English
新闻公告
More
化学进展 2023, Vol. 35 Issue (4): 560-576 DOI: 10.7536/PC221016 前一篇   后一篇

• 综述 •

含儿茶酚基团的湿态组织粘附水凝胶

陈一明, 李慧颖, 倪鹏, 方燕*(), 刘海清, 翁云翔*()   

  1. 福建师范大学化学与材料学院 福州 350007
  • 收稿日期:2022-10-26 修回日期:2023-01-11 出版日期:2023-04-24 发布日期:2023-02-16
  • 作者简介:

    刘海清 教授,博士生导师。2000年博士毕业于武汉大学,2000至2005年在美国加州大学戴维斯分校和康奈尔大学从事博士后研究,2013至2014年在爵硕大学从事访问学者研究。主要研究方向海洋生物高分子、天然高分子,止血纱布等。

    翁云翔 副教授,硕士生导师。2020年毕业于清华大学。主要面向人民健康需求的基础研究及应用问题,重点开展湿态生物组织粘附材料、止血材料的开发和应用。

  • 基金资助:
    国家自然科学基金(52103108); 国家自然科学基金(22175037); 福建省工信厅教育厅联合重点项目([2021]415-2021G02005); 福建省科技厅社会发展引导性项目(2020Y0020); 福建省中青年教师教育科研项目(JAT210047)

Catechol Hydrogel as Wet Tissue Adhesive

Yiming Chen, Huiying Li, Peng Ni, Yan Fang(), Haiqing Liu, Yunxiang Weng()   

  1. College of Chemistry and Materials Science, Fujian Normal University,Fuzhou 350007, China
  • Received:2022-10-26 Revised:2023-01-11 Online:2023-04-24 Published:2023-02-16
  • Contact: *e-mail: haiqingliu@fjnu.edu.cn(Haiqing Liu); wengyx20@fjnu.edu.cn(Yunxiang Weng)
  • Supported by:
    National Natural Science Foundation of China(52103108); National Natural Science Foundation of China(22175037); Key Project for Advancing Science and Technology of Fujian Province([2021]415-2021G02005); Social Development of Instructive Program of Fujian Province(2020Y0020); Education and research project for young and middle-aged teachers of Fujian Province(JAT210047)

湿态粘附作用对于生命的孕育和发展具有重要意义。水凝胶是一类兼具固液特性的智能材料,组织粘附水凝胶因多功能性和生物相容性而被广泛应用于伤口闭合和修复、细胞工程、组织工程等领域。然而,湿态组织表面的水合层阻碍了组织粘附水凝胶与组织表面形成界面粘附键。面对这一挑战,受海洋贻贝足丝蛋白中DOPA的儿茶酚基团是水下粘附的关键结构的启发,含儿茶酚基团的湿态组织粘附水凝胶的研究引起了广泛关注。本综述介绍了贻贝足丝蛋白(Mfps)的结构及湿态粘附机理,并将儿茶酚衍生物分为天然Mfps或利用基因工程合成的Mfps、含儿茶酚基团的小分子化合物、儿茶酚基团改性的天然高分子以及含儿茶酚基团的合成功能高分子;随后,概述近十年含儿茶酚基团的湿态组织粘附水凝胶在组织创口修复材料、生物涂层材料、靶向型药物输送材料、生物电子设备材料的研究进展;文末,展望了此类水凝胶材料未来发展面临的机遇和挑战。

