English
新闻公告
More
化学进展 2020, Vol. 32 Issue (4): 381-391 DOI: 10.7536/PC190739 前一篇   后一篇

• •

手性碳量子点的制备及其应用

卫迎迎1,2, 陈琳2, 王军丽2, 于世平2,3, 刘旭光1,2,**(), 杨永珍2,**()   

  1. 1. 太原理工大学新型碳材料研究院 晋中 030600
    2. 太原理工大学新材料界面科学与工程教育部重点实验室 太原 030024
    3. 山西医科大学第二医院介入治疗科 太原 030001
  • 收稿日期:2019-07-29 修回日期:2019-10-06 出版日期:2020-04-05 发布日期:2020-03-30
  • 通讯作者: 刘旭光, 杨永珍
  • 作者简介:
    * 通信作者 Corresponding author e-mail: (Xuguang Liu); (Yongzhen Yang)
  • 基金资助:
    国家自然科学基金项目(51803148,U1710117); 山西省优秀人才科技创新目(201805D211001)

Synthesis and Applications of Chiral Carbon Quantum Dots

Yingying Wei1,2, Lin Chen2, Junli Wang2, Shiping Yu2,3, Xuguang Liu1,2,**(), Yongzhen Yang2,**()   

  1. 1. The Institute of New Carbon Materials, Taiyuan University of Technology, Jinzhong 030600, China
    2. Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Eduction, Taiyuan University of Technology, Taiyuan 030024, China
    3. Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2019-07-29 Revised:2019-10-06 Online:2020-04-05 Published:2020-03-30
  • Contact: Xuguang Liu, Yongzhen Yang
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(51803148,U1710117); the Shanxi Provincial Excellent Talents Science and Technology Innovation Project(201805D211001)

手性碳量子点(CQDs)因兼具优异的荧光性质、良好的生物相容性、较低的毒性、易于功能化以及手性特征等,在催化、检测和生物医学等领域具有广阔的应用潜力。目前,通过一步法或两步法制备的手性CQDs,已应用于手性催化、手性检测、高尔基体靶向成像、选择性调控酶和蛋白活性、选择性调控细胞能量代谢和促进植物生长等领域。然而,手性CQDs的发展初露头角,需进一步完善可控合成工艺,制备高荧光量子产率的长波长手性CQDs,使其在生物医学等领域绽放异彩。

Chiral carbon quantum dots(CQDs) have wide application potential in catalysis, detection and biomedicine owing to their excellent fluorescence properties, good biocompatibility, low toxicity, easy functionalization and chiral characteristics. At present, chiral CQDs are synthesized by one-step or two-step methods, and applied to chiral catalysis, chiral detection, Golgi apparatus targeted imaging, selective tuning of enzyme and protein activity, selective regulation of cellular energy metabolism, promotion of plant growth, etc. However, the development of chiral CQDs is just beginning. It is necessary to further improve the controllable synthesis process and prepare long wavelength chiral CQDs with high fluorescence quantum yield, so as to make them shine brilliantly in biomedical and other fields.

