English
新闻公告
More
化学进展 2022, Vol. 34 Issue (3): 616-629 DOI: 10.7536/PC210329 前一篇   后一篇

• 综述 •

高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用

宫悦1, 程一竹1, 胡银春1,2,*()   

  1. 1 太原理工大学生物医学工程学院 生物医学工程系 纳米生物材料与再生医学研究中心 太原 030024
    2 太原理工大学生物医学工程研究所 材料强度与结构冲击山西省重点实验室 太原 030024
  • 收稿日期:2021-03-17 修回日期:2021-05-07 出版日期:2021-07-29 发布日期:2021-07-29
  • 通讯作者: 胡银春
  • 基金资助:
    国家自然科学基金项目(11802197); 山西省重点研发计划(国际科技合作)项目(201903D421064)

Preparation of Polymer Conductive Hydrogel and Its Application in Flexible Wearable Electronic Devices

Yue Gong1, Yizhu Cheng1, Yinchun Hu1,2()   

  1. 1 Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology,Taiyuan 030024, China
    2 Institute of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology,Taiyuan 030024, China
  • Received:2021-03-17 Revised:2021-05-07 Online:2021-07-29 Published:2021-07-29
  • Contact: Yinchun Hu
  • Supported by:
    National Natural Science Foundation of China(11802197); Key R&D Program of Shanxi Province (International Cooperation)(201903D421064)

水凝胶是具有高含水量、可变形性和良好生物相容性的材料,其中导电水凝胶具有良好的导电性、可调节的机械性及自黏附性等特征,逐渐成为制备柔性可穿戴电子设备的最佳候选材料。近年来,具有生物相容性、机械柔韧性和抗疲劳性的导电水凝胶得到广泛研究,能够实现多种生理信号和物理信号的监测及传输,促进了柔性可穿戴电子设备的发展。柔性可穿戴电子设备逐渐成为人机交互技术和人工智能领域的主要研究方向。导电水凝胶通过使用导电聚合物、导电填料、自由离子及其混合物来合成,根据导电机理,所制备的导电水凝胶可分为电子导电水凝胶、离子导电水凝胶和混合电子-离子导电水凝胶。本文讨论了导电水凝胶的制备方法,总结了导电水凝胶在可拉伸性、导电性、生物相容性和自修复性等功能方面的研究进展及其在柔性可穿戴电子设备中的应用,期望导电水凝胶可以取得更好的发展。

Hydrogels are biological materials with various properties. Hydrogels are three-dimensional network polymer with high water content, high tensile strength and biocompatibility. In addition to having excellent properties of hydrogels, conductive hydrogels have good electrical conductivity, adjustable mechanical properties and self-adhesive characteristics. The appearance of conductive hydrogels enrich types of hydrogels, expand performance of hydrogels, and improve practical application value, so that hydrogels have entered into people's daily life. Conductive hydrogels have gradually become the best candidate materials for flexible wearable electronic devices. In recent years, conductive hydrogels with biocompatibility, mechanical flexibility and fatigue resistance have been extensively studied. Conductive hydrogels can monitor and covert a wide variety of physiological signals and physical signals. Flexible wearable electronic devices based on conductive hydrogel can monitor human health status in real time. Conductive hydrogels with exceedingly good performance promote the development of flexible wearable electronic devices. Flexible wearable electronic devices have gradually become main research direction in field of human-computer interaction technology and artificial intelligence. Conductive hydrogels are synthesized by using conductive polymers, conductive fillers, free ions and their mixtures. According to conductive mechanism, manufactured conductive hydrogels can be divided into electron conductive hydrogels, ion conductive hydrogels and mixed electron-ion conductive hydrogels. In this paper, preparation methods of conductive hydrogels are discussed. The research progress and application of conductive hydrogels in aspects of stretchability, conductivity, biocompatibility, self-repairing and other functions in flexible wearable electronic devices are summarized. It is expected that conductive hydrogels will get better development.

