English
新闻公告
More
化学进展 2017, Vol. 29 Issue (6): 617-627 DOI: 10.7536/PC170234 前一篇   后一篇

• 综述 •

可用于溢油处理的相选择性有机胶凝剂

李俊同1,2, 霍延平1,2*, 刘梦娟1,2, 曾华强3*   

  1. 1. 广东工业大学轻工化工学院 广州 510006;
    2. 广东省科研及生化检测用试剂工程技术研究中心 广州 510006;
    3. 新加坡生物工程与纳米技术研究院 新加坡 138669
  • 收稿日期:2017-03-01 修回日期:2017-04-21 出版日期:2017-06-15 发布日期:2017-06-06
  • 通讯作者: 曾华强,e-mail:hqzeng@ibn.a-star.edu.sg;霍延平,organicteacherhuo@126.com E-mail:hqzeng@ibn.a-star.edu.sg;organicteacherhuo@126.com
  • 基金资助:
    国家自然科学基金项目(No.61671162,21372051)和广东省科技计划项目(No.2016A010103031)资助

Phase-Selective Organogelators for Oil Spill Treatment

Juntong Li1,2, Yanping Huo1,2*, Mengjuan Liu1,2, Huaqiang Zeng3*   

  1. 1. School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China;
    2. Guangdong Engineering Technology Research Center for Chemical and Biochemical Reagent, Guangzhou 510006, China;
    3. Institute of Bioengineering and Nanotechnology, Singapore 138669, Singapore
  • Received:2017-03-01 Revised:2017-04-21 Online:2017-06-15 Published:2017-06-06
  • Contact: 10.7536/PC170234 E-mail:hqzeng@ibn.a-star.edu.sg;organicteacherhuo@126.com
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 61671162, 21372051) and the Science and Technology Planning Project of Guangdong Province (No. 2016A010103031).
近年来,相选择性有机胶凝剂(PSOGs)因具有易合成、成本低和简便安全等优良特性而作为应用于油水分离的新型材料并已获得广泛关注。PSOGs能够在油水双相溶剂中通过非共价键的弱相互作用选择性地捕获有机液相,自组装形成3D网络结构,进而束缚有机液相的流动并形成可漂浮在水面上的凝胶。这使得油水双相可通过简单的过滤方式得以分离,从而消除泄漏石油所带来的污染,因而有可能给溢油处理带来突破性的进展。基于PSOGs的有机凝胶在应用方面也极富挑战性,其中如何实现高效且对不同油类具有宽范围选择性的胶凝剂是设计合成PSOGs的关键问题,也是其能够处理实际溢油情况的前提要求。本文综述了一些常见的PSOGs在油水双相体系中的自组装策略和应用案例,并展望了该领域的发展趋势。
In recent years, phase-selective organogelators (PSOGs) have attracted great attention as a new type of oil-scavenging materials for oil-water separation, because of their excellent properties, such as easy synthesis, low cost, and aqua-safety. These PSOGs could self-assemble via non-covalent forces into 3D fibrous networks, able to selectively capture and gel organic oil phase from an oil-water biphasic mixture. The formed gel floats on the water, allowing an easy separation from water through a simple filtration, thereby greatly eliminating potential environmental pollutions caused by spilled oil. As such, PSOGs might offer a promising solution to oil spill treatment. Despite of their great potential in oil spill treatment, PSOGs with desired properties are very difficult to develop. How to achieve efficient gelation of oils of widely ranging viscosities is one of the most important problems facing the development of PSOGs, which is also a prerequisite for their application in cleaning up actual oil spills. This review mainly summarizes the self-assembly strategies and applications of some selected PSOGs in an oil-water biphasic system, and presents the future developments of the field.

