English
新闻公告
More
化学进展 2019, Vol. 31 Issue (7): 1020-1030 DOI: 10.7536/PC181210 前一篇   后一篇

• •

石墨烯量子点在储能器件中的应用

龚乐1, 杨蓉1,**(), 刘瑞1, 陈利萍2, 燕映霖1, 冯祖飞1   

  1. 1.西安理工大学理学院 西安 710054
    2.西安理工大学材料科学与工程学院 西安 710048
  • 收稿日期:2018-12-17 出版日期:2019-07-15 发布日期:2019-04-26
  • 通讯作者: 杨蓉
  • 作者简介:
  • 基金资助:
    国家国际科技合作专项(2015DFR50350); 国家自然科学基金青年基金项目(51702256); 陕西省科技计划项目(2017GY-160); 陕西省科技厅“创新人才推进计划-科技创新团队”项目(2019TD-019)

Application of Graphene Quantum Dots in Energy Storage Devices

Le Gong1, Rong Yang1,**(), Rui Liu1, Liping Chen2, Yinglin Yan1, Zufei Feng1   

  1. 1.School of Science, Xi’an University of Technology, Xi’an 710054, China
    2.School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
  • Received:2018-12-17 Online:2019-07-15 Published:2019-04-26
  • Contact: Rong Yang
  • Supported by:
    International Science and Technology Cooperation Program of China(2015DFR50350); National Natural Science Foundation of China(51702256); Key Research and Development Plan of Shaanxi Province(2017GY-160); Innovation Capability Support Program of Shaanxi(2019TD-019)

石墨烯量子点(GQDs)作为新型碳基材料,由于其纳米级小尺寸而具有比表面积大、导电性高、透明性好、荧光性能独特等优点,是一种极具潜力的储能器件电极材料。GQDs与金属化合物、碳材料等形成具有三维空间结构的复合材料,有利于电子扩散和离子传输,大幅度改善GQDs作为电极材料的实际应用性能。异原子掺杂型GQDs可提供较多活性位点,提高活性物质利用率。本文介绍了GQDs的合成策略,主要分为自上而下和自下而上法。不同制备方法对GQDs的粒径大小、表面缺陷位点和荧光特性等的影响也不尽相同。通过阐述近几年GQDs、掺杂型GQDs及其复合物在超级电容器、锂离子电池、太阳能电池等能源器件方面的应用实例,表明具有量子限域效应和边界效应的GQDs基材料在新型储能器件中有巨大的应用潜力;通过深层剖析GQDs复合物的空间结构对储能器件电化学性能的影响,为今后深入研究奠定基础。此外,指出未来GQDs的发展方向是寻找快速、绿色环保的大批量合成方法,均匀、有效的掺杂或复合以及构建独特空间结构的电极材料,进一步提高其应用于储能器件时的电化学性能。

In term of new carbon-based material, graphene quantum dots(GQDs) are a boundless promising electrode material for energy storage devices due to their excellent properties of large specific surface area, high conductivity, excellent transparency and unique fluorescence characteristics. GQDs form composites with metal compounds or carbon material to construct three-dimensional spatial structures, which is conductive to electron diffusion and ion transport, greatly improving the practical application performance of GQDs as electrode materials. Furthermore, heteroatoms-doped GQDs can provide more active sites and enhance the utilization of active substance. Herein, The synthesis strategies of GQDs, which are mainly classified into top-down and bottom-up methods,are briefly introduced. The effects of various preparation methods on the particle size, surface defect sites and fluorescence characteristics of GQDs are also distinct. The applications of GQDs, doped GQDs and their composites in energy storage devices such as supercapacitors, lithium ion batteries, solar cells and fuel cells in recent years, it is obvious that GQDs-based electrode materials with quantum confinement effect and boundary effect have great potential for new energy storage devices. The influence of distinctive space structure on electrochemical properties are analyzed. In addition, it is pointed out that the future development of GQDs is to find a rapid, green and environmentally-friendly method for mass synthesis of GQDs, uniform and effective doping or compounding and constructing a unique spatial structure of electrode materials, which can further improve the electrochemical performance in the applications of energy storage devices.