()
表1 手性CQDs的合成路线总结[10, 34,35, 57~69]
Table 1 Summary of synthesis routes for chiral CQDs[10, 34,35, 57~69]
图1 化学氧化法制备手性CQDs。(A) 以石墨和(R)/(S)-2-苯基-1-丙醇为原料合成的手性CQDs[57];(B) 以碳纤维和L-/D-Cys为原料合成的L-/D-CQDs[58];(C) L-/D-CQDs的CD光谱[58]
Fig. 1 Synthesis of chiral CQDs by chemical oxidation. (A) chiral CQDs synthesized from graphite and (R)/(S) -2-phenyl-1-propanol[57]; (B) L-/D-CQDs synthesized from carbon fiber and L-/D-Cys[58]; (C) CD spectrum of L-/D-CQDs[58]
图2 分别以(A) 柠檬酸和L-Cys[35],(B) 柠檬酸和L-/D-Cys[59],(C) 柠檬酸、乙二胺和L-Cys[60]为原料通过热解法合成手性CQDs
Fig. 2 Chiral CQDs synthesized by pyrolysis from (A) citric acid and L-Cys[35], (B) citric acid and L-/D-Cys[59], (C) citric acid, ethylenediamine and L-Cys[60], respectively
图3 分别以(A) 柠檬酸和L-/D-Cys[65]、(B) L-/D-Cys[34]、(C) L-/D-Cys[10]、(D) L-/D-Lys[67]、(E) L-/D-Trp[69]为原料通过一步水热法制备手性CQDs
Fig. 3 Chiral CQDs synthesized from (A) citric acid and L-/D-Cys[65], (B) L-/D-Cys[34], (C) L-/D-Lys[10], (D) L-/D-Cys[67], (E) L-/D-Trp[69] by one-step hydrothermal method
图4 L-CQDs的合成机理图[69]
Fig. 4 Synthesis mechanism of L-CQDs[69]
图5 加入不同浓度的L-/D-Lys后(A) L-/D-CQDs水溶液和(B) L-/D-CQDs嵌入NPs在紫外光下的颜色变化[60]
Fig. 5 The color change of (A) L-/D-CQDs aqueous solution and (B) L-/D-CQDs embedded NPs under UV light after adding different concentrations of L-/D-Lys[60]
图6 经L-CQDs靶向后高尔基体的(A) 荧光图像和(B) TEM图像[35]
Fig. 6 (A) Fluorescence image and (B) TEM image of the Golgi after targeting by the L-CQDs[35]
图7 手性CQDs的评价和其对漆酶活性的调节图[64]
Fig. 7 A schematic for the evaluation of chiral CQDs and the tuning of the laccase activity[64]
图8 25 mM的Aβ42在缓冲液(A),缓冲液+ 0.2 mg·mL-1 D-CQDs (B),0.2 mg·mL-1 L-CQDs (C和D)存在时孵化24 h后的Cryo-TEM图像;采用CD光谱记录在D-/L-CQDs(浓度为0.2 mg·mL-1)不存在或存在时,25 mM的Aβ42在t=0 (E) 和24 h (F) 的二级结构的图谱[67]
Fig. 8 Cryo-TEM images of 25 mM Aβ42 samples after 24 h incubation in buffer (A), in buffer + 0.2 mg·mL-1 D-CQDs (B), in the presence of 0.2 mg·mL-1 L-CQDs (C and D); Secondary structures of 25 mM Aβ42 were recorded at t=0 (E) and 24 h (F) by CD spectroscopy in the absence or presence of D-/L-CQDs (each at a concentration of 0.2 mg·mL-1) respectively[67]
图9 朊病毒肽 (106-126) 纤维在对映体L-/D-CQDs存在时的形态。(A~C) 朊病毒肽 (106-126) 沉积在涂有DMPC:DMPG脂质双分子层(1∶1摩尔比)的硅片上的AFM图像(在湿的条件下记录的)(A) 在没有CQDs的情况下,(B) 在有L-CQDs的情况下,(C) 在有D-CQDs的情况下[68]
Fig. 9 Morphology of PrP (106-126) fibrils in the presence of enantiomeric L-/D-CQDs. (A~C) AFM images (recorded in wet conditions) of PrP (106-126) deposited upon a silicon wafer coated with a DMPC:DMPG lipid bilayer (1∶1 mole ratio) (A) in the absence of CQDs, (B) in the presence of L- CQDs, and (C) in the presence of D- CQDs[68]
图10 绿豆在浓度分别为0、10、50、100、500和1000 μg·mL-1(从左到右)的L-/D-CQDs水溶液中自然光下照射培养5天后的数码照片[66]
Fig. 10 Digital photograph of mung bean grown in L-/D-CQDs aqueous solution with concentrations of 0, 10, 50, 100, 500 and 1000 μg·mL-1, respectively (from left to right) after incubation for 5 days with natural lighting[66]
[1]
Milton F P , Govan J , Mukhina M V , Gun’ko Y K . Nanoscale. Horiz, 2016,1:14.
[2]
Moloney M P , Gun’ko Y K , Kelly J M. Chem. Commun., 2007: 3900.
[3]
You Y , Zhang L , Luo S . Chem. Sci., 2017,8:621.
[4]
Wei W L , Qu K G , Ren J S , Qu X G. Chem. Sci., 2011,2:2050.
[5]
Das S K , Xu S X , Ben T , Qiu S L. Angew. Chem. Int. Edit., 2018,57:8629.
[6]
Bergantini A , Abplanalp M J , Pokhilko P , Krylov A I , Shingledecker C N , Herbst E , Kaiser R I. Astrophys. J., 2018,860:108.
[7]
de Jong J J D, Lucas L N , Kellogg R M , van Esch J H , Feringa B L . Science., 2004,304:278.
[8]
Cireasa R , Boguslavskiy A E , Pons B , Wong M C H , Descamps D , Petit S , Ruf H , Thiré N , Ferré A , Suarez J . Nat. Physics., 2015,11:654.
[9]
Wang X C , Wang Y , Yang H Y , Fang H X , Chen R X , Sun Y B , Zheng N F , Tan K , Lu X , Tian Z Q. Nat. Commun., 2016,7:12469.
[10]
Li F , Li Y Y , Yang X , Han X X , Jiao Y , Wei T T , Yang D Y , Xu H P , Nie G J. Angew. Chem. Int. Edit., 2018,57:2377.
[11]
Wang Q , Jin Z W , Chen D , Bai D L , Bian H , Sun J , Zhu G , Wang G , Liu S Z. Adv. Energy. Mater., 2018,8:1800007.
[12]
Wang Y , Li X M , Song J Z , Xiao L , Zeng H B , Sun H D. Adv. Mater., 2015,27:7101.
[13]
Li X Y , Zhao Y B , Fan F J , Levina L , Liu M , Quintero-Bermudez R , Gong X W , Quan L N , Fan J , Yang Z Y , Hoogland S , Voznyy O , Lu Z H , Sargent E H. Nat. Photonics., 2018,12:159.
[14]
Veldhuis S A , Ng Y F , Ahmad R , Bruno A , Jamaludin N F , Damodaran B , Mathews N , Mhaisalkar S G. ACS. Energy. Lett., 2018,3:526. https://pubs.acs.org/doi/10.1021/acsenergylett.7b01257

