English
新闻公告
More
化学进展 2018, Vol. 30 Issue (8): 1186-1201 DOI: 10.7536/PC180103 前一篇   后一篇

• 综述 •

碳量子点激发依赖荧光特性的机理、调控及应用

王军丽1,2, 王亚玲1,2, 郑静霞1,2, 于世平1,3, 杨永珍1,2*, 刘旭光1,4*   

  1. 1. 太原理工大学新材料界面科学与工程教育部重点实验室 太原 030024;
    2. 太原理工大学新材料工程技术研究中心 太原 030024;
    3. 山西医科大学第二医院介入治疗科 太原 030001;
    4. 太原理工大学材料科学与工程学院 太原 030024
  • 收稿日期:2018-01-05 修回日期:2018-03-08 出版日期:2018-08-15 发布日期:2018-04-09
  • 通讯作者: 杨永珍, 刘旭光 E-mail:yyztyut@126.com;liuxuguang@tyut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.U1710117,U1610255,U1607120)、山西省科技创新重点团队(No.2015013002-10,201605D131045-10)和山西省重点研发计划(No.201603D111010,201703D321015-1)资助

Mechanism, Tuning and Application of Excitation-Dependent Fluorescence Property in Carbon Dots

Junli Wang1,2, Yaling Wang1,2, Jingxia Zheng1,2, Shiping Yu1,3, Yongzhen Yang1,2*, Xuguang Liu1,4*   

  1. 1. Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China;
    2. Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
    3. Interventional Treatment Department, Second Hospital of Shanxi Medical University, Taiyuan 030001, China;
    4. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2018-01-05 Revised:2018-03-08 Online:2018-08-15 Published:2018-04-09
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.U1710117, U1610255, U1607120), the Shanxi Provincial Key Innovative Research Team in Science and Technology(No.2015013002-10, 201605D131045-10), and the Shanxi Provincial Key Research and Development Program(No.201603D111010, 201703D321015-1).
碳量子点(carbon dots,CDs)是一种具有强荧光、荧光波长可调、无光漂白等特性的新型荧光纳米粒子,其制备简单、成本低,而且具有良好的生物相容性和低毒性,在光电器件、生物传感及药物载体等领域展现出广阔的应用前景。其具有的独特激发依赖荧光特性是指随着激发波长的改变,其发射波长将随之改变,所以,通过调节激发波长即可实现CDs的连续全色发射,可为其在多色成像生物领域提供可能性。此外,在长波长激发下,CDs发射波长甚至可以延续到近红外区域,展现出在活体成像领域的应用前景。因此,探索CDs激发依赖荧光特性的机理是非常重要的,这将为实现CDs的激发依赖荧光特性提供理论指导。本文就近年来人们对于CDs激发依赖荧光特性的研究进行了综述,重点概述了CDs激发依赖荧光特性的机理、调控实现CDs激发依赖荧光特性的方法及CDs激发依赖荧光特性的应用。目前,CDs激发依赖荧光特性的机理主要包括:不同表面态的分布、宽的尺寸分布、碳核结构的存在及周围慢的溶剂弛豫;实现CDs激发依赖荧光特性的方法主要有:对表面态的控制、尺寸分布的控制及碳核结构的控制;CDs激发依赖荧光特性的应用主要表现在细胞成像和光电器件。最后,对这一特性研究中尚存在的问题进行了总结并且展望了其发展前景。
Carbon dots(CDs), as a class of rising nano-materials with strong fluorescence and tunable emission wavelength, exhibit potential application in many fields including optoelectronic device, biosensing and drug carrier because of their superior resistance to photobleaching, low toxicity and excellent biocompatibility. The unique excitation-dependent fluorescence property of CDs denotes the variation of the emission wavelength of CDs with the excitation wavelength, thus the realization of full-color emission through tuning excitation wavelength, which will provide a possibility for the application of CDs in multicolor imaging. Meanwhile, the emission of CDs can extend to near-infrared region when excited by long-wavelength, exhibiting the potential application in living imaging. Therefore, it is important to explore the mechanism of excitation-dependent fluorescence property of CDs, so as to provide a theoretical guidance for realizing their excitation-dependent fluorescence property. In this review, the recent progress in excitation-dependent fluorescence property of CDs was summarized, with especial emphasis on their mechanism, realization approach and application. At present, the excitation-dependent fluorescence in CDs has induced different hypotheses, such as the presence of multiple surface states, wide size distribution, formation of carbon nuclei in CDs, and slow solvent relaxation around CDs. Therefore, the excitation-dependent fluorescence can be realized by tuning surface states, size distribution and carbon nuclei. In addition, the unique property exhibits potential application in imaging and optoelectronic field. In the end, the existing problems are pointed out and the prospects are predicted.
Contents
1 Introduction
2 Mechanism of excitation-dependent fluorescence property in CDs
2.1 Distribution of different surface states
2.2 Distribution of wide particle size
2.3 Structure of carbon nuclei
2.4 Slow solvent relaxation around CDs
3 Approaches to excitation-dependent fluorescence property in CDs
3.1 Tuning of surface states
3.2 Tuning of size distribution
3.3 Tuning of carbon nuclei
4 The application of excitation-dependent fluorescence property in CDs
4.1 Multicolor imaging in vitro
4.2 Imaging in vivo
5 Conclusion and outlook

