English
新闻公告
More
化学进展 2015, Vol. 27 Issue (11): 1523-1530 DOI: 10.7536/PC150534 前一篇   后一篇

• 综述与评论 •

异原子掺杂石墨烯量子点的制备、性能及应用

姚秋虹1, 林丽萍2, 赵婷婷1, 陈曦3*   

  1. 1. 厦门华厦学院 厦门 361024;
    2. 福建农林大学生命科学学院 福州 350002;
    3. 厦门大学化学化工学院化学系 谱学分析与仪器教育部重点实验室 厦门 361005
  • 收稿日期:2015-05-01 修回日期:2015-07-01 出版日期:2015-11-15 发布日期:2015-09-18
  • 通讯作者: 陈曦 E-mail:xichen@xmu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21375112)和厦门市科技局高校创新项目(No.3502Z20143025)资助

Advances in Preparation, Physicochemical Properties and Applications of Heteroatom-Doped Graphene Quantum Dots

Yao Qiuhong1, Lin Liping2, Zhao Tingting1, Chen Xi3*   

  1. 1. Xiamen Huaxia University, Xiamen 361024, China;
    2. College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    3. Department of Chemistry, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received:2015-05-01 Revised:2015-07-01 Online:2015-11-15 Published:2015-09-18
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(No.21375112) and the Program of Science and Technology of Xiamen for University Innovation(No.3502Z20143025).
发光石墨烯量子点(graphene quantum dots,GQDs)的良好理化性能引起许多领域研究人员的关注,但其荧光量子产率不高、活性位点相对较少、选择性较差等缺陷限制了它在分析传感领域的应用。异原子掺杂GQDs可以在一定程度上解决这些问题。本文介绍了异原子掺杂GQDs的制备方法、理化性质和应用情况,并对异原子掺杂GQDs的发展和应用前景进行分析和展望。
Luminescent graphene quantum dots(GQDs) display excellent physicochemical properties, which have ignited tremendous and increasing research interest of researchers from different fields. However, there are still some limitations including low quantum yield, less active sites and unsatisfactory selectivity, which impede their wide applications. As research continues, doping GQDs with heteroatoms has been considered as an effective strategy to address the above problems. In this review, we summarize the preparation methods, physicochemical properties and applications of heteroatom-doped GQDs. There are two kinds of heteroatom-doped GQDs including single-doped GQDs(B, N, S, F, Cl, et al.) and co-doped GQDs(B,N or N,P or N,S co-doping). The introduced heteroatoms changed the charge density and charge distribution of the GQDs, resulting in the enhancement of fluorescence quantum dots, more active sites and the appearances of new physicochemical properties including electrocatalytic activity and intrinsic peroxidase-like catalytic activity. We also give a perspective on the subsequent development and promising applications of heteroatom-doped GQDs.

Contents
1 Introduction
2 Preparation methods
2.1 Preparation of single-doped graphene quantum dots
2.2 Preparation of co-doped graphene quantum dots
3 Physicochemical properties of heteroatom-doped graphene quantum dots
3.1 Photoluminescence
3.2 Electrochemiluminescence
3.3 Catalytic property
4 Applications
4.1 Applications in biological field
4.2 Applications in environmental field
4.3 Applications in energy-related field
5 Conclusion and prospect

中图分类号: 

