English
新闻公告
More
化学进展 2017, Vol. 29 Issue (7): 776-784 DOI: 10.7536/PC170317 前一篇   后一篇

• 综述 •

β-HgS量子点的制备、性质及应用

刘康, 高冠斌*, 孙涛垒*   

  1. 武汉理工大学材料复合新技术国家重点实验室 武汉 430070
  • 收稿日期:2017-03-13 修回日期:2017-06-01 出版日期:2017-07-15 发布日期:2017-06-22
  • 通讯作者: 高冠斌, 孙涛垒 E-mail:gbgao@whut.edu.cn;suntl@whut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51533007,51521001,21404083)资助

β-HgS Quantum Dots:Preparation, Properties and Applications

Kang Liu, Guanbin Gao*, Taolei Sun*   

  1. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • Received:2017-03-13 Revised:2017-06-01 Online:2017-07-15 Published:2017-06-22
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51533007,51521001,21404083).
β-HgS量子点因其具有可调谐的可见-近红外荧光和带间荧光而在光转换和荧光成像等多个领域有着广阔的应用前景。本文综述了β-HgS量子点的制备、性质及应用,重点梳理了β-HgS量子点在有机相和水相中的两大类共计五种制备方法,阐述了其不同于块状β-HgS的独特性质,总结了其在离子探测、细胞成像、活体成像、光转换器和荧光油墨等领域的最新应用。最后针对制约β-HgS量子点应用的主要问题(如应用于光转换器件中的转换效率和荧光量子产率不高、应用于生物荧光成像中的特异性识别能力不足和生物相容性较差等),提出了我们的解决方案:一方面,将β-HgS量子点自组装形成特定的纳米结构,以期提高其光转换效率和荧光量子产率;另一方面,通过将手性生物分子引入到β-HgS量子点表面来制备手性β-HgS量子点,以期增强其在体内和体外荧光成像中的特异性识别能力和改善其生物相容性。本文将为β-HgS量子点的发展提供新的思路。
Due to the tunable Vis-NIR fluorescence and interband fluorescence, β-HgS quantum dots have shown broad application prospects in multi-field such as photoelectric conversion and fluorescence imaging. In this review, the preparation, properties and applications of β-HgS quantum dots are summarized systematically. Firstly, five synthesis methods of β-HgS quantum dots are classified into two categories by solution phase:synthesis in aqueous phase and organic phase. Then, the physical properties of β-HgS quantum dots differing from bulk β-HgS are expounded. Next, the latest applications of β-HgS quantum dots in ion detection, cell imaging, in vivo imaging, light converter and fluorescent ink are summed up. Subsequently, the main two issues existing in the applications of β-HgS quantum dots are pointed out:one is their low photoelectric conversion rate and fluorescence quantum yield for photoelectric device, the other is their poor ability in specific recognition for biomedical fluorescence imaging. Finally, our personal perspectives to solve the problem are outlined that self-assembly aggregates of β-HgS quantum dots could be prepared to improve their photoelectric conversion rate and thermostability; and that chiral biomolecules could be introduced into the surface of β-HgS quantum dots as ligand to obtain chiral β-HgS quantum dots, these chiral β-HgS quantum dots might have potential chiral recognition ability and better biocompatibility which could be used for fluorescence imaging in vitro and in vivo. This review points out a new direction for the development of β-HgS quantum dots.
Contents
1 Introduction
2 Synthesis of β-HgS quantum dots
2.1 Synthesis in organic phase
2.2 Synthesis in aqueous phase
3 Properties of β-HgS quantum dots
3.1 Continuous adjustable fluorescence emission in Vis-NIR band
3.2 Stable electron occupation in the lowest quantum state and interband fluorescence
3.3 Transmission properties for electric magnetic polaron
3.4 High fluorescence quantum yield and good light stability
3.5 Selective recognition ability for metal ion
4 Applications of β-HgS quantum dots
4.1 Heavy metal ion probe
4.2 Cell imaging
4.3 In vivo imaging
4.4 Light converter
4.5 Fluorescent ink
5 Conclusion

中图分类号: 