Contents
1 Introduction
2 Amino acid-based PSOGs
3 Sugar-based PSOGs
4 Acid and alkali PSOGs
5 Other types of PSOGs
6 Conclusion

中图分类号: 

()
[1] Zhao B. Environ. Protection, 2011. 52.
[2] Broje V, Keller A A. Environ. Sci. Technol., 200640:7914.
[3] Yuan J K, Liu X G, Akbulut O,Hu J Q, Suib S L, Kong J, Stellacci F. Nat. Nanotechnol., 20083:332.
[4] Bi H, Yin Z, Cao X, Xie X, Tan C, Huang X, Chen B, Chen F, Yang Q, Bu X, Lu X, Sun L, Zhang H. Adv. Mater., 201325:5916.
[5] Ruan C, Ai K, Li X, Lu L. Angew. Chem. Int. Ed., 201453:5556.
[6] Sabir S. Crit. Rev. Environ. Sci. Technol., 2015, 45:1916.
[7] Steen A, Findlay A. Int. Oil Spill Con. Proc., 2008, 2008:645.
[8] Prince R C. Environ. Sci. Technol., 2015, 49:6376.
[9] Fingas M, Fieldhouse B. Oil Spill Science and Technology:Prevention,Response,and Cleanup.Fingas M.Ed.Burlington,MA:Gulf Professional Publishing. 2011. 713.
[10] Atlas R M. Mar. Pollut. Bull., 1995, 31:178.
[11] Kizil S, Karadag K,Aydin G O, Sonmez H B. J. Environ. Manag., 2015, 149:57.
[12] Lavelle M. National Geographic Magazine. Washington:National Geographic Society, 2011.
[13] Kleindienst S, Paul J H, Joye S B. Nat. Rev. Microbiol., 2015, 13:388.
[14] Liu K, He P, Fang Y. Sci. China:Chem., 2011, 54:575.
[15] Skilling K J, Citossi F, Bradshaw T D, Ashford M. Soft Matter, 2014, 10:237.
[16] Du R, Wu J, Chen L, Huang H, Zhang X, Zhang J. Small, 2014, 10:1387.
[17] Wang C, Chen Q, Sun F, Zhang D, Zhang G, Huang Y, Zhao R, Zhu D. J. Am. Chem. Soc., 2010, 132:3092.
[18] Malicka J, Sandeep A, Monti F, Bandini E, Gazzano M, Ranjith C, Praveen V, Ajayaghosh A, Armaroli N. Chem. Eur. J., 2013, 19:12991.
[19] Qi Z, Schalley C. Acc. Chem. Res., 2014, 47:2222.
[20] Sun Z, Huang Q, He T, Li Z, Zhang Y, Yi L. ChemPhysChem., 2014, 15:2421.
[21] 逯桃桃(Lu T T), 刘娟(Liu J), 李辉(Li H), 魏太保(Wei T B), 张有明(Zhang Y M), 林奇(Lin Q). 化学进展(Progress in Chemistry), 2016, 28(10):1541.
[22] Bhattacharya S, Krishnan-Ghosh Y. Chem. Commun., 2001, 185.
[23] Yang H, Yi T, Zhou Z, Wu J, Xu M, Li F, Huang C. Langmuir, 2007, 23:8224.
[24] Mohmeyer N, Schmidt H W. Chem. Eur. J., 2007, 13:4499.
[25] Gupta V K, Suhas J. Environ. Manage., 2009, 90:2313.
[26] Prathap A, Sureshan K M. Chem. Commun., 2012, 48:5250.
[27] 王赛(Wang S), 吴斌(Wu B), 段军飞(Daun J F), 方江邻(Fang J L), 谌东中(Chen D Z). 化学进展(Progress in Chemistry), 2014, 26(1):125.
[28] Basak S, Nanda J, Banerjee A. J. Mater. Chem., 2012, 22:11658.
[29] Rajkamal, Chatterjee D, Paul A, Banerjee S, Yadav S. Chem. Commun., 2014, 50:12131.
[30] Kesava Raju C S, Pramanik B, Kar T, Rao P V C, Choudary N V, Ravishankar R. RSC Adv., 2016, 6:53415.
[31] Vibhute A M, Muvvala V, Sureshan K M. Angew. Chem. Int. Ed., 2016, 55:7782.
[32] Ren C L, Ng G H B, Wu H, Chan K H, Shen J, The C, Ying J Y, Zeng H Q. Chem. Mater., 2016, 28:4001.
[33] Yan L, Li G, Ye Z, Tian F, Zhang S. Chem. Commun., 2014, 50:14839.
