English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1302-1312 DOI: 10.7536/PC150162 前一篇   后一篇

• 综述与评论 •

硅纳米晶的制备及其在太阳电池中的应用研究

刘超1, 谭瑞琴1*, 曾俞衡2, 王维燕2, 黄金华2, 宋伟杰2   

  1. 1. 宁波大学信息科学与工程学院 宁波 315211;
    2. 中国科学院宁波材料技术与工程研究所 宁波 315201
  • 收稿日期:2015-01-01 修回日期:2015-05-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 谭瑞琴 E-mail:tanruiqin@nbu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21377063,61106096,61574145), 浙江省自然科学基金项目(No. LY15F040003), 宁波市自然科学基金项目(No. 2014A610036)和宁波大学王宽诚幸福基金资助

Preparation of Silicon Nanocrystals and Their Applications in Solar Cells

Liu Chao1, Tan Ruiqin1*, Zeng Yuheng2, Wang Weiyan2, Huang Jinhua2, Song Weijie2   

  1. 1. Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China;
    2. Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
  • Received:2015-01-01 Revised:2015-05-01 Online:2015-09-15 Published:2015-06-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21377063, 61106096, 61574145), the Natural Science Foundation of Zhejiang Province (No. LY15F040003), the Natural Science Foundation of Ningbo (No. 2014A610036 ), and K. C. Wong Magna Fund in Ningbo University.
硅纳米晶由于量子限域效应的作用而产生了多种不同于体硅材料的新特性,如荧光效应显著、光学带隙可调等,因而在微电子、光伏、生物医学等领域受到极大的重视。本文介绍了分立的硅纳米晶颗粒和硅纳米晶薄膜的制备方法,并对比了不同方法制备硅纳米晶体的优缺点。着重介绍了硅纳米晶体在太阳电池中应用的几种方式,包括利用纯硅纳米晶薄膜制备太阳电池、硅纳米晶体与有机薄膜基质结合形成复合结构太阳电池、含有硅纳米晶颗粒的硅墨水在太阳电池中的应用等。
Because of the quantum confinement effect, silicon nanocrystals exhibit some new features different from bulk silicon, such as enhanced photoluminescence and adjustable optical band gap, etc. Silicon nanocrystals have attracted much attention in the fields of microelectronics, photovoltaic, biomedicine and so on. In this paper, the different preparation methods of freestanding silicon nanocrystals and silicon nanocrystals embedded in thin films are reviewed, the advantages and disadvantages of different preparation methods are analyzed. Furthermore, the applications of silicon nanocrystals are focused on photovoltaic, including solar cells made up of pure silicon-nanocrystal films, organic solar cells combined with silicon nanocrystals, and silicon nanocrystals ink for solar cells.

Contents
1 Introduction
2 Synthesis of Si nanocrystals
2.1 Synthesis of freestanding Si nanocrystals
2.2 Synthesis of Si nanocrystals embedded in films
3 Applications of Si nanocrystals in solar cells
3.1 Si nanocrystal films as the emitter or optical absorb layer in solar cells
3.2 Organic solar cells combined with silicon nanocrystals
3.3 Silicon nanocrystals ink for solar cells
4 Conclusion

中图分类号: 