Contents

1 Introduction

2 Conductive hydrogels

2.1 Ion conductive hydrogels

2.2 Electronic conductive hydrogels

2.3 Electron-ion conductive hydrogels

3 Properties of conductive hydrogels

3.1 Mechanical property

3.2 Conductive property and strain sensitivity

3.3 Adhesive and self-healing properties

3.4 Biocompatibility

3.5 Anti-freezing and moisturizing properties

4 Application of conductive hydrogels in flexible wearable electronic devices

4.1 Application of conductive hydrogels in vivo

4.2 Energy storage components and converters

4.3 Human motion sensors

4.4 Biological electrode

4.5 Ionic skin

4.6 Electronic skin

5 Conclusion and outlook

()
表1 导电水凝胶与传统导电材料的优缺点及其应用领域[3,4,11⇓~13,19⇓⇓⇓⇓⇓⇓⇓⇓~28]
Table 1 Advantages and disadvantages of conductive hydrogels and traditional conductive materials and their application fields[3,4,11⇓~13,19⇓⇓⇓⇓⇓⇓⇓⇓~28]
表2 导电水凝胶的导电性及其应用[40,53,55,56,58⇓⇓⇓⇓⇓⇓⇓⇓~67,69,70]
Table 2 Conductivity of conductive hydrogels and their application[40,53,55,56,58⇓⇓⇓⇓⇓⇓⇓⇓~67,69,70]
Conductive type Conductive component Network structure Conductivity GF Application ref
Ion conductive hydrogels H3PO4 Single network >17 mS·cm-1 N.A. Supercapacitor 53
Ion conductive hydrogels Li+ Double network 2.25 S·m-1 N.A. Supercapacitance 55
Ion conductive hydrogels Al3+ Single network 10 - 2 S cm - 1 2.84 Ionic skin 56
Ion conductive hydrogels PDMAPS, IL Single network 10 - 2 m - 1 N.A. Deformable sensory
systems.
40
Ion conductive hydrogels PDES, MA/ChCl Double network 4.0 × 10 - 4 cm - 1 N.A. Stretchable electronics 58
Ion conductive hydrogels PDES, ChCl/PA Single network 7.8 × 10 - 4 cm - 1 3.43 Human motion sensors 59
Ion conductive hydrogels [NTf2] Single network N.A. 1.83 Wearable optoelectronic devices 60
Ion conductive hydrogels PMMA-r-PBA Single network 1.33 mS· cm - 1 2.73 Healthcare devices 61
Electron conductive hydrogels PANI Double network 5.12 S·m-1 1.05 Human motion sensors 63
Electron conductive hydrogels PANI:PSS IPN 13 S·m-1 3.4 Wearable devices 64
Electron conductive hydrogels CNTs Double network 8.2 S· m - 1 N.A. Self-adhesive bioelectronics 65
Electron conductive hydrogels CNT Double network 7.8 × 10-2 S·m-1 N.A. Multifunctional bioactive dressings 66
Electron conductive hydrogels Ag NPs Single network 5.72 × 101 S·m-1 N.A. Nanoelectronics devices 67
Electron conductive hydrogels MXene Double network 1.1 mS· cm - 1 8.21 Human motion sensors 69
Electron-ion conductive hydrogels PEDOT:PSS;
Poly(HEAA-co-SBAA)
IPN 0.625 S·m-1 2 Strain sensor 70
图1 分子协同设计示意图,包括通过密度泛函理论(DFT)和动态氢键网络预测优化富离子结构[40]
Fig.1 Schematic illustration of the molecular synergistic design, including the optimized ion-rich structure predicted by DFT and the dynamic hydrogen-bond networks[40]. Copyright© 2019, American Chemical Society
图2 超分子导电PANI/PSS-UPy水凝胶的合成过程及其形成机理示意图[64]
Fig.2 Schematic illustration of synthesis process of the supramolecular conductive PANI/PSS-UPy hydrogels and the formation mechanism[64]. Copyright © 2019, American Chemical Society
图3 具有导电、黏合、可拉伸和生物相容性的水凝胶,用作可穿戴设备:a)水凝胶在(1)手腕和(2)膝关节上,用作检测人体运动的应变传感器;b)水凝胶充当自粘电极,以检测(1)肌电(EGM)和(2)心电(ECG)的信号,透明的水凝胶使操作员可以看到电极下面的静脉(b-1中的插图)[108]
Fig.3 Conductive, adhesive, stretchable, and biocompatible hydrogels used as wearable devices. a) Hydrogel was adhered on (1) wrist and (2) knee joint, serving as strain sensors to detect the motion of the human body. b) Hydrogel acted as the self-adhesive electrode to detect signals for the (1) EMG and (2) ECG. Transparent hydrogel allows operators to see the vein underneath the electrode (inset in b-1)[108]. Copyright© 2018, American Chemical Society
图4 (a) 用离子皮肤组装并通过压缩气体弯曲的软假手示意图;(b) 当软假手接触软性海绵和硬石时所记录的传感器信号;(c) 温度变化下发电的分子机理示意图和局部加热后离子皮肤的数字照片和红外热像(比例尺:2 cm),为了防止水分蒸发,离子皮肤的每个表面都覆盖了一层胶带;(d)响应间歇性和周期性温度变化(ΔT=10 ℃ )而产生的电压[119]
Fig.4 (a) Schematic of a soft prosthetic hand assembled with ionic skin and bent by compressed gas. (b) Capacitive signals of the sensor recorded when the soft hand touched the flexible sponge and hard stone. (c) Schematic of molecular mechanism for power generation under temperature variation and a digital photograph and infrared thermograph of ionic skin after local heating (scale bar: 2 cm). Note that to prevent water evaporation, the ionic skin was covered with a layer of gummed tape on each surface. (d) Voltage generated in response to intermittent and periodic temperature variation (ΔT = 10 ℃)[119]. Copyright© 2020, American Chemical Society
[1]
Chen D, Pei Q B. Chem. Rev., 2017, 117(17): 11239.