Wet adhesion plays an important role in the gestation and development of life. The research shows that hydrogel is a kind of intelligent material with both solid and liquid properties. They have been widely used in such areas as wound closure and repair, cell engineering and tissue engineering, owing to their noteworthy versatility and bio-compatibility. However, the physiological environment is usually wet, and the hydration layer on wet tissue surface prevents hydrogel from forming interfacial adhesion bonds with tissue surface. Faced with this challenge, inspired by the fact that the catechol group of DOPA is critical group for the underwater adhesion of mussels, the structure and functional unit design of catechol hydrogel have attracted wide attention. This review introduces the structure and wet adhesion mechanism of mussel foot proteins (Mfps), and the main types of catechol derivatives are classified into natural Mfps or Mfps synthesized by genetic engineering, catechol small molecular compounds, natural polymers modified by catechol groups and synthesized functional polymers containing catechol groups. Nextly, the research progress of catechol hydrogel as wet tissue adhesive in the past decade is summarized, such as tissue wound repair materials, biological coating materials, targeted drug delivery materials and bioelectronic equipment materials. Finally, the opportunities and challenges of catechol hydrogel are prospected.

()
图1 Mfps的分布示意图
Fig.1 Distribution map of Mfps
图2 儿茶酚基团的作用机理图
Fig.2 Action mechanism diagram of catechol group
图3 含有多巴、赖氨酸、精氨酸和酪氨酸残基的自组装肽示意图,肽组装成纤维网络,并且这些残基的侧链具有局部纤维区域特异性
Fig.3 Schematic of self-assembling peptide showing sequential positions of DOPA, lysine, arginine and tyrosine residues. Peptides assemble into fibrillar networks displaying the side chains of these residues with local fibril regiospecificity
图4 (a)TA、(b)DA以及(c)UH的分子结构式
Fig.4 Molecular structure of(a) TA, (b) DA and (c) UH
图5 儿茶酚功能化多糖的结构式
Fig.5 Structures of catechol-functionalized polysaccharide
图6 儿茶酚功能化合成高分子的结构式
Fig.6 Structures of catechol-functionalized synthesized polymer
图7 Mfp-5模拟聚合物示意图
Fig.7 Schematic diagram of Mfp-5 mimetic polymer
图8 配位和共价糖多肽水凝胶(即R-凝胶和V-凝胶)的示意图;HRP:辣根过氧化物酶
Fig.8 Schematic diagram for coordinated and covalent glycopolyeptide hydrogels (i.e., R-Gels and V-Gels); HRP: Horseradish peroxidase
图9 左旋多巴、左旋多巴/PEI和DA的反应机理以及涂层形成过程的示意图
Fig.9 Schematic illustration of the reaction mechanisms and the coating formation processes of L-dopa, L-dopa/PEI, and DA
图10 (a)PAM-SDS-C18-DA预水凝胶表面的软甲状疏水粘附层示意图;(b)铁离子触发SDS胶束重组的示意图
Fig.10 (a) Constructing soft armour-like hydrophobic adhesive layer on the surface of PAM-SDS-C18-DA prehydrogel; (b) Schematic illustration of iron triggered recombination of SDS micelle
图11 多巴接枝的壳聚糖与粘蛋白的胺和半胱氨酸残基形成共价键示意图
Fig.11 DOPA-g-CS form covalent linkages with the amines and cysteine residues of mucin
图12 聚多巴胺胶囊中阿霉素的固定化及pH响应性释放
Fig.12 Immobilization and pH-Responsive Release of Dox from PDA Capsules
图13 水凝胶集成的生物粘附性超软脑机接口示意图
Fig.13 Schematic illustration of the hydrogel-integrated bio-adhesive ultrasoft BMI
图14 (a1)dsCD的合成和化学结构;(a2)Gel-UPy/dsCD水凝胶的合成及化学结构
Fig.14 (a1) Synthesis and chemical structures of dsCD; (a2) Synthesis and chemical structures of Gel-UPy/dsCD hydrogels
[1]
Yuk H, Wu J J, Sarrafian T L, Mao X Y, Varela C E, Roche E T, Griffiths L G, Nabzdyk C S, Zhao X H. Nat. Biomed. Eng., 2021, 5(10): 1131.

doi: 10.1038/s41551-021-00769-y    
[2]
Sun Z Q, Guo S S, Fässler R. J. Cell Biol., 2016, 215(4): 445.

doi: 10.1083/jcb.201609037     URL    
[3]
Yuk H, Lin S T, Ma C, Takaffoli M, Fang N X, Zhao X. Nat. Commun., 2016, 8: 14230.