()
[1] Wilder J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C. Nature, 1998, 391:59.
[2] Viswanatha R, Battaglia D M, Curtis M E, Mishima T D, Johnson M B, Peng X. Nano Res., 2008, 1:138.
[3] Breen M L, Dinsmore A D, Pink R H, Qadri S B, Ratna B R. Langmuir, 2001, 17:903.
[4] Zhu H, Jiang R, Guan Y, Fu Y, Xiao L, Zeng G. Sep. Purif. Technol., 2010, 74:187.
[5] Keuleyan S, Lhuillier E, Guyot-Sionnedt P. J. Am. Chem. Soc., 2011, 133:16422.
[6] Chakraborty I, Mitra D, Moulik S P. J. Nanopart. Res., 2005, 7:227.
[7] Higginson K A, Kuno M, Bonevich J, Qadri S B, Yousuf M, Mattoussi H. J. Phys. Chem. B, 2002, 106:9982.
[8] Wichiansee W, Nordin M N, Green M, Curry R J. J. Mater. Chem., 2011, 21:7331.
[9] Yang J, Zhang W H, Hu Y P, Yu J S. J. Colloid Interface Sci., 2012, 379:8.
[10] Jeong K S, Deng Z Y, Keuleyan S, Liu H, Guyot-Sionnest P. J. Phys. Chem. Lett., 2014, 5:1139.
[11] Liu H, Guyot-Sionnest P. J. Phys. Chem. C, 2015, 119:14797.
[12] Yang J, Hu Y, Tan J, Jia L, Zhu Y H, Yu J S. J. Mater. Chem. B, 2015, 3:6928.
[13] Vasudevan D, Gaddam R R, Trinchi A, Cole I. J. Alloys Compd., 2015, 636:395.
[14] Goswami N, Giri A, Kar S, Bootharaju M S, John R, Xavier P L, Pradeep T, Pal S K. Small, 2012, 8:3175.
[15] Shen C C, Tseng W L. Inorg. Chem., 2009, 48:8689.
[16] Zhang J T, Tang Y, Lee K, Ouyang M. Science, 2010, 327:1634.
[17] Gao Z Y, Liu N, Wu D P, Tao W G, Xu F, Jiang K. Appl. Surf. Sci., 2012, 258:2473.
[18] Brus L E. J. Chem. Phys., 1983, 79:5566.
[19] Rossetti R, Nakahara S, Brus L E. J. Chem. Phys., 1983, 79:1086.
[20] Brus L E. J. Chem. Phys., 1984, 80:4403.
[21] Fojtik A, Weller H, Koch U, Henglein A. Ber. Bunsen. Phys. Chem., 1984, 88:969.
[22] Weller H, Schmidt H M, Koch U, Fojtik A, Baral S, Henglein A, Kunath W, Weiss K, Dieman E. Chem. Phys. Lett., 1986, 124:557.
[23] Brus L. J. Phys. Chem., 1986, 90:2555.
[24] Dannhauser T, O'Neil M, Johansson K, Whitten D, Mclendon G. J. Phys. Chem., 1986, 90:6074.
[25] Lianos P, Thomas J K. Chem. Phys. Lett., 1986, 125:299.
[26] Brennan J G, Siegrist T, Carroll P J, Stuczynski S M, Reynders P, Brus L E, Steigerwald M L. Chem. Mater., 1990, 2:403.
[27] Brennan J G, Siegrist T, Carroll P J, Stuczynski S M, Brus L E, Steigerwald M L. J. Am. Chem. Soc., 1989, 111:4141.
[28] Douglas T, Theopold K H. Inorg. Chem., 1991, 30:594.
[29] Murray C B, Norris D J, Bawendi M G. J. Am. Chem. Soc., 1993, 115:8706.
[30] Cao Y C, Wang J. J. Am. Chem. Soc., 2004, 126:14336.
[31] Yang Y A, Wu H, Williams K R, Cao Y C. Angew. Chem., 2005, 117:6870.
[32] Lamer V K, Dinegar R H. J. Am. Chem. Soc., 1950, 72:4847.
[33] Peng Z A, Peng X. J. Am. Chem. Soc., 2001, 123:183.
[34] Smith A M, Ruan G, Rhyner M N, Nie S M. Ann. Biomed. Eng., 2006, 34:3.
[35] Hines M A, Guyot-Sionnest P. J. Phys. Chem. B, 1998, 102:3655.
[36] Uchida H, Curtis C J, Kamat P V, Jones K M, Nozik A J. J. Phys. Chem., 1992, 96:1156.
[37] Guzelian A A, Banin U, Kadavanich A V, Peng X, Alivisatos A P. Appl. Phys. Lett., 1996, 69:1432.
[38] Yang J, Sargent E, Kelley S, Ying J Y. Nat. Mater., 2009, 8:683.
[39] Yang J, Lee J Y, Ying J Y. Chem. Soc. Rev., 2011, 40:1672.
[40] Han L, Hou P F, Feng Y, Liu H, Li J L, Peng Z J, Yang J. Dalton Trans., 2014, 43:11981.
[41] Shen G H, Guyot-Sionnest P. J. Phys. Chem. C, 2016, 120:11744.