doi: 10.1021/acs.chemrev.7b00019     URL    
[2]
Choi S, Lee H, Ghaffari R, Hyeon T, Kim D H. Adv. Mater., 2016, 28(22): 4203.

doi: 10.1002/adma.201504150     URL    
[3]
Liu G Y, Xu K K, Yu Q, Liu Y. Science China(Informationis). 2018, 48(6):626.
(刘广玉, 徐开凯, 于奇, 刘洋. 中国科学:信息科学. 2018, 48(6):626.).
[4]
Amjadi M, Kyung K U, Park I, Sitti M. Adv. Funct. Mater., 2016, 26(11): 1678.

doi: 10.1002/adfm.201504755     URL    
[5]
Bae G Y, Pak S W, Kim D, Lee G, Kim D H, Chung Y, Cho K. Adv. Mater., 2016, 28(26): 5300.

doi: 10.1002/adma.201600408     URL    
[6]
Trung T Q, Lee N E. Adv. Mater., 2016, 28(22): 4338.

doi: 10.1002/adma.201504244     URL    
[7]
Wang X D, Zhang H L, Dong L, Han X, Du W M, Zhai J Y, Pan C F, Wang Z L. Adv. Mater., 2016, 28(15): 2896.

doi: 10.1002/adma.201503407     URL    
[8]
Xu S, Zhang Y H, Jia L, Mathewson K E, Jang K I, Kim J, Fu H R, Huang X, Chava P, Wang R H, Bhole S, Wang L Z, Na Y J, Guan Y, Flavin M, Han Z S, Huang Y G, Rogers J A. Science, 2014, 344(6179): 70.

doi: 10.1126/science.1250169     URL    
[9]
Zhong W B, Liu Q Z, Wu Y Z, Wang Y D, Qing X, Li M F, Liu K, Wang W W, Wang D. Nanoscale, 2016, 8(24): 12105.

doi: 10.1039/C6NR02678H     URL    
[10]
Hammock M L, Chortos A, Tee B C K, Tok J B H, Bao Z N. Adv. Mater., 2013, 25(42): 5997.

doi: 10.1002/adma.201302240     URL    
[11]
Li L, Lou Z, Chen D, Jiang K, Han W, Shen G Z. Small, 2018, 14(43):e1702829.
[12]
Zhao F, Bae J, Zhou X Y, Guo Y H, Yu G H. Adv. Mater., 2018, 30(48): 1801796.

doi: 10.1002/adma.201801796     URL    
[13]
Toh W S, Loh X J. Mater. Sci. Eng. C, 2014, 45: 690.

doi: 10.1016/j.msec.2014.04.026     URL    
[14]
Chortos A, Bao Z N. Mater. Today, 2014, 17(7): 321.

doi: 10.1016/j.mattod.2014.05.006     URL    
[15]
Liu Y Q, He K, Chen G, Leow W R, Chen X D. Chem. Rev., 2017, 117(20): 12893.

doi: 10.1021/acs.chemrev.7b00291     URL    
[16]
Wang J X, Lin M F, Park S, Lee P S. Mater. Today, 2018, 21(5): 508.

doi: 10.1016/j.mattod.2017.12.006     URL    
[17]
Ray T R, Choi J, Bandodkar A J, Krishnan S, Gutruf P, Tian L M, Ghaffari R, Rogers J A. Chem. Rev., 2019, 119(8): 5461.

doi: 10.1021/acs.chemrev.8b00573    
[18]
Yang C H, Suo Z G. Nat. Rev. Mater., 2018, 3(6): 125.

doi: 10.1038/s41578-018-0018-7     URL    
[19]
Li J Y, Mooney D J. Nat. Rev. Mater., 2016, 1(12): 16071.

doi: 10.1038/natrevmats.2016.71     URL    
[20]
Seliktar D. Science, 2012, 336(6085): 1124.

doi: 10.1126/science.1214804     pmid: 22654050
[21]
Yuk H, Lin S T, Ma C, Takaffoli M, Fang N X, Zhao X H. Nat. Commun., 2017, 8(1): 14230.