中图分类号: 

()
[1] 颜范勇(Yan F Y), 邹宇(Zou Y), 王猛(Wang M), 代林枫(Dai L F),周旭光(Zhou X G),陈莉(Chen L). 化学进展(Prog. Chem.), 2014, 26:61.
[2] Li H T, Kang Z H, Liu Y, Lee S T. J. Mater. Chem., 2012, 22:24230.
[3] Baker S N, Baker G A. Angew Chem. Int. Edit., 2010, 49:6726
[4] Wang F, Kreiter M, He B, Pang S P, Liu C Y. Chem. Commun., 2010, 46:3309.
[5] Zhao L X, Di F, Wang D B, Guo L H, Yang Y, Wan B, Zhang H. Nanoscale, 2013, 5:2655.
[6] Qu Q, Zhu A, Shao X L, Shi G Y, Tian Y. Chem. Commun., 2012, 48:5473.
[7] Tuerhong M, Yang X U, Bo Y X. Chinese J. Anal. Chem., 2017, 45:139.
[8] Himaja A L, Karthik P S, Singh S P. Chem. Record, 2015, 15:595.
[9] Xu X Y, Ray R, Gu Y L, Ploehn H J, Gearheart L, Raker K, Scrivens W A. J. Am. Chem. Soc., 2004, 126:12736.
[10] Wang X, Cao L, Lu F S, Meziani M J, Li H T, Qi G, Zhou B, Harruff B A, Kermarrec F, Sun Y P. Chem. Commun., 2009:3774.
[11] Yang S T, Cao L, Luo P G, Lu F, Wang X, Wang H, Meziani M J, Liu Y, Qi G, Sun Y P. J. Am. Chem. Soc., 2009, 131:11308.
[12] Zhao Q L, Zhang Z L, Huang B H, Peng J, Zhang M, Pang D W. Chem. Commun., 2008, 5116.
[13] Zheng L Y, Chi Y W, Dong Y Q, Lin J P, Wang B B. J. Am. Chem. Soc., 2009, 131:4564.
[14] Bourlinos A B, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis E P. Small, 2008, 4:455.
[15] Liu R L, Wu D Q, Liu S H, Koynov K, Knoll W, Li Q. Angew Chem. Int. Ed., 2009, 48:4598.
[16] Liu Y, Xiao N, Gong N Q, Wang H, Shi X, Gu W, Ye L. Carbon, 2014, 68:258.
[17] Zhao P, Li X, Baryshnikov G, Wu B, Ågren H, Zhang J J, Zhu L L. Chem. Sci., 2018, 9:1323.
[18] Tomskaya A E, Egorova M N, Kapitonov A N, Nikolaev D V, Popov V I, Fedorov A L, Smagulova S A.Phys. Status Solidi-R, 2018, 255:1700222.
[19] 黄启同(Huang Q T),林小凤(Lin X F),李飞明(Li F M),翁文(Wen W),林丽萍(Lin L P),胡世荣(Hu S R).化学进展(Prog. Chem.), 2015, 27:1604.
[20] Mozdbar A, Nouralishahi A, Fatemi S, Mirakhori G. Proceedings of the International Biennial Conference on Ultrafine Grained and Nanostructured Materials. AIP Conference Proceedings, 2018, 1920.
[21] Chen L Y, Zhang Y Y, Duan B H, Gu Z Z, Guo Y T, Wang H F, Duan C Y. New J Chem., 2018, 42:1690.
[22] Ma X H, Dong Y H, Sun H Y, Chen N S. Mater. Today Chem., 2017, 5:1.
[23] Li B, Guo Y L, Iqbal A, Dong Y P, Li W, Liu W S, Qin W W, Wang Y B. RSC Adv., 2016, 6:4.
[24] Yan H P, Tan M Q, Zhang D M, Cheng F S, Wu H, Fan M, Ma X J, Wang J H. Talanta, 2013, 108:59.