doi: 10.1038/ncomms14230    
[4]
Zhang Y S, Khademhosseini A. Science, 2017, 356(6337): eaaf3627.

doi: 10.1126/science.aaf3627     URL    
[5]
Sun H, He Y, Wang Z, Liang Q. Adv. Funct. Mater., 2021, 32(6): 2108489.

doi: 10.1002/adfm.v32.6     URL    
[6]
Yang C H, Suo Z G. Nat. Rev. Mater., 2018, 3(6): 125.

doi: 10.1038/s41578-018-0018-7    
[7]
Fu F F, Wang J L, Zeng H B, Yu J. ACS Mater. Lett., 2020, 2(10): 1287.
[8]
Xu Y Y, Liu H, Cui X, Shao J, Yao P, Huang J, Qiu X, Huang C. Colloid Surface A, 2020, 593: 124622.

doi: 10.1016/j.colsurfa.2020.124622     URL    
[9]
Shu S D, Li Q, Xu W G, Tu S C, Yan L S, Zhao C W, Ding J X, Chen X S. Adv. Sci. 2018, 5(5): 1700527.

doi: 10.1002/advs.v5.5     URL    
[10]
Zhu H F, Xu G M, He Y Y, Mao H L, Kong D L, Luo K, Tang W B, Liu R, Gu Z W. Adv. Healthc. Mater., 2022, 11(15): 2200874.

doi: 10.1002/adhm.v11.15     URL    
[11]
Tavakolizadeh M, Pourjavadi A, Ansari M, Tebyanian H, Seyyed Tabaei S J, Atarod M, Rabiee N, Bagherzadeh M, Varma R S. Green Chem., 2021, 23(3): 1312.

doi: 10.1039/D0GC02719G     URL    
[12]
He X, Li Z K, Li J, Mishra D, Ren Y X, Gates I, Hu J G, Lu Q Y. Small, 2021, 17(49): 2103521.

doi: 10.1002/smll.v17.49     URL    
[13]
Liang Y P, He J H, Guo B L. ACS Nano, 2021, 15(8): 12687.

doi: 10.1021/acsnano.1c04206     URL    
[14]
Bertsch P, Diba M, Mooney D J, Leeuwenburgh S. C. G. Chem. Rev. 2023, 123(2): 834.

doi: 10.1021/acs.chemrev.2c00179     URL    
[15]
Ho H. P. B, Yuen Y, Zhao X. Chem. Eng. J. 2022, 431: 133372.

doi: 10.1016/j.cej.2021.133372     URL    
[16]
Su X, Xie W Y, Wang P D, Tian Z L, Wang H, Yuan Z Y, Liu X Z, Huang J Y. Mater. Horiz., 2021, 8(8): 2199.

doi: 10.1039/D1MH00533B     URL    
[17]
Ahn B K, Das S, Linstadt R, Kaufman Y, Martinez-Rodriguez N R, Mirshafian R, Kesselman E, Talmon Y, Lipshutz B H, Israelachvili J N, Waite J H. Nat. Commun., 2015, 6: 8663.

doi: 10.1038/ncomms9663    
[18]
Stewart R J, Wang C S, Song I T, Jones J P. Adv. Colloid Interface Sci., 2017, 239: 88.

doi: 10.1016/j.cis.2016.06.008     URL    
[19]
Fan H L, Wang J H, Gong J P. Adv. Funct. Mater., 2021, 31(11): 2009334.

doi: 10.1002/adfm.v31.11     URL    
[20]
Fan X M, Fang Y, Zhou W K, Yan L Y, Xu Y H, Zhu H, Liu H Q. Mater. Horiz., 2021, 8(3): 997.

doi: 10.1039/D0MH01231A     URL    
[21]
Shin M, Shin J Y, Kim K, Yang B, Han J W, Kim N K, Cha H J. J. Colloid Interface Sci., 2020, 563: 168.