doi: 10.1038/ncomms14230     URL    
[22]
Kim D H, Lu N, Ma R, Kim Y S, Kim R H, Wang S, Wu J, Won S M, Tao H, Islam A, Yu K J, Kim T I, Chowdhury R, Ying M, Xu L, Li M, Chung H J, Keum H, McCormick M, Liu P, Zhang Y W, Omenetto F G, Huang Y, Coleman T, Rogers J A. Science, 2011, 333(6044): 838.

doi: 10.1126/science.1206157     URL    
[23]
Minev I R, Musienko P, Hirsch A, Barraud Q, Wenger N, Moraud E M, Gandar J, Capogrosso M, Milekovic T, Asboth L, Torres R F, Vachicouras N, Liu Q, Pavlova N, Duis S, Larmagnac A, Voros J, Micera S, Suo Z, Courtine G, Lacour S P. Science, 2015, 347(6218): 159.

doi: 10.1126/science.1260318     pmid: 25574019
[24]
Feiner R, Engel L, Fleischer S, Malki M, Gal I, Shapira A, Shacham-Diamand Y, Dvir T. Nat. Mater., 2016, 15(6): 679.

doi: 10.1038/nmat4590     pmid: 26974408
[25]
Ghobril C, Charoen K, Rodriguez E K, Nazarian A, Grinstaff M W. Angew. Chem. Int. Ed., 2013, 52(52): 14070.

doi: 10.1002/anie.201308007     URL    
[26]
Grinstaff M W. Biomaterials, 2007, 28(35): 5205.

pmid: 17889330
[27]
Ghobril C, Grinstaff M W. Chem. Soc. Rev., 2015, 44(7): 1820.

doi: 10.1039/c4cs00332b     pmid: 25649260
[28]
Amjadi M, Sheykhansari S, Nelson B J, Sitti M. Adv. Mater., 2018, 30(7): 1704530.

doi: 10.1002/adma.201704530     URL    
[29]
Li P P, Jin Z Y, Peng L L, Zhao F, Xiao D, Jin Y, Yu G H. Adv. Mater., 2018, 30(18): e1800124.
[30]
Kong W Q, Wang C W, Jia C, Kuang Y D, Pastel G, Chen C J, Chen G G, He S M, Huang H, Zhang J H, Wang S, Hu L B. Adv. Mater., 2018, 30(39): e1801934.
[31]
Peppas N A, Bures P, Leobandung W, Ichikawa H E. Eur. J. Pharm. Biopharm., 2000, 50(1): 27.

doi: 10.1016/s0939-6411(00)00090-4     pmid: 10840191
[32]
Holtz J H, Asher S A. Nature, 1997, 389(6653): 829.

doi: 10.1038/39834     URL    
[33]
Wang W, Zhang Y, Liu W. Prog. Polym. Sci., 2017, 4:71.

doi: 10.1016/0079-6700(75)90004-0     URL    
[34]
Shapiro Y E. Prog. Polym. Sci., 2011, 36(9): 1184.

doi: 10.1016/j.progpolymsci.2011.04.002     URL    
[35]
Caccavo D, Cascone S, Lamberti G, Barba A A. Chem. Soc. Rev., 2018, 47(7): 2357.

doi: 10.1039/c7cs00638a     pmid: 29504613
[36]
Peng Q Y, Chen J S, Wang T, Peng X W, Liu J F, Wang X G, Wang J M, Zeng H B. InfoMat, 2020, 2(5): 843.

doi: 10.1002/inf2.12113     URL    
[37]
Keplinger C, Sun J Y, Foo C C, Rothemund P, Whitesides G M, Suo Z G. Science, 2013, 341(6149): 984.

doi: 10.1126/science.1240228     URL    
[38]
Chen B H, Lu J J, Yang C H, Yang J H, Zhou J X, Chen Y M, Suo Z G. ACS Appl. Mater. Interfaces, 2014, 6(10): 7840.

doi: 10.1021/am501130t     URL    
[39]
Sun J Y, Keplinger C, Whitesides G M, Suo Z G. Adv. Mater., 2014, 26(45): 7608.

doi: 10.1002/adma.201403441     URL    
[40]
Lei Z Y, Wu P Y. ACS Nano, 2018, 12(12): 12860.

doi: 10.1021/acsnano.8b08062     URL    
[41]
Cao Y, Morrissey T G, Acome E, Allec S I, Wong B M, Keplinger C, Wang C. Adv. Mater., 2017, 29(10): 1605099.

doi: 10.1002/adma.201605099     URL    
[42]
Ding Y, Zhang J J, Chang L, Zhang X Q, Liu H L, Jiang L. Adv. Mater. (Deerfield Beach, Fla), 2017, 29(47):1704253.