[42] Pradhan N, Katz B, Efrima S. J. Phys. Chem. B, 2003, 107:13843.
[43] Kim S W, Zimmer J P, Ohnishi S, Tracy J B, Frangioni J V, Bawendi M G. J. Am. Chem. Soc., 2005, 127:10526.
[44] Battaglia D, Peng X G. Nano Lett., 2002, 2:1027.
[45] Ryu E, Kim S, Jang E, Jun S, Jang H, Kim B, Kim S W. Chem. Mater., 2009, 21:573.
[46] Kim Y H, Jun Y W, Jun B H, Lee S M, Cheon J. J. Am. Chem. Soc., 2002, 124:13656.
[47] Li C L, Ando M, Murase N. Chem. Lett., 2008, 37:856.
[48] Xu W, Lou S, Li S, Wang H, Shen H, Niu J Z, Du Z L, Li L S. Colloids Surf. A, 2009, 341:68.
[49] Keuleyan S, Lhuillier E, Guyot-Sionnest P. J. Am. Chem. Soc., 2011, 133:16422.
[50] Rogach A L, Kornowski A, Gao M Y, Eychmüller A, Weller H. J. Phys. Chem. B, 1999, 103:3065.
[51] Kong Y F, Chen J, Gao F, Li W T, Xu X, Pandoli O, Yang H, Ji J J, Cui D L. Small, 2010, 6:2367.
[52] Keshari A K, Singh P K, Parashar V, Pandey A C. J. Lumin., 2010, 130:315.
[53] Zhou W B, Baneyx F. ACS Nano, 2011, 5:8013.
[54] Mansur H S, González J C, Mansur A A P. Colloids Surf. B, 2011, 84:360.
[55] Ghosh D, Mondal S, Ghosh S, Saha A. J. Mater. Chem., 2012, 22:699.
[56] Yang L, Shen Q M, Zhou J G, Jiang K. Mater. Lett. 2005, 59:2889.
[57] Zhang L, Yang G R, He G X, Wang L, Liu Q R, Zhang Q X, Qin D Z. Appl. Surf. Sci., 2012, 258:8185.
[58] Alivisatos A P. Science, 1996, 271:933.
[59] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Science, 2005, 307:538.
[60] Omata T. J. Ceram. Soc. Jpn., 2015, 123:1.
[61] Smith A M, Nie S M. J. Am. Chem. Soc., 2011, 133:24.
[62] Yoon B, Jeong J, Jeong K S. J. Phys. Chem. C, 2016, 120:22062.
[63] Chen M L, Guyot-Sionnest P. ACS Nano, 2017, 11:4165.
[64] Dabbousi B O, Rodriguez-Viejo J, Mikulec F V, Heine J R, Mattoussi H, Ober R, Jensen K F, Bawendi M G. J. Phys. Chem. B, 1997, 101:9463.
[65] Talapin D V, Mekis I, G tzinger S, Kornowski A, Benson O, Weller H. J. Phys. Chem. B, 2004, 108:18826.
[66] Yang J, Hu Y, Luo J, Zhu Y H, Yu J S. Langmuir, 2015, 31:3500.
[67] Li W J, Zhong X H. J. Phys. Chem. Lett., 2015, 6:796.
[68] Xiao F X, Miao J, Liu B. J. Am. Chem. Soc., 2014, 136:1559.
[69] Hanein D, Geiger B, Addadi L. Science, 1994, 263:1413.
[70] Zhang M X, Qing G Y, Sun T L. Chem. Soc. Rev., 2012, 41:1972.
[71] Gao G B, Zhang M X, Lu P, Guo G L, Wang D, Sun T L. Angew. Chem. Int. Ed., 2015, 54:2245.
[72] 龚德君(Gong D J), 高冠斌(Gao G B), 张明曦(Zhang M X), 孙涛垒(Sun T L). 化学进展(Progress in Chemistry), 2016, 28(2/3):296.
[73] 高冠斌(Gao G B), 龚德君(Gong D J), 张明曦(Zhang M X), 孙涛垒(Sun T L). 化学学报(Acta Chimica Sinica), 2016, 74:363.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[4] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[5] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[6] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[7] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[8] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[9] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[10] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[11] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[12] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[13] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[14] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[15] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
阅读次数
全文


摘要

β-HgS量子点的制备、性质及应用