu J, Pei S E Y, Gan C K, Wu P, Loh K P. Nature Nanotech., 2011, 6:247.
[66] Dan Q, Min Z, Zhang L, Zhao H, Xie Z, Jing X, Haddad R E, Fan H, Sun Z. Sci. Rep., 2015, 4:5294.
[67] Xu W, Fei T, Wang W, Jiao C, Min W, Zhao J X. J. Mater. Chem. C, Mater. Opt. Electron. Devices., 2013, 1:4676.
[68] Hao Y N, Guo H L, Tian L, Kang X. RSC Adv., 2015, 5:43750.
[69] Wang L, Li W, Wu B, Li Z, Wang S, Liu Y, Pan D, Wu M. Chem. Eng. J., 2016, 300:75.
[70] Dong H, Dai W, Ju H, Lu H, Wang S, Xu L, Zhou S F, Zhang Y, Zhang X. ACS Appl. Mater. Interfaces, 2015, 7:11015.
[71] Mandal T K, Hou Y, Gao Z, Ning H, Yang W, Gao M. Adv. Sci., 2016, 3:1600217.
[72] Liu F, Jang M H, Ha H D, Kim J H, Cho Y H, Seo T S. Adv. Mater., 2013, 25:3657.
[73] Cao L, Meziani M J, Sahu S, Sun Y P. Acc. Chem. Res., 2013, 46:171.
[74] Cho H H, Yang H, Kang D J, Kim B J. ACS Appl. Mater. Interfaces, 2015, 7:8615.
[75] Zeng M, Wang X, Yu Y H, Zhang L, Shafi W, Huang X, Cheng Z. J. Nanomater., 2016, 2016:1.
[76] Yang H, Kang H K, Shin J M, Lee J, Chan H P, Cho H H, Jang S G, Kim B J. Chem. Mater., 2016, 28:830.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[7] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[8] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[9] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[10] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[11] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[12] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
[13] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[14] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[15] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.