doi: 10.1002/adma.201704253     URL    
[43]
Shi L, Zhu T X, Gao G X, Zhang X Y, Wei W, Liu W F, Ding S J. Nat. Commun., 2018, 9(1): 2630.

doi: 10.1038/s41467-018-05165-w     URL    
[44]
Hu W L, Niu X F, Li L, Yun S, Yu Z B, Pei Q B. Nanotechnology, 2012, 23(34): 344002.

doi: 10.1088/0957-4484/23/34/344002     URL    
[45]
Yu Z B, Zhang Q W, Li L, Chen Q, Niu X F, Liu J, Pei Q B. Adv. Mater., 2011, 23(5): 664.

doi: 10.1002/adma.201003398     URL    
[46]
Tee B C K, Wang C, Allen R, Bao Z N. Nat. Nanotechnol., 2012, 7(12): 825.

doi: 10.1038/nnano.2012.192     URL    
[47]
Mähler J, Persson I. Inorg. Chem., 2012, 51(1): 425.

doi: 10.1021/ic2018693     pmid: 22168370
[48]
Keplinger C, Sun J Y, Foo C C, Rothemund P, Whitesides G M, Suo Z G. Science, 2013, 341(6149): 984.

doi: 10.1126/science.1240228     URL    
[49]
Lei Z Y, Wang Q K, Wu P Y. Mater. Horiz., 2017, 4(4): 694.

doi: 10.1039/C7MH00262A     URL    
[50]
Lei Z Y, Wu P Y. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8     URL    
[51]
Lei Z Y, Wu P Y. Mater. Horiz., 2019, 6(3): 538.

doi: 10.1039/C8MH01157E     URL    
[52]
Lei Z Y, Wu P Y. Nat. Commun., 2018, 9(1): 1.

doi: 10.1038/s41467-017-02088-w     URL    
[53]
Huang Y, Zhong M, Shi F K, Liu X Y, Tang Z J, Wang Y K, Huang Y, Hou H Q, Xie X M, Zhi C Y. Angew. Chem. Int. Ed., 2017, 56(31): 9141.

doi: 10.1002/anie.201705212     pmid: 28631401
[54]
Yang C H, Suo Z G. Nat. Rev. Mater., 2018, 3(6): 125.

doi: 10.1038/s41578-018-0018-7     URL    
[55]
Ge W J, Cao S, Yang Y, Rojas O J, Wang X H. Chem. Eng. J., 2021, 408: 127306.

doi: 10.1016/j.cej.2020.127306     URL    
[56]
Wen J, Tang J, Ning H M, Hu N, Zhu Y Y, Gong Y K, Xu C H, Zhao Q N, Jiang X P, Hu X L, Lei L, Wu D, Huang T. Adv. Funct. Mater., 2021, 31(21): 2011176.

doi: 10.1002/adfm.202011176     URL    
[57]
Li X D, Charaya H, Bernard G M, Elliott J A W, Michaelis V K, Lee B, Chung H J. Macromolecules, 2018, 51(7): 2723.

doi: 10.1021/acs.macromol.7b02498     URL    
[58]
Li R N, Fan T, Chen G X, Zhang K L, Su B, Tian J F, He M H. Chem. Mater., 2020, 32(2): 874.

doi: 10.1021/acs.chemmater.9b04592     URL    
[59]
Li R A, Fan T, Chen G X, Xie H J, Su B, He M H. Chem. Eng. J., 2020, 393: 124685.

doi: 10.1016/j.cej.2020.124685     URL    
[60]
Cao Z Q, Liu H L, Jiang L. Mater. Horiz., 2020, 7(3): 912.

doi: 10.1039/C9MH01699F     URL    
[61]
Kim Y M, Moon H C. Adv. Funct. Mater., 2020, 30(4): 1907290.

doi: 10.1002/adfm.201907290     URL    
[62]
Fu F F, Wang J L, Zeng H B, Yu J. ACS Mater. Lett., 2020, 2(10): 1287.
[63]
Wang Z W, Zhou H W, Lai J L, Yan B, Liu H B, Jin X L, Ma A J, Zhang G, Zhao W F, Chen W X. J. Mater. Chem. C, 2018, 6(34): 9200.

doi: 10.1039/C8TC02505C     URL    
[64]
Chen J S, Peng Q Y, Thundat T, Zeng H B. Chem. Mater., 2019, 31(12): 4553.

doi: 10.1021/acs.chemmater.9b01239     URL    
[65]
Han L, Liu K Z, Wang M H, Wang K F, Fang L M, Chen H T, Zhou J, Lu X. Adv. Funct. Mater., 2018, 28(3): 1704195.