[25] Jiang K, Sun S, Zhang L, Wang Y H, Cai C Z, Lin H W. ACS Appl. Mater. Inter., 2015, 7:23231.
[26] Luo P G, Yang F, Yang S T, Sonkar S K, Yang L J, Broglie J J, Liu Y, Sun Y P. RSC Adv., 2014, 4:10791.
[27] Chen J C, Liu J H, Li J Z, Xu L Q, Qiao Y J. J Colloid Interf. Sci., 2017, 485:167.
[28] Xu Y, Wu M, Liu Y, Feng X Z, Yin X B, He X W, Zhang Y K. Chem. Eur. J, 2013, 19:2276.
[29] Ko H Y, Chang Y W, Paramasivam G, Jeong M S, Cho S, Kim S. Chem. Commun., 2013, 49:10290.
[30] Qu S N, Zhou D, Li D, Ji W Y, Jing P T, Han D, Liu L, Zeng H B, Shen D Z. Adv. Mater., 2016, 28:3516.
[31] Tian Z, Zhang X T, Li D, Zhou D, Jing P T, Shen D Z, Qu S N, Zboril R, Rogach A L. Adv. Opt. Mater., 2017, 5:1700416.
[32] Miao X, Qu D, Yang D X, Nie B, Zhao Y K, Fan H Y, Sun Z C. Adv. Mater., 2017, 30:1870002.
[33] Miao X, Yan X L, Qu D, Li D B, Tao F F, Sun Z C. ACS Appl. Mater. Inter., 2017, 9:
[34] Qu D, Miao X, Wang X T, Nie C, Li Y X, Luo L, Sun Z C. J. Mater. Chem. B, 2017, 5:18549.
[35] Li H, Kong W Q, Liu J, Liu N Y, Huang H, Liu Y, Kang Z H. Carbon, 2015, 91:66.
[36] Shi W L, Guo F, Han M M, Yuan S L, Guan W S, Li H, Huang H, Liu Y, Kang Z H. J. Mater. Chem. B, 2017, 5:3293.
[37] Wang L P, Zhao S Y, Wu X Q, Guo S J, Liu N Y, Huang H, Liu Y, Kang Z H. RSC Adv., 2016, 6:66893.
[38] Lim S Y, Shen W, Gao Z Q. Chem. Soc. Rev., 2015, 44:362.
[39] Guo X, Wang C F, Yu Z Y, Chen L, Chen S. Chem. Commun., 2012, 48:2692.
[40] Bourlinos A B, Trivizas G, Karakassides M A, Baikousi M, Kouloumpis A, Gournis D, Bakandritsos A, Hola K, Kozak O, Zboril R, Papagiannouli I, Aloukos P, Couris S. Carbon, 2015, 83:173.
[41] Tang L B, Ji R B, Li X M, Teng K S, Lau S P. J Mater. Chem. C, 2013,1:4908.
[42] Liu R L, Wu D Q, Feng X L, Müllen K. J. Am. Chem. Soc., 2011, 133:15221.
[43] Li Y, Hu Y, Zhao Y, Shi G Q, Deng L, Hou Y B, Qu L T. Adv. Mater., 2011, 23:776.
[44] Fu M, Ehrat F, Wang Y, Milowska K Z, Reckmeier C, Rogach A L, Stolarczyk J K, Urban A S, Feldmann J. Nano Lett., 2015, 15:6030.
[45] Wang Y F, Dong L H, Xiong R L, Hu A G. J. Mater. Chem. C, 2013, 1:7731.
[46] Yan J A, Xian L, Chou M Y. Phys. Rev. Lett., 2009, 103:086802.
[47] Eda G, Lin Y Y, Mattevi C, Yamaguchi H, Chen H A, Chen I S, Chen C W, Chhowalla M. Adv. Mater., 2010, 22:505.
[48] Zhu S J, Zhang J H, Tang S J, Qiao C Y, Wang L, Wang H Y, Liu X, Li B, Li Y F, Yu W L, Wang X F, Sun H C, Yang B. Adv. Funct. Mater., 2012, 22:4732.