()
[1] Zhang Z, Zhang J, Chen N, Qu L. Energy Environ. Sci., 2012, 5(10):8869.
[2] Zhu S J, Tang S J, Zhang J H, Yang B. Chem. Commun., 2012, 48(38):4527.
[3] Li L, Rong M, Luo F, Chen D, Wang Y, Chen X. Trends Anal. Chem., 2014, 54:83.
[4] Zhou X J, Guo S W, Zhang J Y. Chem. Phys. Chem., 2013, 14(12):2627.
[5] Dai Y, Long H, Wang X, Wang Y, Gu Q, Jiang W, Wang Y, Li C, Zeng T H, Sun Y, Zeng J. Part. Part. Syst. Charact., 2014, 31(5):597.
[6] Wang X, Sun G, Routh P, Kim D H, Huang W, Chen P. Chem. Soc. Rev., 2014, 43(20):7067.
[7] Zhang L, Zhang Z Y, Liang R P, Li Y H, Qiu J D. Anal. Chem., 2014, 86(9):4423.
[8] Fan Z T, Li Y C, Li X H, Fan L Z, Zhou S X, Fang D C, Yang S H. Carbon, 2014, 70:149.
[9] Dey S, Govindaraj A, Biswas K, Rao C N R. Chem. Phys. Lett., 2014, 595/596:203.
[10] Qian Z S, Shan X Y, Chai L J, Ma J J, Chen J R, Feng H. ACS Appl. Mater. Interfaces, 2014, 6(9):6797.
[11] Wu Z L, Gao M X, Wang T T, Wan X Y, Zheng L L, Huang C Z. Nanoscale, 2014, 6(7):3868.
[12] Ju J, Zhang R, He S, Chen W. RSC Adv., 2014, 4(94):52583.
[13] Cai F, Liu X, Liu S, Liu H, Huang Y. RSC Adv., 2014, 4(94):52016.
[14] Ju J, Chen W. Biosens. Bioelectron., 2014, 58:219.
[15] Lin L P, Rong M C, Lu S S, Song X H, Zhong Y X, Yan J W, Wang Y R, Chen X. Nanoscale, 2015, 7(5):1872.
[16] Zhu X, Zuo X, Hu R, Xiao X, Liang Y, Nan J. Mater. Chem. Phys., 2014, 147(3):963.
[17] Jiang F, Chen D, Li R, Wang Y, Zhang G, Li S, Zheng J, Huang N, Gu Y, Shu C. Nanoscale, 2013, 5(3):1137.
[18] Hu C F, Liu Y L, Yang Y H, Cui J H, Huang Z R, Wang Y L, Yang L F, Wang H B, Xiao Y, Rong J H. J. Mater. Chem. B, 2013, 1(1):39.
[19] Tang L B, Ji R B, Li X M, Bai G X, Liu C P, Hao J H, Lin J Y, Jiang H X, Teng K S, Yang Z B, Lau S P. ACS Nano, 2014, 8(6):6312.
[20] Qian Z S, Zhou J, Chen J R, Wang C, Chen C C, Feng H. J. Mater. Chem., 2011, 21(44):17635.
[21] Li M, Wu W B, Ren W C, Cheng H M, Tang N J, Zhong W, Du Y W. Appl. Phys. Lett., 2012, 101(10):103107.
[22] Lin L P, Song X H, Chen Y Y, Rong M C, Zhao T T, Wang Y R, Jiang Y Q, Chen X. Anal. Chim. Acta, 2015, 869:89.
[23] Li Y, Zhao Y, Cheng H H, Hu Y, Shi G Q, Dai L M, Qu L T. J. Am. Chem. Soc., 2012, 134(1):15.
[24] Liu Q, Guo B, Rao Z, Zhang B, Gong J R. Nano Lett., 2013, 13(6):2436.
[25] Xu H, Zhou S, Xiao L, Wang H, Li S, Yuan Q. J. Mater. Chem. C, 2015, 3(2):291.
[26] Li L, Li L, Wang C, Liu K, Zhu R, Qiang H, Lin Y. Microchim. Acta, 2014, 182(3/4):763.
[27] Li Q Q, Zhang S, Dai L M, Li L S. J. Am. Chem. Soc., 2012, 134(46):18932.
[28] Qu D, Zheng M, Zhang L G, Zhao H F, Xie Z G, Jing X B, Haddad R E, Fan H Y, Sun Z C. Sci. Rep., 2014, 4:5294.
[29] Li S H, Li Y C, Cao J, Zhu J, Fan L Z, Li X H. Anal. Chem., 2014, 86(20):10201.
[30] Li X, Lau S P, Tang L, Ji R, Yang P. Nanoscale, 2014, 6(10):5323.
[31] Yang S, Sun J, He P, Deng X, Wang Z, Hu C, Ding G, Xie X. Chem. Mater., 2015, 27(6):2004.
[32] Sun H J, Ji H W, Ju E G, Guan Y J, Ren J S, Qu X G. Chem. Eur. J., 2015, 21(9):3791.
[33] Feng Q, Cao Q Q, Li M, Liu F C, Tang N J, Du Y W. Appl. Phys. Lett., 2013, 102(1):013111.
[34] Gong P, Yang Z, Hong W, Wang Z, Hou K, Wang J, Yang S. Carbon, 2015, 83:152.
[35] Zhao J H, Tang L B, Xiang J Z, Ji R B, Yuan J, Zhao J, Yu R Y, Tai Y J, Song L Y. Appl. Phys. Lett., 2014, 105(11):111116.
[36] Li X M, Lau S P, Tang L B, Ji R B, Yang P Z. J. Mater. Chem. C, 2013, 1(44):7308.
[37] Fei H L, Ye R Q, Ye G L, Gong Y J, Peng Z W, Fan X J, Samuel E L, Ajayan P M, Tour J M. ACS Nano, 2014, 8(10):10837.
[38] Ananthanarayanan A, Wang Y, Routh P, Sk M A, Than A, Lin M, Zhang J, Chen J, Sun H, Chen P. Nanoscale, 2015, 17(7):8159.
[39] Qu D, Zheng M, Du P, Zhou Y, Zhang L G, Li D, Tan H Q, Zhao Z, Xie Z G, Sun Z C. Nanoscale, 2013, 5(24):12272.
[40] Zhang B, Gao H, Li X. New J. Chem., 2014, 38(9):4615.
[41] Du X J, Jiang D, Liu Q, Zhu G B, Mao H P, Wang K. Analyst, 2015, 140(4):1253.
[42] Liu Y, Wu P Y. ACS Appl. Mater. Interfaces, 2013, 5(8):3362.
[43] Yeh T F, Teng C Y, Chen S J, Teng H. Adv. Mater., 2014, 26(20):3297.
[44] Zhao Y, Liu Q, Shakoor S, Gong J R, Wang D. Toxicol. Res., 2015, 4(2):270.
[45] Chen W, Ju J. Anal. Chem., 2015, 87(3):1903.
[46] Tam T V, Trung N B, Kim H R, Chung J S, Choi W M. Sensor. Actuat. B:Chem., 2014, 202:568.
[47] Jiang D, Zhang Y, Chu H, Liu J, Wan J. Chen M. RSC Adv., 2014, 4(31):16163.
[48] Saidi W A. J. Phys. Chem. Lett., 2013, 4(23):4160.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[4] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[5] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[6] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[7] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[8] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[11] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[12] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[13] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[14] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[15] 靳钧, 林梓恒, 石磊. 一维新型碳的同素异形体:碳链[J]. 化学进展, 2021, 33(2): 188-198.