doi: 10.1002/adfm.201704195     URL    
[66]
Liang Y P, Zhao X, Hu T L, Han Y, Guo B L. J. Colloid Interface Sci., 2019, 556: 514.

doi: 10.1016/j.jcis.2019.08.083     URL    
[67]
Devaki S J, Narayanan R K, Sarojam S. Mater. Lett., 2014, 116: 135.

doi: 10.1016/j.matlet.2013.10.110     URL    
[68]
Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Chem. Mater., 2017, 29(18): 7633.

doi: 10.1021/acs.chemmater.7b02847     URL    
[69]
Yuk H, Lu B Y, Zhao X H. Chem. Soc. Rev., 2019, 48(6): 1642.

doi: 10.1039/C8CS00595H     URL    
[70]
Zhang D, Tang Y J, Zhang Y X, Yang F Y, Liu Y L, Wang X Y, Yang J T, Gong X, Zheng J. J. Mater. Chem. A, 2020, 8(39): 20474.

doi: 10.1039/D0TA07390C     URL    
[71]
Wang K, Wang M, Lu H, Liu B B, Huang M M, Yang J P. RSC Adv., 2019, 9(17): 9517.

doi: 10.1039/c8ra10486g    
[72]
Zhang H X, Niu W B, Zhang S F. Chem. Eng. J., 2020, 387: 124105.

doi: 10.1016/j.cej.2020.124105     URL    
[73]
Li H J, Zheng H, Tan Y J, Tor S B, Zhou K. ACS Appl. Mater. Interfaces, 2021, 13(11): 12814.

doi: 10.1021/acsami.0c19104     URL    
[74]
He H M, Li Y R, Liu H Z, Kim Y, Yan A X, Xu L Z. ACS Appl. Mater. Interfaces, 2021, 13(6): 7539.

doi: 10.1021/acsami.0c21148     URL    
[75]
Cai G, Wang J, Kai Q, Chen J, Lee P S. Adv. Sci, 2016, 4(2): 1600190.

doi: 10.1002/advs.201600190     URL    
[76]
Shao C Y, Wang M, Meng L, Chang H L, Wang B, Xu F, Yang J, Wan P B. Chem. Mater., 2018, 30(9): 3110.

doi: 10.1021/acs.chemmater.8b01172     URL    
[77]
Qian Y, Zhou Y J, Lu M J, Guo X S, Yang D J, Lou H M, Qiu X Q, Guo C F. Small Methods, 2021, 5(5): 2001311.

doi: 10.1002/smtd.202001311     URL    
[78]
Ye Y H, Zhang Y F, Chen Y, Han X S, Jiang F. Adv. Funct. Mater., 2020, 30(35): 2003430.

doi: 10.1002/adfm.202003430     URL    
[79]
Wang S, Fang Y L, He H, Zhang L, Li C A, Ouyang J Y. Adv. Funct. Mater., 2021, 31(5): 2007495.

doi: 10.1002/adfm.202007495     URL    
[80]
Wirthl D, Pichler R, Drack M, Kettlguber G, Moser R, Gerstmayr R, Hartmann F, Bradt E, Kaltseis R, Siket C M. Sci. Adv., 2017, 3(6): e1700053.

doi: 10.1126/sciadv.1700053     URL    
[81]
Lee Y, Cha S H, Kim Y W, Choi D, Sun J Y. Nat. Commun., 2018, 9(1): 1804.

doi: 10.1038/s41467-018-03954-x     URL    
[82]
Zhang C, Zhou Y S, Han H J, Zheng H X, Xu W H, Wang Z K. ACS Nano, 2021, 15(1): 1785.

doi: 10.1021/acsnano.0c09577     pmid: 33404217
[83]
Das S, Martin P, Vasilyev G, Nandi R, Amdursky N, Zussman E. Macromolecules, 2020, 53(24): 11130.

doi: 10.1021/acs.macromol.0c02060     URL    
[84]
Su X, Wang H, Tian Z L, Duan X C, Chai Z H, Feng Y T, Wang Y X, Fan Y, Huang J Y. ACS Appl. Mater. Interfaces, 2020, 12(26): 29757.
[85]
Zhao S W, Tseng P, Grasman J, Wang Y, Li W Y, Napier B, Yavuz B, Chen Y, Howell L, Rincon J, Omenetto F G, Kaplan D L. Adv. Mater., 2018, 30(25): 1800598.

doi: 10.1002/adma.201800598     URL    
[86]
Liao M H, Wan P B, Wen J R, Gong M, Wu X X, Wang Y G, Shi R, Zhang L Q. Adv. Funct. Mater., 2017, 27(48): 1703852.