()
[1] Barbagiovanni E G, Lockwood D J, Simpson P J, Goncharova L V. Applied Physics Reviews, 2014, 1(1): 011302
[2] Cullis A G, Canham L T. Nature, 1991, 353(6342): 335.
[3] Hua F, Swihart M T, Ruckenstein E. Langmuir, 2005, 21(13): 6054.
[4] Zacharias M, Heitmann J, Scholz R, Kahler U, Schmidt M, Bläsing J. Applied Physics Letters, 2002, 80(4): 661.
[5] Luo J W, Stradins P, Zunger A. Ener. Environ. Sci., 2011, 4(7): 2546.
[6] Beard M C, Knutsen K P, Yu P, Luther J M, Song Q, Metzger W K, Ellingson R J, Nozik A J. Nano Lett., 2007, 7(8): 2506.
[7] Priolo F, Gregorkiewicz T, Galli M, Krauss T F. Nat. Nanotechnol., 2014, 9(1): 19.
[8] Mangolini L. Journal of Vacuum Science & Technology B, 2013, 31(2): 020801.
[9] Pavesi L, Turan R. Silicon Nanocrystals: Fundamentals, Synthesis and Applications, Wiley-VCH, 2010.1.
[10] Green M A. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 371(1996): 20110413.
[11] Feltrin A, Freundlich A. Renewable Energy, 2008, 33(2): 180.
[12] Green M A. Third Generation Photovoltaics: Advanced Solar Energy Conversion. Springer. 2006.
[13] Green M A. Prog. Photovoltaics, 2001, 9(2): 123.
[14] 熊绍珍(Xiong S Z), 朱美芳(Zhu M F). 太阳能电池基础与应用(Solar Cell Fundamentals and Applications). 北京: 科学出版社(Beijing: Science Press), 2009.
[15] Shockley W, Queisser H J. Journal of Applied Physics, 1961, 32(3): 510.
[16] Conibeer G. Silicon Nanocrystals: Fundamentals, Synthesis and Applications, Wiley-VCH, 2010. 555.
[17] L?per P, Hartel A, Künle M, Hiller D, Janz S, Hermle M, Zacharias M, Glunz S. Silicon Quantum Dot Absorber Layers for All-Silicon Tandem Solar Cells: Optical and Electrical Characterisation. 24th European Photovoltaic Solar Energy Conference and Exhibition. Hamburg, Germany. 2009.
[18] Alam M, Flagan R. Aerosol Science and Technology, 1986, 5(2): 237.
[19] Ostraat M L, de Blauwe J W, Green M L, Bell L D, Atwater H A, Flagan R C. J. Electrochem. Soc., 2001, 148(5): G265.
[20] Ostraat M L, de Blauwe J W, Green M L, Bell L D, Brongersma M, Casperson J, Flagan R, Atwater H. Appl. Phys. Lett., 2001, 79(3): 433.
[21] Cannon W R, Danforth S C, Flint J, Haggerty J, Marra R. J. Amer. Chem. Soc., 1982, 65(7): 324.
[22] Ehbrecht M, Kohn B, Huisken F, Laguna M, Paillard V. Phys. Rev. B, 1997, 56(11): 6958.
[23] Werwa E, Seraphin A, Chiu L, Zhou C, Kolenbrander K. Appl. Phys. Lett., 1994, 64(14): 1821.
[24] Hirasawa M, Orii T, Seto T. Appl. Phys. Lett., 2006, 88(9): 093119.
[25] Goldstein A, Echer C, Alivisatos A. Science, 1992, 256(5062): 1425.
[26] Takagi H, Ogawa H, Yamazaki Y, Ishizaki A, Nakagiri T. Appl. Phys. Lett., 1990, 56(24): 2379.
[27] Gresback R, Nozaki T, Okazaki K. Nanotechnology, 2011, 22(30): 305605.
[28] Yasar-Inceoglu O, Lopez T, Farshihagro E, Mangolini L. Nanotechnology, 2012, 23(25): 255604.
[29] Wheeler L M, Neale N R, Chen T, Kortshagen U R. Nat. Commun., 2013, 4: 2197.
[30] Bley R A, Kauzlarich S M. J. Amer. Chem. Soc., 1996, 118(49): 12461.
[31] Mayeri D, Phillips B L, Augustine M P, Kauzlarich S M. Chem. Mater., 2001, 13(3): 765.
[32] Zou J, Baldwin R K, Pettigrew K A, Kauzlarich S M. Nano Lett., 2004, 4(7): 1181.
[33] Hessel C M, Reid D, Panthani M G, Rasch M R, Goodfellow B W, Wei J, Fujii H, Akhavan V, Korgel B A. Chem. Mater., 2011, 24(2): 393.
[34] Lu Z, Lockwood D, Baribeau J M. Nature, 1995, 378(6554): 258.
[35] Lockwood D, Lu Z, Baribeau J M. Phys. Rev. Lett., 1996, 76(3): 539.
[36] Zacharias M, Blasing J, Veit P, Tsybeskov L, Hirschman K, Fauchet P. Appl. Phys. Lett., 1999, 74(18): 2614.