[49] Ray S C, Saha A, Jana N R, Sarkar R. J. Phys. Chem. C, 2009, 113:18546.
[50] Song Y B, Zhu S J, Zhang S T, Fu Y, Zhao X H,Wang L, Yang B. J Mater. Chem. C, 2015, 3:5976.
[51] Khan S, Gupta A, Verma N C, Nandi C K. Nano Lett., 2015, 15:8300.
[52] Wang J, Cheng C M, Huang Y, Zheng B Z, Yuan H Y, Bo L, Zheng M W, Yang S Y, Guo Y, Xiao D. J Mater. Chem. C, 2014, 2:5028.
[53] Mao L H, Tang W Q, Deng Z Y, Liu S S, Wang C F, Chen S. Ind. Eng. Chem. Res., 2014, 53:6417.
[54] Zheng B Z, Liu T, Paau M C, Wang M N, Liu Y, Liu L Z, Wu C F, Du J, Xiao D, Choi M F. RSC Adv., 2015, 5:11667.
[55] Tang L B, Ji R B, Cao X K, Lin J Y, Jiang H X, Li X M, Teng K S, Luk C M, Zeng S J, Hao J H, Lau S P. ACS Nano, 2012, 6:5102.
[56] Nguyen V, Si J H, Yan L H, Hou X. Carbon, 2015, 95:659.
[57] Yang Z, Xu M H, Liu Y, He F J, Gao F, Su Y J, Wei H, Zhang Y F. Nanoscale, 2014, 6:1890.
[58] Lecroy G E, Messina F, Sciortino A, Bunker C E, Wang P, Fernando K A S, Sun Y P. J. Phys. Chem. C, 2017, 121:28180.
[59] Zhai X Y, Zhang P, Liu C J, Bai T, Li W C, Dai L M, Liu W G. Chem. Commun., 2012, 48:7955.
[60] Cui Y Y, Hu Z B, Zhang C F, Liu X F. J. Mater. Chem. B, 2014, 2:6947.
[61] Zhang Y, He Y H, Cui P P, Feng X T, Chen L, Yang Y Z, Liu X G. RSC Adv., 2015, 5:40393.
[62] Hu S L, Trinchi A, Atkin P, Cole I. Angew Chem. Int. Ed., 2015, 54:2970.
[63] Nie H, Li M J, Li Q S, Liang S J, Tan Y Y, Sheng L, Shi W, Zhang S X A. Chem. Mater., 2014, 26:3104.
[64] Dam B V, Nie H, Ju B, Emanuele M, Paulusse J M J, Schall P, Li M J, Dohnalová K. Small, 2017, 13:1702098.
[65] Ju B, Nie H, Liu Z, Xu H J, Li M J, Wu C F, Wang H D, Zhang S X A. Nanoscale, 2017, 9:1336.
[66] Dong Y Q, Pang H C, Yang H B, Guo C X, Shao J W, Chi Y W, Li C M, Yu T. Angew Chem. Int. Edit., 2013, 52:7800.
[67] Li X M, Liu Y L, Song X F, Wang H, Gu H S, Zeng H B. Angew Chem. Int. Edit., 2015, 54:1759.
[68] Wang Y Y, Li Y, Yan Y, Xu J, Guan B Y, Wang Q, Li J Y, Yu J H. Chem. Commun., 2013, 49:9006.
[69] Yan X, Cui X, Li L S. J. Am. Chem. Soc., 2010, 132:5944.
[70] Huang J J, Zhong Z F, Rong M Z, Zhou X, Chen X D, Zhang M Q. Carbon, 2014, 70:190.
[71] Hu S L, Liu J, Yang J L, Wang Y Z, Cao S R. J. Nanopart. Res., 2011, 13:7247.
[72] Li H T, He X D, Kang Z H, Huang H, Liu Y, Liu J L, Lian S Y, Tsang C H A, Yang X B, Lee S T. Angew Chem. Int. Edit., 2010, 49:4430.