()
图1 自上而下法和自下而上法制备GQDs原理示意图[11]
Fig. 1 Schematic demonstration of the top-down and bottom-up approaches for synthesis of GQDs[11]
图2 CuCo2S4和GQDs/CuCo2S4的合成工艺示意图(a),扫描电镜图(b,c)[39]
Fig. 2 (a) Schematic diagrams of the synthesis processes of the CuCo2S4 nanosheets and the GQDs/CuCo2S4 nanocomposites grown on the Ni foam.(b) SEM image of the CuCo2S4 nanosheets.(c) SEM image of the GQD/CuCo2S4 nanocomposites[39]
图3 制备石墨烯-GQDs薄膜机理示意图[41]
Fig. 3 Schematic illustration of the mechanism of the G-GQDs EPD process[41]
图4 N-GQDs@Fe3O4-HTNs复合材料形成过程以及充放电过程示意图[47]
Fig. 4 Schematic illustration of fabrication of N-GQDs@Fe3O4-HNTs and their charge and discharge processes[47]
图5 N/O-GQDs复合物结构示意图(蓝色:N, 红色: O, 灰色: C, 白色: H)[48]
Fig. 5 Distribution of N/O co-doped GQDs(blue sphere N, red sphere O, grey sphere C, white sphere H)[48]
图6 (a)GVG复合材料制备过程示意图,(b)GVG扫描电镜和(c)透射电镜图,(d)GV和GVG在60 C下的循环寿命曲线[51]
Fig. 6 (a) Schematics of the fabrication process of GVG composite. The yellow basis represents the GF substrate. The green arrays represent VO2 nanoarrays, and the blue covering represents the GQDs.(b) The SEM, and(c) TEM images of GVG composites.(d) Cycling performance of GV and GVG at 60 C for 1500 cycles[51]
图7 PF-GQDs@SiNP复合物制备过程示意图[14]
Fig. 7 The procedure for synthesis of PF-GQDs@SiNP[14]
图8 (a)、(b)S-GQDs/CB结构示意图,(c)S/CB和(d)S-GQDs/CB分别作为Li-S电池正极示意图[13]
Fig. 8 (a) The structure and(b) the magnified structure of GQDs-S/CB. Schematic configuration of(c) S/CB,(d) GQDs-S/CB employed as a cathode in Li-S batteries[13]
图9 (a)Au、(b)石墨烯作为上电极的GQDs/Si异质结太阳能电池示意图[64,65]
Fig. 9 Schematic illustration of the GQDs/Si heterojunction solar cell with(a)Au,(b)graphene film on top as the transparent electrode[64.65]
图10 石墨烯负载N/B-GQDs合成示意图[72]
Fig. 10 Illustration of the preparation procedure for the BN-GQDs/G nanocomposite[72]
[1]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva V, Firsov A A . Science, 2004,306(5696):666.
[2]
Wang H B, Maiyalagan T, Wang X . ACS Catal., 2012,2(5):781.
[3]
Allen M J, Tuang V C, Kaner R B . Chem. Rev., 2010,110(1):132.
[4]
Rossetti R, Nakahara S, Brus L E . J.Chem. Phys., 1983,79(2):1086.
[5]
Halperin B I . Sci. Am. 1986,254(4):52.
[6]
Bacon M, Bradley S J, Nann T . Part. Part. Syst. Char., 2014,31(4):415.
[7]
Jin Z H, Owour P, Lei S D, Ge L H . Curr. Opin. Colloid. Interface Sci., 2015,20(5):439.
[8]
Tian P, Tang L, Teng K S, Lau S P . Materials Today Chemistry, 2018,10:221.
[9]
Kuo W S, Chen H H, Chen S Y, Chang C Y, Chen P C, Hou Y I, Shao Y T, Kao H F, Hsu C L L, Chen S J, Wu S R, Wang J Y . Biomaterials, 2017,120:185.
[10]
Fang B Y, Li C, Song Y Y, Tan F, Cao Y C, Zhao Y D . Biosens. Bioelectron., 2018,100:41.
[11]
Abbas A, Mariana L T, Phan A N . Carbon, 2018,140:77.
[12]
Bak S, Kim D, Lee H . Current Applied Physics, 2016,16:1192.
[13]
Park J J, Moon J, Kim C, Kang J H, Lim E, Park J, Lee K J, Yu S H, Seo J H, Lee J, Heo J, Tanaka N, Cho S P, Pyun J, Cabana J, Hong B H, Sung Y E . NPG Asia Materials, 2016,8(5):272.
[14]
Kong L J, Yang Y Q, Li R Y, Li Z J . Electrochim. Acta, 2016,198:144.
[15]
Pan D Y, Zhang J C, Li Z, Wu M H . Adv. Mater., 2010,22(6):734.
[16]
Ahmed B, Kumar S, Oiha A K, Hirsch F, Riese S, Fischer I . J. Photoch. Photobio. A, 2018,364:671.
[17]
Ahirwar S, Mallick S, Bahadur D . ACS Omega, 2017,2:83843.
[18]
Huang H G, Yang S W, Li Q T, Yang Y C, Wang G, You X F, Mao B H, Wang H S, Ma Y, He P, Liu Z, Ding G Q, Xie X M . Langmuir, 2018,34(1):250.
[19]
Yu J J, Liu S Y, Chen S, Wang T H . Ind. Eng. Chem. Res., 2017,56:10028.
[20]
Shin Y H, Park J, Hyun D, Yang J, Lee J H, Kim J H, Lee H . Nanoscale, 2015,7(13):5633.
[21]
Liu B T, Peng L L, Chen W B, Wang J, Han T, Mo Q H . Nanosci. Nanotechnol. Lett., 2017,9(3):297.
[22]
Kumar S, Ojha A K, Ahmed B, Kumar A, Das J, Materny A . Materials Today Communications, 2017,11:76.
[23]
Dong Y Q, Shao J W, Chen C Q, Li H, Wang R X, Chi Y W, Lin X M, Chen G N . Carbon, 2012,50(12):4738.
[24]
Yan X, Cui X, Li L S . J.Am. Chem. Soc., 2010,132(17):5944. https://www.ncbi.nlm.nih.gov/pubmed/20377260