[37] Park N M, Choi C J, Seong T Y, Park S J. Phys. Rev. Lett., 2001, 86(7): 1355.
[38] Park N M, Kim T S, Park S J. Appl. Phys. Lett., 2001, 78(17): 2575.
[39] Kim B H, Cho C H, Kim T W, Park N M, Sung G Y, Park S J. Appl. Phys. Lett., 2005, 86(9): 091908.
[40] Kim T W, Cho C H, Kim B H, Park S J. Appl. Phys. Lett., 2006, 88(12): 123102.
[41] Cho E, Green M, Conibeer G, Song D, Cho Y, Scardera G, Huang S, Park S, Hao X, Huang Y. Opto. Electr., 2007, 69578.
[42] Song D, Cho E C, Cho Y H, Conibeer G, Huang Y, Huang S, Green M A. Thin Solid Films, 2008, 516(12): 3824.
[43] Wan Z, Huang S, Green M A, Conibeer G. Nano Res. Lett., 2011, 6: 129.
[44] Green M A. Prog. Photovoltaics, 2001, 9(2):123.
[45] Green M A. 2008 5th IEEE International Conference on Group Ⅳ Photonics, 2008, 389.
[46] Conibeer G. Materials Today, 2007, 10: 42.
[47] Pavesi L, Turan R. Silicon Nanocrystals: Fundamentals, Synthesis and Applications, Wiley-VCH. 2010. 550.
[48] Kazmerski L L. Journal of Electron Spectroscopy and Related Phenomena, 2006, 150(2): 105.
[49] Pavesi L, Turan R. Silicon Nanocrystals: Fundamentals, Synthesis and Applications. Wiley-VCH. 2010. 1.
[50] 彭华(Peng H), 周之斌(Zhou Z B), 崔容强(Cui R Q), 叶庆好(Ye Q H), 庞乾骏(Pang Q J), 陈鸣波(Chen M B), 赵亮(Zhao L). 半导体学报(Journal of Semiconductors), 2005, 26(5): 958.
[51] Hariskos D, Spiering S, Powalla M. Thin Solid Films, 2005, 480: 99.
[52] Ross R T, Nozik A J. J. Appl. Phys., 1982, 53(5): 3813.
[53] Huang S, Conibeer G. J. Phys. D: Appl. Phys., 2013, 46(2): 024003.
[54] Green M, Conibeer G, Cho E, Konig D, Huang S, Song D, Scardera G, Cho Y, Hao X, Fangsuwannarak T. Proceedings 22nd EU PVSEC. Milan, Italy, 2007.
[55] Huang J, Zeng Y, Wang W, Yang Y, Huang J, Tan R, Dai S, Dai N, Song W. Phys. Status. Solidi A, 2013, 210(3): 528.
[56] Conibeer G, Green M, Corkish R, Cho Y, Cho E C, Jiang C W, Fangsuwannarak T, Pink E, Huang Y, Puzzer T. Thin Solid Films, 2006, 511: 654.
[57] Hao X, Cho E, Flynn C, Shen Y, Park S, Conibeer G, Green M. Sol. Energy Mater. Sol. Cells, 2009, 93(2): 273.
[58] Hao X, Cho E C, Scardera G, Bellet-Amalric E, Bellet D, Shen Y, Huang S, Huang Y, Conibeer G, Green M. Thin Solid Films, 2009, 517(19): 5646.
[59] Chan T L, Tiago M L, Kaxiras E, Chelikowsky J R. Nano Lett., 2008, 8(2): 596.
[60] Shim M, Guyot-Sionnest P. Nature, 2000, 407(6807): 981.
[61] Zeng Y, Chen L, Liu G, Xu H, Song W. RSC Adv., 2014, 4(105): 60948.
[62] Chen X, Pi X, Yang D. J. Phys. Chem. C, 2010, 115(3): 661.
[63] Ni Z, Pi X, Yang D. Phys. Rev. B, 2014, 89(3): 035312.
[64] Pi X, Chen X, Yang D. J. Phys. Chem. C, 2011, 115(20): 9838.
[65] Ma J, Wei S H, Neale N R, Nozik A J. Appl. Phys. Lett., 2011, 98(17): 173103.
[66] Cho E C, Park S, Hao X, Song D, Conibeer G, Park S C, Green M A. Nanotechnology, 2008, 19(24): 245201.
[67] Yu X, Yu W, Wang X, Zheng Y, Zhang J, Jiang Z, Fu G. Superlattices and Microstructures, 2015, 78: 88.
[68] Gutsch S, Laube J, Hiller D, Bock W, Wahl M, Kopnarski M, Gnaser H, Puthen-Veettil B, Zacharias M. Appl. Phys. Lett., 2015, 106(11): 113103.
[69] Zeng Y, Dai N, Cheng Q, Huang J, Liang X, Song W. Mat. Sci. Semicon. Proc., 2013, 16(3): 598.
[70] Wang W, Huang J, Xu W, Huang J, Zeng Y, Song W. Journal of Materials Science: Materials in Electronics, 2013, 24(6): 2122.
[71] Cheng Q, Zeng Y, Huang J, Dai N, Yang Y, Tan R, Liang X, Song W. Physica E, 2013, 53: 36.
[72] Huang J, Zeng Y, Tan R, Wang W, Yang Y, Dai N, Song W. Appl. Surf. Sci., 2013, 270: 428.
[73] Lechner R, Stegner A R, Pereira R N, Dietmueller R, Brandt M S, Ebbers A, Trocha M, Wiggers H, Stutzmann M. J. Appl. Phys., 2008, 104(5): 053701.