[73] Khan S, Gupta A, Verma N C, Nandi C K. Nano Lett., 2015, 15:8300.
[74] Chen D Q, Wu W W, Yuan Y J, Zhou Y, Wan Z Y, Huang P. J Mater. Chem. C, 2016, 4:9027.
[75] Long Y M, Zhou C H, Zhang Z L, Tian Z Q, Bao L, Lin Y, Pang D W. J. Mater. Chem., 2012, 22:5917.
[76] Pan L L, Sun S, Zhang A D, Jiang K, Zhang L, Dong C Q, Huang Q, Wu A G, Lin H W. Adv. Mater., 2015, 27:7782.
[77] Bao L, Zhang Z L, Tian Z Q, Zhang L, Liu C, Lin Y, Qi B, Pang D W. Adv. Mater., 2011, 23:5801.
[78] Shang J Z, Ma L, Li J W, Ai W, Yu T, Gurzadyan G G. Sci. Rep., 2012, 2:792.
[79] Li X M, Zhang S L, Kulinich S A, Liu Y L, Zeng H B. Sci. Rep., 2014, 4:4976.
[80] Zhu S J, Song Y B, Zhao X H, Shao J R, Zhang J H, Yang B. Nano Res., 2015, 8:355.
[81] Dong Y Q, Shao J W, Chen C Q, Li H, Wang R X, Chi Y W, Lin X M, Chen G N. Carbon, 2012, 50:4738.
[82] Hu Y P, Yang J, Tian J W, Jia L, Yu J S. RSC Adv., 2015, 5:15366.
[83] Hou J, Yan J, Zhao Q, Li Y, Ding H, Ding L. Nanoscale, 2013, 5:9558.
[84] Zhu S J, Meng Q N, Wang L, Zhang J H, Song Y B, Jin H, Zhang K, Sun H C, Wang H Y, Yang B. Angew Chem. Int. Ed., 2013, 52:3953.
[85] Krysmann M J, Kelarakis A, Dallas P, Giannelis E P. J. Am. Chem. Soc., 2012, 134:747.
[86] Hou J, Wang W, Zhou T Y, Wang B, Li H Y, Ding L. Nanoscale, 2016, 8:11185.
[87] Sun Y P, Zhou B, Lin Y, Wang W, Fernando K A S, Pathak P, Meziani M J, Harruff B A, Wang X, Wang H F, Luo P J, Yang H, Kose M E, Chen B L, Veca L M, Xie S Y. J. Am. Chem. Soc., 2006, 128:7756.
[88] Zhang F, Wang Y L, Miao Y Q, He Y H, Yang Y Z, Liu X G. Appl. Phys. Lett., 2016, 109:083103.
[89] Zhang X Y, Zhang Y, Wang Y, Kalytchuk S, Kershaw S V, Wang Y H, Wang P, Zhang T Q, Zhao Y, Zhang H Z, Cui T, Wang Y D, Zhao J, Yu W W, Rogach A L. ACS Nano, 2013, 7:11234.
[90] Zhu S, Zhang J H, Qiao C Y, Tang S J, Li Y F, Yuan W J, Li B, Tian L, Liu F, Hu R, Gao H N, Wei H T, Zhang H, Sun H C, Yang B. Chem. Commun., 2011, 47:6858.
[91] Tao H Q, Yang K, Ma Z, Wan J M, Zhang Y J, Kang Z H, Liu Z. Small, 2012, 8:281.
[1] 吴星辰, 梁文慧, 蔡称心. 碳量子点的荧光发射机制[J]. 化学进展, 2021, 33(7): 1059-1073.
[2] 卫迎迎, 陈琳, 王军丽, 于世平, 刘旭光, 杨永珍. 手性碳量子点的制备及其应用[J]. 化学进展, 2020, 32(4): 381-391.
[3] 刘禹杉, 李伟, 吴鹏, 刘守新*. 水热炭化制备碳量子点及其应用[J]. 化学进展, 2018, 30(4): 349-364.
[4] 黄启同, 林小凤, 李飞明, 翁文, 林丽萍, 胡世荣. 碳量子点的合成与应用[J]. 化学进展, 2015, 27(11): 1604-1614.