doi: 10.1021/ja1009376     URL     pmid: 20377260
[25]
Xu C, Yang S W, Tian L F, Guo T Q, Ding G Q, Zhao J W, Sun J, Lu J, Wang Z Y . Appl. Phys. Express, 2017,10(3):032102.
[26]
Lu L Q, Zhu Y C, Shi C, Pei Y T . Carbon, 2016,109:373.
[27]
Li H T, He X D, Liu Y, Huang H, Lian S Y, Lee S T, Kang Z H . Carbon, 2011,49(2):605.
[28]
Umrao S, Jang M H, Oh J H, Kim G, Sahoo S, Cho Y H, Srivastva A, Oh I K . Carbon, 2015,81:514.
[29]
Tang L B, Ji R B, Cao X K, Lin J Y, Jiang H X, Li X M, Teng K S, Lu M C, Zeng S J, Hao J H, Lua S P . ACS Nano, 2012,6(6):5102.
[30]
Wang L, Wang Y L, Xu T, Liao H B, Yao C J, Liu Y, Li Z, Chen Z W, Pan D Y, Sun L T, Wu M H . Nature Communications, 2014,5:5357.
[31]
Xia X H, Tu J P, Zhang Y Q, Wang X L, Gu C D, Zhao X B, Fan H L . ACS Nano, 2012,6(6):5531.
[32]
Zhang L J, Xia G L, Guo Z P, Li X G, Sun D L, Yu X B . Int. J. Hydrogen Energ., 2016,41:14252.
[33]
李巧乐(Li Q L), 燕映霖(Yan Y L), 杨蓉(Yang R), 陈利萍(Chen L P), 任冰(Ren B), 许云华(Xu Y H) . 化工进展 (Chemical Industry and Engineering Progress), 2017,36(9):3353.
[34]
Raza W, Ali F, Raza N, Luo Y, Kim K H, Yang J H, Kumar S, Mehmood A, Kwon E . Nano Energy, 2018,52:441.
[35]
Wu Y G, Liu Z, Ran F . Micropor. Mesopor. Mater., 2019,275:14.
[36]
Aken M L V, Maleski K, Mathis T S, Breslin J P . ECS J. Solid. State. Sc., 2017,6(6):3103.
[37]
Huang Y Y, Shi T L, Zhong Y, Cheng S Y, Jiang S L, Chen C, Liao G L, Tang Z R . Electrochim Acta, 2018,269:45.
[38]
Liu W W, Feng Y Q, Yan B X, Chen J T, Xue Q J . Adv. Funct. Mater., 2013,23:4111.
[39]
Huang Y Y, Lin L W, Shi T L, Cheng S Y, Zhong Y, Chen C, Tang Z R . Applied Surface Science, 2019,463:498.
[40]
Hu Y, Zhao Y, Lu G W, Chen N, Zhang Z P, Li H . Nanotechnology, 2013,24:195401.
[41]
Lee K, Lee H, Shin Y, Yoon Y, Kim D, Lee H . Nano Energy, 2016,26:746.
[42]
Ganganboina A B, Chowdhury A D, Doong R A . ACS Sustainable Chem. Eng., 2017,5:4930.
[43]
Islam M S, Deng Y, Tong L Y, Roy A K, Faisal S N, Hassan M, Minett A I, Gomes V G . Materials Today Communications, 2017,10:112.
[44]
Li Z, Liu X, Wang L, Bu F, Wei J J, Pan D Y, Wu M H . Small, 2018,8:21460.
[45]
Kuar M, Kuar M, Sharma V K . Adv. Colloid. Interfac., 2018,259:44.
[46]
Li Z, Cao L, Qin P, Liu X, Chen Z W, Wang L, Pan D Y . Carbon, 2018,139:67.
[47]
Ganganboina A B, Chowdhury A D, Doong R A . Electrochim. Acta, 2017,245:912.
[48]
Li Z, Li Y F, Wang L, Cao L, Liu X, Chen Z W, Pan D Y, Wu M H . Electrochim. Acta, 2017,235:561.
[49]
Sun C W, Liu L, Gong Y D, Wilkinson D P, Zhang J J . Nano Energy, 2017,33:363.
[50]
Zhu C R, Chao D L, Sun J, Bacho M, Fan Z X, Ng C F, Xia X H, Huang H, Zhang H, Shen Z X, Ding G Q, Fan H J . Adv. Mater. Interfaces, 2015,2(2):1400499.
[51]
Chao D L, Zhu C R, Xia X H, Liu J L, Zhang X, Wang J, Liang P . Nano Lett., 2015,15:565.
[52]