doi: 10.1002/adfm.201703852     URL    
[87]
Dong R N, Zhao X, Guo B L, Ma P X. ACS Appl. Mater. Interfaces, 2016, 8(27): 17138.

doi: 10.1021/acsami.6b04911     URL    
[88]
Sui X J, Guo H S, Cai C C, Li Q S, Wen C Y, Zhang X Y, Wang X D, Yang J, Zhang L. Chem. Eng. J., 2021, 419: 129478.

doi: 10.1016/j.cej.2021.129478     URL    
[89]
Liu J H, Khanam Z, Ahmed S, Wang T, Wang H T, Song S H. ACS Appl. Mater. Interfaces, 2021, 13(14): 16454.

doi: 10.1021/acsami.1c02242     URL    
[90]
Sun H L, Zhao Y, Jiao S L, Wang C F, Jia Y P, Dai K, Zheng G Q, Liu C T, Wan P B, Shen C Y. Adv. Funct. Mater., 2021, 31(24): 2101696.

doi: 10.1002/adfm.202101696     URL    
[91]
Zeng W, Shu L, Li Q, Chen S, Wang F, Tao X M. Adv. Mater., 2014, 26(31): 5310.

doi: 10.1002/adma.201400633     URL    
[92]
Wagner S, Bauer S. MRS Bull., 2012, 37(3): 207.

doi: 10.1557/mrs.2012.37     URL    
[93]
Yao S S, Zhu Y. Adv. Mater., 2015, 27(9): 1479.

doi: 10.1002/adma.201570061     URL    
[94]
Yan C Y, Lee P S. Small, 2014, 10(17): 3443.

doi: 10.1002/smll.201302806     URL    
[95]
Zhang W, Feng P, Chen J, Sun Z M, Zhao B X. Prog. Polym. Sci., 2019, 88: 220.

doi: 10.1016/j.progpolymsci.2018.09.001    
[96]
Zhao X, Wu H, Guo B L, Dong R N, Qiu Y S, Ma P X. Biomaterials, 2017, 122: 34.

doi: S0142-9612(17)30019-4     pmid: 28107663
[97]
Qu J, Zhao X, Ma P X, Guo B L. Acta Biomater., 2018, 72: 55.

doi: 10.1016/j.actbio.2018.03.018     URL    
[98]
Guo B L, Qu J, Zhao X, Zhang M Y. Acta Biomater., 2019, 84: 180.

doi: 10.1016/j.actbio.2018.12.008     URL    
[99]
Zhai M L, Ha H F. University Chemistry, 2001, 16(5): 22.
(翟茂林, 哈鸿飞. 大学化学, 2001, 16(5): 22.).
[100]
Shan L, Liu M Z, Qiu J H, Gao C M, Zhang G H, Qin L J. Progress in Chemistry, 2011, 23(5): 923.
(邵亮, 柳明珠, 邱建辉, 高春梅, 张国宏, 秦利军. 化学进展, 2011, 23(5): 923.).
[101]
Bi M, Hao H, Li T, Zhao Y L. Ion Exchange and Adsorption, 2008, 24(2): 188.
(毕曼, 郝红, 李涛, 赵亚玲. 离子交换与吸附, 2008, 24(2): 188.).
[102]
Wang Z W, Cong Y, Fu J. J. Mater. Chem. B, 2020, 8(16): 3437.

doi: 10.1039/C9TB02570G     URL    
[103]
Deng J, Yuk H, Wu J J, Varela C E, Chen X Y, Roche E T, Guo C F, Zhao X H. Nat. Mater., 2021, 20(2): 229.

doi: 10.1038/s41563-020-00814-2     URL    
[104]
Shi L, Jia K, Gao Y Y, Yang H, Ma Y M, Lu S Y, Gao G X, Bu H T, Lu T Q, Ding S J. Research, 2020, 2020: 1.
[105]
Pu X, Liu M M, Chen X Y, Sun J M, Du C H, Zhang Y, Zhai J Y, Hu W G, Wang Z L. Sci. Adv., 2017, 3(5): e1700015.

doi: 10.1126/sciadv.1700015     URL    
[106]
Morelle X P, Illeperuma W R, Tian K, Bai R B, Suo Z G, Vlassak J J. Adv. Mater., 2018, 30(35): 1801541.

doi: 10.1002/adma.201801541     URL    
[107]
Liu Y J, Cao W T, Ma M G, Wan P B. ACS Appl. Mater. Interfaces, 2017, 9(30): 25559.

doi: 10.1021/acsami.7b07639     URL    
[108]
Han L, Yan L W, Wang M H, Wang K F, Fang L M, Zhou J, Fang J, Ren F Z, Lu X. Chem. Mater., 2018, 30(16): 5561.