[34] 卢金荣(Lu J R),巨勇(Ju Y).有机化学(Chin.J.Org.Chem.), 2013, 33:469.
[35] Yu Q, Li D, Cai M, Zhou F, Liu W M. Tribol. Lett., 2016, 61:16.
[36] Liu J, Xu F Y, Sun Z L, Pan Y, Tian J, Lin H C, Li X M. Soft Matter, 2016, 12:141.
[37] Li Y B, Peng Y, Liu W, Fan Y L, Wu Y Q, Li X, Fan X L. Chemosensors, 2017, 5(1):6.
[38] Li Z, Cao J X, Li H R, Liu H Z, Han F, Liu Z Y, Tong C, Li S M. Drug Dev. Ind. Pharm., 2016, 42:11.
[39] Suzuki M, Maruyama Y, Hanabusa K. Tetrahedron Lett., 2016, 57:3540.
[40] Pal A, Dey J. Langmuir, 2011, 27(7):3401.
[41] Gutierrez C V, Hansali F, Pickaert G. Colloids Surfaces A:Physicochem. Eng. Aspects, 2017, 513(5):102.
[42] Konda M, Maity I, Rasale D B, Das A K. ChemPlusChem., 2014, 79:1482.
[43] Yu S L, Dou X Q, Qu D H, Feng C L. J. Mol. Liq., 2014, 190:94.
[44] Feng G, Chen H, Cai J, Wen J, Liu X. Soft Mater., 2014, 12:403.
[45] Bachl J, Oehm S, Mayr J, Cativiela C, Marrero-Tellado J J, Díaz D D. Int. J. Mol. Sci., 2015, 16:11766.
[46] Yu Y L, Li D M, Cai M R, Zhou F, Liu W M. Tribol. Lett., 2016, 61:16.
[47] Ren C L, Chen F, Zhou F, Shen J, Su H B, Zeng H Q. Langmuir, 2016, 32(50):13510.
[48] Ren C L, Shen J, Chen F, Zeng H Q. Angew. Chem. Int. Ed., 2017, 129:3905.
[49] John G, Shankar B V, Jadhav S R, Vemula P K. Langmuir, 2010, 26:17843.
[50] Hwang H L, Jadhav S R, Silverman J R, John G. J. Chem. Educ., 2014, 91:1563.
[51] Nakahata M, Mori S, Takashima Y, Hashidzume A, Yamaguchi H, Harada A. Macro. Lett., 2014, 3(4):337.
[52] Kowalczuk J, Bielejewsk M, ?apiński A, Luboradzki R, Tritt-Goc J. J. Phys. Chem. B, 2014, 118(14):4005.
[53] Rafiq S, Qadir S, Wani I H, Ganie S A, Masood A, Hamid R. Pak. J. Pharm. Sci., 2014, 27(6):1805.
[54] Hemamalini A, Das T M. New J. Chem., 2014, 38:3015.
[55] Ramin M A, Baillet J, Benizri S, Latxague L, Barthélémy P. New J. Chem., 2016, 40:9903.
[56] Mangunuru H P R, Yerabolu J R, Wang G J. Tetrahedron Lett., 2015, 56:3361.
[57] 宋沙沙(Song S S), 周宏勇(Zhou H Y), 李小娜(Li X N), 王丽华(Wang L H), 李云庆(Li Y Q), 王家喜(Wang J X). 有机化学(Chin. J. Org. Chem.), 2014, 34:706.
[58] 宋利锋(Song L F), 赵瑾(Zhao J), 袁晓燕(Yuan X Y). 化学进展(Progress in Chemistry), 2014, 26(2/3):385.
[59] Mukherjee S, Mukhopadhyay B. RSC Adv., 2012, 2:2270.
[60] Mukherjee S, Shang C, Chen X L, Chang X M, Liu K Q, Yu C M, Fang Y. Chem. Commun., 2014, 50:13940.
[61] Chatterjee R D, Paul A, Banerjee S, Yadav S. Chem. Commun., 2014, 50:12131.
[62] Rajkamal, Pathak N P, Chatterjee D, Paul A, Yadav S. RSC Adv., 2016, 6:92225.
[63] Nakano1 K, Ito T, Onouchi Y, Yamanaka M, Akita S. Colloid Polym. Sci., 2016, 294:69.
[64] Rahul R. Mahire D S, Agrawal D K P, Dhananjay H. RSC Adv., 2014, 4:33286.
[65] Zhang M, Weiss R G. Phys. Chem. Chem. Phys., 2016, 18:20399.
[66] Pal A, Dey J. RSC Adv., 2014, 4:17521.
[67] Corradini1 M G, Rogers M A. Current Opinion in Food Science, 2016, 9:84.