Ji Y C, Hu J, Biskupek J, Kaiser U, Song Y F, Streb C . Chem. Eur. J., 2017,23:16637.
[53]
Kundu S, Ragupathy P, Pillai V K . J.Electrochem. Soc., 2016,163(6):A1112.
[54]
Li R Y, Jiang Y Y, Zhou X Y, Li Z J, Gu Z G, Wang G L . Electrochim. Acta, 2015,178:303.
[55]
Zhu X Q, Li J, Liu P, Feng C, Ali R N, Xiang B . Appl. Phys. A-Mater., 2018,124:722.
[56]
邓南平(Deng N P), 马晓敏(Ma X M), 阮艳莉(Ruan Y L), 王晓清(Wang X Q), 康卫民(Kang W M), 程博闻(Cheng B W) . 化学进展 (Progress in Chemistry), 2016,28(9):1435.
[57]
Zhang L L, Wang Y J, Niu Z Q, Chen J . Carbon, 2019,414:400.
[58]
Assadi M K, Bakhoda S, Saidur R, Hanaei H . Renew. Sust. Energ. Rev., 2018,81:2812.
[59]
Wang G Q, Dong W N, Ma P, Yan C, Zhang W, Liu L Q . Electrochim. Acta, 2018,290:273.
[60]
Subramanian A, Pan Z H, Rong G L, Li H F, Qiu Y C, Xu Y J, Hou Y, Zheng Z Z, Zhang Y G . J.Power Sources, 2017,343:39.
[61]
Yu C, Liu Z Q, Chen Y W, Meng X T, Li M Y, Qiu J S . Sci. China Mater., 2016,59(2):104.
[62]
Ding Z C, Hao Z, Meng B, Xie Z Y, Liu J, Dai L M . Nano Energy, 2015,15:186.
[63]
Moon B J, Jang D, Yi Y, Lee H, Kim S J, Oh Y L, Lee S H, Park M, Lee S, Bae S . Nano Energy, 2017,34:36.
[64]
Gao P, Ding K, Wang Y, Ruan K Q, Diao S L, Zhang Q, Sun B Q . J. Phys. Chem. C, 2014,118:5164.
[65]
Diao S L, Zhang X J, Shao Z B, Ding K, Jie J S, Zhang X H . Nano Energy, 2017,31:359.
[66]
Shen D L, Zhang W F, Xie F Y, Li Y F, Abate A, Wei M D . J.Power Sources, 2018,402:320.
[67]
池滨(Chi B), 侯三英(Hou S Y), 刘广智(Liu G Z), 廖世(Liao S) . 化学进展 (Progress in Chemistry), 2018,30(2/3):243.
[68]
Zhang L L, Chang Q W, Chen H M, Shao M S . Nano Energy, 2016,29:198.
[69]
Li G, Yi Q F, Yang X K, Chen Y, Zhou X L, Xie G . Carbon, 2018,140:557.
[70]
Vecchio C L, Sebastian D, Alegre C, Arico A S, Baglio V . J.Electroanal. Chem., 2017,808:464.
[71]
Shinde D B, Dhavale V M, Kurungot S, Pillal V K . Indian Academy of Sciences, 2015,38(2):435.
[72]
Fei H L, Ye R Q, Ye G L, Gong Y L, Peng Z W, Fan X J, Samuel E L G, Aiayan P M, Tour J M . ACS Nano, 2014,8(10):10837.
[73]
Yao Y, Guo Y S, Du W, Tong X Y, Zhang X . J.Mater. Sci-Mater. Electron., 2018,29(20):17695.
[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[4] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[5] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[6] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[9] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[10] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[11] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[12] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[13] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[14] 贾航, 乔越, 张玉, 孟庆鑫, 刘程, 蹇锡高. 玄武岩纤维增强树脂基复合材料界面改性策略[J]. 化学进展, 2020, 32(9): 1307-1315.
[15] 张志, 邹晨涛, 杨水金. 基于钨(钼)酸铋半导体复合材料的合成及其在光催化降解中的应用[J]. 化学进展, 2020, 32(9): 1427-1436.