doi: 10.1021/acsenergylett.7b01257     URL    
[15]
Manjceevan A , Bandara J . Electrochim. Acta, 2018,271:567.
[16]
Kita T , Matsumoto A , Yamamoto N , Yamada H .J Lightwave. Technol., 2018,36:219.
[17]
Ruan C , Zhang Y , Lu M , Ji C , Sun C , Chen X , Chen H , Colvin V L , Yu W W . Nanomaterials, 2016,6:13.
[18]
Khantaw T , Boonmee C , Tuntulani T , Ngeontae W . Talanta, 2013,115:849.
[19]
Duran G M , Plata M R , Zougagh M , Contento A M , Rios A .J Colloid. Interf. Sci., 2014,428:235. https://linkinghub.elsevier.com/retrieve/pii/S0021979714002690

doi: 10.1016/j.jcis.2014.04.050     URL    
[20]
Tedsana W , Tuntulani T , Ngeontae W . Anal. Chim. Acta, 2013,783:65.
[21]
Noipa T , Ngamdee K , Tuntulani T , Ngeontae W. Spectrochim. Acta. A., 2014,118:17.
[22]
Delgado-Pérez T , Bouchet L M , de la Guardia M , Galian Raquel E , Pérez-Prieto J . Chem-Eur. J., 2013,19:11068.
[23]
Tedsana W , Tuntulani T , Ngeontae W . Ana.l Chim. Acta., 2015,867:1.
[24]
Ngamdee K , Puangmali T , Tuntulani T , Ngeontae W. Anal. Chim. Acta., 2015,898:93.
[25]
Gao F , Ma S Y , Xiao X C , Hu Y , Zhao D , He Z K . Talanta., 2017,163:102. https://linkinghub.elsevier.com/retrieve/pii/S0039914016308402

doi: 10.1016/j.talanta.2016.10.091     URL    
[26]
Li Y Y , Zhou Y L , Wang H Y , Perrett S , Zhao Y L , Tang Z Y , Nie G J. Angew. Chem. Int. Edit., 2011,50:5860. 749acd0d-c0d2-4e45-8a06-aad0d98c10eb http://dx.doi.org/10.1002/anie.201008206

doi: 10.1002/anie.201008206     URL    
[27]
Zhao M X , Zhu B J , Yao W J , Chen D F , Wang C. Chem. Biol. Drug. Des., 2017,91:285. http://doi.wiley.com/10.1111/cbdd.2018.91.issue-1

doi: 10.1111/cbdd.2018.91.issue-1     URL    
[28]
Ng Olivia T W , Yi W , Chan H M , Cheng J , Qi X , Chan W H , Yung K K L , Li H W . Biomater. SCI-UK., 2013,1:577. 19668a48-3885-4bc3-9f34-3dbead128654 http://dx.doi.org/10.1039/c3bm60029g