[68] Lupi F R, Gabriele D, Greco V, Baldino N, Seta L, Cindio B D. Food Res. Int., 2013, 51:510.
[69] Chen Y C, Wang H, Li D M, Zheng Y S. Eur. J. Org. Chem., 2013, 1521.
[70] Takemuraa K, Ajiroab H, Fujiwarac T, Akashi M. RSC Adv., 2014, 4:33462.
[71] Stortz T A, Zetzl A K, Barbut S, Cattaruzza A, Marangoni A G. Lipids Cereal Technol., 2012, 24:151.
[72] Rogers M A, Marangoni A G. Langmuir, 2016, 32(48):12833.
[73] Tao L, Huo Z P, Dai S Y, Ding Y, Zhu J, Zhang C N, Zhang B, Yao J X, Nazeeruddin M K, Grätzel M. J. Phys. Chem. C, 2014, 118(30):16718.
[74] Lana Y, Rogers M A. Cryst. Eng. Comm., 2015, 17:8031.
[75] Lee P, Rogers M A. Langmuir, 2013, 29:5617.
[76] Mallia V A, Blair D L, Weiss R G. Ind. Eng. Chem. Res., 2016, 55:954.
[77] Wang D, Niu J, Wang Z G, Jin J. Langmuir, 2015, 31:1670.
[78] Cheng Y, Feng Q C, Yin M, Wang C F, Zhou Y L. Tetrahedron Lett., 2016, 57:3814.
[79] Jia H, Ren Q, Li Y M, Ma X P. Petroleum., 2016, 2:90.
[80] Chen J F, Zhong J B, Li J Z, Dou L. Synth. React. Inorg. M., 2016, 46:1596.
[81] Jeong K C, Cho M S. Nucl. Eng. Technol., 2016, 48:175.
[82] Wang Y Z, Wu S Q, Yan X R, Ma T, Shao L, Liu Y Y, Guo Z H. Chemosphere, 2017, 167:178.
[83] Balamurugan R, Zhang Y S, Fitriyani S, Liu J H. Soft Matter, 2016, 12:5214.
[84] Praveen V K, Ranjith C, Armaroli N. Angew. Chem. Int. Ed., 2014, 53:365.
[85] Maiti D K, Banerjee A. Chem. Asian J., 2013, 8:113.
[86] Tu T, Fang W, Sun Z. Adv. Mater., 2013, 25:5304.
[87] Yang D, Liu C, Zhang L, Liu M. Chem. Commun., 2014, 50:12688.
[88] Zhang Y S, Emelyanenko A V, Liu J H. J. Taiwan Inst. Chem. E, 2016, 65:444.
[89] 薛敏(Xue M), 苗青(Miao Q), 房喻(Fang Y). 物理化学学报(Acta Phys. Chim. Sin.), 2013, 29(9):2005.
[90] Cao B, Kaneshige Y, Matsue Y Y, Moritaa Y, Okamoto H. New J. Chem., 2016, 0:4884.
[91] Tsai C C, Cheng Y T, Shen L C, Chang K C, Ho I T, Chu J H, Chung W S. Org. Lett., 2013, 15(22):5830.
[92] Huang Y D, Dong X L, Zhang L L, Chai W, Chang J Y. J. Mol. Struct., 2013, 1031:43.
[93] Yan L W, Li G Z, Ye Z B, Tian F, Zhang S H. Chem. Commun., 2014, 50:14839.
[1] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[4] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[5] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[6] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[7] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[8] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[9] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[10] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[11] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[12] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[13] 王金凤, 李爱森, 李振. 室温磷光凝胶研究进展[J]. 化学进展, 2022, 34(3): 487-498.
[14] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[15] 曹新华, 韩晴晴, 高爱萍, 王桂霞. 气态酸和有机胺响应的超分子凝胶[J]. 化学进展, 2021, 33(9): 1538-1549.