doi: 10.1016/j.jcis.2019.12.082     URL    
[22]
Waite J H. J. Exp. Biol., 2017, 220(4): 517.

doi: 10.1242/jeb.134056     URL    
[23]
Clancy S K, Sodano A, Cunningham D J, Huang S S, Zalicki P J, Shin S, Ahn B K. Biomacromolecules, 2016, 17(5): 1869.

doi: 10.1021/acs.biomac.6b00300     pmid: 27046671
[24]
Lee H, Scherer N F, Messersmith P B. Proc. Natl. Acad. Sci. U. S. A., 2006, 103(35): 12999.

doi: 10.1073/pnas.0605552103     URL    
[25]
Li Y R, Cao Y. Nanoscale Adv., 2019, 1(11): 4246.

doi: 10.1039/C9NA00582J     URL    
[26]
Guo Q, Chen J S, Wang J L, Zeng H B, Yu J. Nanoscale, 2020, 12(3): 1307.

doi: 10.1039/c9nr09780e     pmid: 31907498
[27]
Aich P, An J, Yang B, Ko Y H, Kim J, Murray J, Cha H J, Roh J H, Park K M, Kim K. Chem. Commun., 2018, 54(89): 12642.

doi: 10.1039/C8CC07475E     URL    
[28]
Zhang W, Yang H, Liu F H, Chen T, Hu G X, Guo D H, Hou Q F, Wu X, Su Y, Wang J B. RSC Adv., 2017, 7(52): 32518.

doi: 10.1039/C7RA04228K     URL    
[29]
Fan H, Gong J P. Adv. Mater. 2021, 2102983.
[30]
Wilker J J. Nat. Chem. Biol., 2011, 7(9): 579.

doi: 10.1038/nchembio.639    
[31]
Zhang K, Zhang F L, Song Y Y, Fan J B, Wang S T. Chin. J. Chem., 2017, 35(6): 811.

doi: 10.1002/cjoc.v35.6     URL    
[32]
Cui J W, Yan Y, Such G K, Liang K, Ochs C J, Postma A, Caruso F. Biomacromolecules, 2012, 13(8): 2225.

doi: 10.1021/bm300835r     URL    
[33]
Xie C M, Wang X, He H, Ding Y H, Lu X. Adv. Funct. Mater., 2020, 30(25): 1909954.

doi: 10.1002/adfm.v30.25     URL    
[34]
Xu Y J, Wei K C, Zhao P C, Feng Q, Choi C K K, Bian L M. Biomater. Sci., 2016, 4(12): 1726.

doi: 10.1039/C6BM00434B     URL    
[35]
Zhang W, Wang R X, Sun Z M, Zhu X W, Zhao Q, Zhang T F, Cholewinski A, Yang F K, Zhao B X, Pinnaratip R, Forooshani P K, Lee B P. Chem. Soc. Rev., 2020, 49(2): 433.

doi: 10.1039/c9cs00285e     pmid: 31939475
[36]
Teng L, Shao Z W, Bai Q, Zhang X L, He Y S, Lu J Y, Zou D R, Feng C L, Dong C M. Adv. Funct. Mater., 2021, 31(43): 2105628.

doi: 10.1002/adfm.v31.43     URL    
[37]
Li Y R, Cheng J, Delparastan P, Wang H Q, Sigg S J, DeFrates K G, Cao Y, Messersmith P B. Nat. Commun., 2020, 11: 3895.

doi: 10.1038/s41467-020-17597-4    
[38]
Ivarsson M, Prenkert M, Cheema A, Wretenberg P, Andjelkov N. CARTILAGE, 2021, 13(2suppl): 663S.
[39]
Hansen D C, Zimlich K R, Bennett B N. Electrochimica Acta, 2019, 301: 411.

doi: 10.1016/j.electacta.2019.01.145     URL    
[40]
Ohkawa K, Nishida A, Ichimiya K, Matsui Y, Nagaya K, Yuasa A, Yamamoto H. Biofouling, 1999, 14(3): 181.