doi: 10.1039/c3bm60029g     URL    
[29]
Pandey V , Pandey G , Tripathi V K , Yadav S , Mudiam M K . Luminescence., 2016,31:341.
[30]
Zhang X , Yang S , Sun L Q , Luo A Q .J Mater. Sci., 2016,51:6075.
[31]
Wang Z F , Yuan F L , Li X H , Li Y C , Zhong H Z , Fan L L , Yang S H. Adv. Mater., 2017,29:1702910.
[32]
Yuan F L , Yuan T , Sui L Z , Wang Z B , Xi Z F , Li Y C , Li X H , Fan L L , Tan Z A , Chen A , Jin M X , Yang S H. Nat. Commun., 2018,9:2249.
[33]
Liu J J , Li D W , Zhang K , Yang M X , Sun H C , Yang B . Small., 2018,14:1703919 http://doi.wiley.com/10.1002/smll.201703919

doi: 10.1002/smll.201703919     URL    
[34]
Hu L L , Sun Y , Zhou Y J , Bai L , Zhang Y L , Han M M , Huang H , Liu Y , Kang Z H. Inorg. Chem. Front., 2017,4:946.
[35]
Li R S , Gao P F , Zhang H Z , Zheng L L , Li C M , Wang J , Li Y F , Liu F , Li N, Huang C Z. Chem. Sci., 2017,8:6829.
[36]
Qiao Z A , Wang Y F , Gao Y , Li H W , Dai T Y , Liu Y L , Huo Q S. Chem. Commun., 2009,46:8812.
[37]
Tripathi K M , Sonker A K , Sonkar S K , Sarkar S . RSC. Adv., 2014,4:30100.
[38]
Rong M C , Feng Y F , Wang Y R , Chen X . Sensor. Actuat. B-Chem., 2017,245:868.
[39]
Stan C S , Albu C , Coroaba A , Popa M , Sutiman D . J. Mater. Chem C., 2015,3:789.
[40]
Tan X W , Romainor A N B , Chin S F , Ng S M. . J. Anal. Appl. Pyrol., 2014,105:157.
[41]
Deng J H , Lu Q J , Mi N X , Li H T , Liu M L , Xu M C , Tan L , Xie Q J , Zhang Y Y , Yao S Z. . Chem-Eur. J., 2014,20:4993.
[42]
Ming H , Ma Z , Liu Y , Pan K , Yu H , Wang F , Kang Z H. Dalton. T., 2012,41:9526.
[43]
Shinde D B , Pillai V K. Chem-Eur . Chem-Eur. J., 2012,18:12522.
[44]
Zhai X Y , Zhang P , Liu C J , Bai T , Li W C , Dai L M , Liu W G. Chem. Commun., 2012,48:7955. http://xlink.rsc.org/?DOI=c2cc33869f

doi: 10.1039/c2cc33869f     URL    
[45]
Jaiswal A , Ghosh S S , Chattopadhyay A . Chem. Commun., 2011,48:407.
[46]
Yi L , Ning X , Gong N Q , Hao W , Xin S , Wei G , Ling Y . Carbon., 2014,68:258.
[47]
Jiang K , Sun S , Zhang L , Lu Y , Wu A G , Cai C Z , Lin H W. Angew. Chem. Int. Edit., 2015,54:5360. http://doi.wiley.com/10.1002/anie.201501193

doi: 10.1002/anie.201501193     URL    
[48]
Yuan B , Guan S Y , Sun X M , Li X M , Zeng H B , Xie Z , Chen P , Zhou S Y. ACS. Appl. Mater. Inter., 2018,10:16005. https://pubs.acs.org/doi/10.1021/acsami.8b02379

doi: 10.1021/acsami.8b02379     URL    
[49]
Yuan F L , Wang Z B , Li X H , Li Y C , Tan Z A , Fan L Z , Yang S H. Adv. Mater., 2017,29:1604436.
[50]
De B , Karak N . RSC. Adv., 2013,3:8286.
[51]
Yang Y H , Cui J H , Zheng M T , Hu C F , Tan S Z , Xiao Y , Yang Q , Liu Y L. Chem. Commun., 2011,48:380.
[52]
Sahu S , Behera B , Maiti T K , Mohapatra S . Chem. Commun., 2012,48:8835.
[53]
Shen L M , Zhang L P , Chen M L , Chen X W , Wang J H . Carbon., 2013,55:343. https://linkinghub.elsevier.com/retrieve/pii/S000862231201041X

doi: 10.1016/j.carbon.2012.12.074     URL    
[54]
Ma W , Xu L G , de Moura A F , Wu X L , Kuang H , Xu C L , Kotov N A Chem. Rev., 2017,117:8041. https://pubs.acs.org/doi/10.1021/acs.chemrev.6b00755