doi: 10.1021/acs.chemmater.8b01446     URL    
[109]
Cai G F, Wang J X, Qian K, Chen J W, Li S H, Lee P S. Adv. Sci., 2017, 4(2): 1600190.

doi: 10.1002/advs.201600190     URL    
[110]
Ohm Y, Pan C F, Ford M J, Huang X N, Liao J H, Majidi C. Nat. Electron., 2021, 4(3): 185.

doi: 10.1038/s41928-021-00545-5     URL    
[111]
Ji S B, Wan C J, Wang T, Li Q S, Chen G, Wang J W, Liu Z Y, Yang H, Liu X J, Chen X D. Adv. Mater., 2020, 32(26): 2001496.

doi: 10.1002/adma.202001496     URL    
[112]
Yuk H, Lu B Y, Zhao X H. Chem. Soc. Rev., 2019, 48(6): 1642.

doi: 10.1039/C8CS00595H     URL    
[113]
Mu J K, Wang G, Yan H P, Li H Y, Wang X M, Gao E L, Hou C Y, Pham A T C, Wu L J, Zhang Q H, Li Y G, Xu Z P, Guo Y, Reichmanis E, Wang H Z, Zhu M F. Nat. Commun., 2018, 9: 590.

doi: 10.1038/s41467-018-03032-2     URL    
[114]
Whitesides G M. Angew. Chem. Int. Ed., 2018, 57(16): 4258.

doi: 10.1002/anie.201800907     pmid: 29517838
[115]
Wang H B, Totaro M, Beccai L. Adv. Sci., 2018, 5(9): 1800541.

doi: 10.1002/advs.201800541     URL    
[116]
Kim C C, Lee H H, Oh K H, Sun J Y. Science, 2016, 353(6300): 682.

doi: 10.1126/science.aaf8810     URL    
[117]
Wang G, Huang W, Eastham N D, Fabiano S, Manley E F, Zeng L, Wang B H, Zhang X N, Chen Z H, Li R, Chang R P H, Chen L X, Bedzyk M J, Melkonyan F S, Facchetti A, Marks T J. Proc. Natl. Acad. Sci. U.S.A., 2017, 114(47): E10066.
[118]
Liu Z Y, Wang Y, Ren Y Y, Jin G Q, Zhang C C, Chen W, Yan F. Mater. Horiz., 2020, 7(3): 919.

doi: 10.1039/C9MH01688K     URL    
[119]
Zhang Z X, Wang L, Yu H T, Zhang F, Tang L, Feng Y Y, Feng W. ACS Appl. Mater. Interfaces, 2020, 12(13): 15657.

doi: 10.1021/acsami.9b22707     URL    
[120]
Peng X, Dong K, Ye C Y, Jiang Y, Zhai S Y, Cheng R W, Liu D, Gao X P, Wang J, Wang Z L. Sci. Adv., 2020, 6(26): eaba9624.

doi: 10.1126/sciadv.aba9624     URL    
[121]
Zhao L J, Wang L L, Zheng Y Q, Zhao S F, Wei W, Zhang D W, Fu X Y, Jiang K, Shen G Z, Han W. Nano Energy, 2021, 84: 105921.

doi: 10.1016/j.nanoen.2021.105921     URL    
[1] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[2] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[3] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[4] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[5] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[6] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[7] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[8] 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. pH敏感性智能水凝胶的设计及其应用[J]. 化学进展, 2020, 32(2/3): 179-189.
[9] 苏喜, 葛闯, 陈李, 徐溢. 基于水凝胶的细菌传感检测[J]. 化学进展, 2020, 32(12): 1908-1916.
[10] 蔡紫煊, 张斌, 姜丽阳, 李允译, 许国贺, 马晶军. 智能响应型水凝胶药物控释体系及其应用[J]. 化学进展, 2019, 31(12): 1653-1668.
[11] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[12] 窦春妍, 李政, 何贵东, 巩继贤, 刘秀明, 张健飞. γ-聚谷氨酸水凝胶的制备及其应用[J]. 化学进展, 2018, 30(8): 1161-1171.
[13] 黎朝, 於麟, 郑震, 王新灵*. 具有规整结构和高强度的水凝胶的功能化[J]. 化学进展, 2017, 29(7): 706-719.
[14] 王平, 杨巧凤, 赵传壮*. 光响应性微凝胶的分子设计和智能材料构筑[J]. 化学进展, 2017, 29(7): 750-756.
[15] 何晓燕*, 刘利琴, 王萌, 张彩芸, 张云雷, 王敏慧. 各向异性水凝胶的制备方法及性质研究[J]. 化学进展, 2017, 29(6): 649-658.