[74] Balberg I, Jedrzejewski J, Savir E. Phys. Rev. B, 2011, 83(3): 035318.
[75] Balberg I. J. Appl. Phys., 2011, 110(6): 061301.
[76] Antonova I V, Gulyaev M, Savir E, Jedrzejewski J, Balberg I. Phys. Rev. B, 2008, 77(12): 125318.
[77] Aharoni L, Azulay D, Millo O, Balberg I. Appl. Phys. Lett., 2008, 92(11): 112109.
[78] Balberg I, Savir E, Jedrzejewski J, Nassiopoulou A G, Gardelis S. Phys. Rev. B, 2007, 75(23): 235329.
[79] Balberg I, Dover Y, Naides R, Conde J, Chu V. Phys. Rev. B, 2004, 69(3): 035203.
[80] Balberg I, Naidis R, Fonseca L, Weisz S, Conde J, Alpuim P, Chu V. Phys. Rev. B, 2001, 63(11): 113201.
[81] Crandall R S, Mahan A H, Nelson B, Vanecek M, Balberg I. Properties of Hydrogenated Amorphous Silicon Produced at High Temperature. AIP. 1992.
[82] R?lver R, Berghoff B, Bätzner D, Spangenberg B, Kurz H, Schmidt M, Stegemann B. Thin Solid Films, 2008, 516(20): 6763.
[83] Gutsch S, Laube J, Hartel A, Hiller D, Zakharov N, Werner P, Zacharias M. J. Appl. Phys., 2013, 113(13): 133703.
[84] Bergren M R, Simonds B J, Yan B, Yue G, Ahrenkiel R, Furtak T E, Collins R T, Taylor P C, Beard M C. Phys. Rev. B, 2013, 87(8): 081301.
[85] Song D, Cho E C, Conibeer G, Huang Y, Green M A. Applied Physics Letters, 2007, 91(12): 123510.
[86] Perez-Wurfl I, Ma L, Lin D, Hao X, Green M, Conibeer G. Sol. Energy Mater. Sol. Cells, 2012, 100: 65.
[87] Song D, Cho E C, Conibeer G, Huang Y, Flynn C, Green M A. Silicon Nanocrystals in SiC Matrix for Third Generation Photovoltaic Solar Cells. Is Solar Our Only Nuclear Option?-ANZSES.Solar 2007, 2007.
[88] Aroutiounian V M, Petrosyan S, Khachatryan A, Touryan K J. Quantum Dot Solar Cells. International Symposium on Optical Science and Technology. International Society for Optics and Photonics. 2001.
[89] Yamada S, Kurokawa Y, Miyajima S, Konagai M. Nanoscale Res. Lett., 2014, 9(1): 246.
[90] Loper P, Canino M, Qazzazie D, Schnabel M, Allegrezza M, Summonte C, Glunz S W, Janz S, Zacharias M. Applied Physics Letters, 2013, 102(3): 033507.
[91] Liu C Y, Holman Z C, Kortshagen U R. Nano Lett., 2008, 9(1): 449.
[92] Liu C Y, Kortshagen U R. Nanoscale, 2012, 4(13): 3963.
[93] Branz H M, Yost V E, Ward S, Jones K M, To B, Stradins P. Appl. Phys. Lett., 2009, 94(23): 231121.
[94] Strehlke S, Bastide S, Guillet J, Levy-Clement C. Mat. Sci. Eng. B-Solid, 2000, 69: 81.
[95] Chaoui R, Mahmoudi B, Si Ahmed Y. Phys. Status. Solidi A, 2008, 205(7): 1724.
[96] Pi X, Li Q, Li D, Yang D. Sol. Energy Mater. Sol. Cells, 2011, 95(10): 2941.
[97] Sgrignuoli F, Paternoster G, Marconi A, Ingenhoven P, Anopchenko A, Pucker G, Pavesi L. J. Appl. Phys., 2012, 111(3): 034303.
[98] Sacks J, Savidge R M, Gabr A, Walker A, Beal R, Wheeldon J, Knights A P, Mascher P, Hinzer K, Kleiman R N. Quantum Efficiency Measurements of Down-Shifting Using Silicon Nanocrystals for Photovoltaic Applications. Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE. 2012.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[7] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[8] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[9] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[10] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[11] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[12] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[13] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[14] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[15] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.