doi: 10.1021/acs.chemrev.6b00755     URL    
[55]
Wang R F , Wang Y L , Feng Q L , Zhou L Y , Gong F Z , Lan Y W. Mater. Lett., 2012,66:261.
[56]
Tohgha U , Deol K K , Porter A G , Bartko S G , Choi J K , Leonard B M , Varga K , Kubelka J , Muller G , Balaz M . ACS. Nano., 2013,7:11094.
[57]
Vázquez-Nakagawa M , Rodríguez-Pérez L , Herranz M A , Martín N . Chem. Commun., 2015,52:665.
[58]
Suzuki N , Wang Y H , Elvati P , Qu Z B , Kim K , Jiang S , Baumeister E , Lee J , Yeom B , Bahng J H , Lee J , Violi A , Kotov N A . ACS. Nano.no., 2016,10:1744. https://pubs.acs.org/doi/10.1021/acsnano.5b06369

doi: 10.1021/acsnano.5b06369     URL    
[59]
Askari F , Rahdar A , Trant J F . Sensing and Bio-Sensing Research., 2019,22:100251.
[60]
Copur F , Bekar N , Zor E , Alpaydin S , Bingol H . Actuat. B-Chem., 2019,279:305.
[61]
Ostadhossein F , Vulugundam G , Misra S K , Srivastava I , Pan D . Bioconjugate. Chem., 2018,29:3913. https://pubs.acs.org/doi/10.1021/acs.bioconjchem.8b00736

doi: 10.1021/acs.bioconjchem.8b00736     URL    
[62]
Deka M J , Chowdhury D . RSC. Adv., 2017,7:53057. http://xlink.rsc.org/?DOI=C7RA10611D

doi: 10.1039/C7RA10611D     URL    
[63]
Vulugundam G , Misra S K , Ostadhossein F , Schwartz-Duval A S , Daza E A , Pan D Chem. Commun., 2016,52:7513.
[64]
Hu L L , Li H , Liu C A , Song Y X , Zhang M L , Huang H , Liu Y , Kang Z H . Nanoscale., 2018,9:40394.
[65]
Zhang Y L , Hu L L , Sun Y , Zhu C , Li R S , Liu N Y , Huang H , Liu Y , Huang C Z , Kang Z H. RSC. Adv., 2016,6:59956.
[66]
Zhang M L , Hu L L , Wang H B , Song Y X , Liu Y , Li H , Shao M W , Huang H , Kang Z H . Nanoscale., 2018,10:12734.
[67]
Malishev R , Arad E , Bhunia S K , Shaham-Niv S , Kolusheva S , Gazit E , Jelinek R . Chem. Commun., 2018,54:7762. http://xlink.rsc.org/?DOI=C8CC03235A

doi: 10.1039/C8CC03235A     URL    
[68]
Arad E , Bhunia S K , Jopp J , Kolusheva S , Rapaport H , Jelinek R . Adv. Ther., 2018,1:1800006.
[69]
Wei Y Y , Chen L , Wang J L , Liu X G , Yang Y Z , Yu S P. RSC Adv., 2019,9:3208.
[1] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[2] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[3] 龚德君, 高冠斌, 张明曦, 孙涛垒. 手性金团簇的制备、性质及应用[J]. 化学进展, 2016, 28(2/3): 296-307.
[4] 陈凯玲, 赵蕴慧*, 袁晓燕*. 二氧化硅粒子的表面化学修饰——方法、原理及应用[J]. 化学进展, 2013, 25(01): 95-104.
[5] 张月成, 赵姗姗, 米国瑞, 赵继全. 仲醇的氧化动力学拆分[J]. 化学进展, 2012, 24(0203): 212-224.
[6] 张文虎,蔡,燕,刘,湘,方,云,许建和. 芳香酮的不对称还原*[J]. 化学进展, 2007, 19(10): 1537-1553.
[7] 钟丽琴,唐瑞仁,杨青. 手性pybox-金属络合物及其在不对称催化反应中的应用[J]. 化学进展, 2007, 19(06): 902-910.
[8] 高明章,汪波,许遵乐. C2型轴对称手性双恶唑啉的合成及其应用研究*[J]. 化学进展, 2002, 14(05): 347-.
[9] 陈新滋,吕士杰,李晓东. 修饰型多相手性催化剂在不对称合成中的应用[J]. 化学进展, 2001, 13(01): 33-.
阅读次数
全文


摘要

手性碳量子点的制备及其应用