doi: 10.1080/08927019909378409     URL    
[41]
Zhou Y J, He Q, Zhou D. J. Food Process. Preserv., 2017, 41(3): e12962.

doi: 10.1111/jfpp.2017.41.issue-3     URL    
[42]
Choi Y S, Kang D G, Lim S, Yang Y J, Kim C S, Cha H J. Biofouling, 2011, 27(7): 729.

doi: 10.1080/08927014.2011.600830     URL    
[43]
Choi Y S, Yang Y J, Yang B, Cha H J. Microb. Cell Factories, 2012, 11(1): 139.

doi: 10.1186/1475-2859-11-139    
[44]
Jeong Y S, Yang B, Yang B, Shin M, Seong J, Cha H J, Kwon I. Biotechnol. Bioeng., 2020, 117(7): 1961.

doi: 10.1002/bit.27339     pmid: 32196642
[45]
Wang J, Scheibel T. Biotechnol. J., 2018, 13(12): 1800146.

doi: 10.1002/biot.v13.12     URL    
[46]
Wei W, Petrone L, Tan Y, Cai H, Israelachvili J N, Miserez A, Waite J H. Adv. Funct. Mater., 2016, 26(20): 3496.

pmid: 27840600
[47]
Fichman G, Andrews C, Patel N L, Schneider J P. Adv. Mater., 2021, 33(40): 2103677.

doi: 10.1002/adma.v33.40     URL    
[48]
Laura Alfieri M, Weil T, Ng D Y W, Ball V. Adv. Colloid Interface Sci., 2022, 305: 102689.

doi: 10.1016/j.cis.2022.102689     URL    
[49]
Liang H S, Zhou B, Wu D, Li J, Li B. Adv. Colloid Interface Sci., 2019, 272: 102019.

doi: 10.1016/j.cis.2019.102019     URL    
[50]
Lin F C, Wang Z, Chen J S, Lu B L, Tang L R, Chen X R, Lin C S, Huang B, Zeng H B, Chen Y D. J. Mater. Chem. B, 2020, 8(18): 4002.

doi: 10.1039/D0TB00424C     URL    
[51]
Liu B C, Wang Y, Miao Y, Zhang X Y, Fan Z X, Singh G, Zhang X Y, Xu K G, Li B Y, Hu Z Q, Xing M. Biomaterials, 2018, 171: 83.

doi: 10.1016/j.biomaterials.2018.04.023     URL    
[52]
Su X, Luo Y, Tian Z L, Yuan Z Y, Han Y M, Dong R F, Xu L, Feng Y T, Liu X Z, Huang J Y. Mater. Horiz., 2020, 7(10): 2651.

doi: 10.1039/D0MH01344G     URL    
[53]
Hao S W, Shao C Y, Meng L, Cui C, Xu F, Yang J. ACS Appl. Mater. Interfaces, 2020, 12(50): 56509.

doi: 10.1021/acsami.0c18250     URL    
[54]
Bai Z X, Wang T Y, Zheng X, Huang Y P, Chen Y N, Dan W H. Polym. Eng. Sci., 2021, 61(1): 278.

doi: 10.1002/pen.v61.1     URL    
[55]
Jafari H, Ghaffari-Bohlouli P, Niknezhad S V, Abedi A, Izadifar Z, Mohammadinejad R, Varma R S, Shavandi A. J. Mater. Chem. B, 2022, 10(31): 5873.

doi: 10.1039/D2TB01056A     URL    
[56]
Kord Forooshani P,. Lee B P. J. Polym. Sci. A Polym. Chem., 2017, 55(1): 9.

doi: 10.1002/pola.v55.1     URL    
[57]
Fan X M, Zhou W K, Chen Y M, Yan L Y, Fang Y, Liu H Q. ACS Appl. Mater. Interfaces, 2020, 12(28): 32031.

doi: 10.1021/acsami.0c09917     URL    
[58]
Quan Hu, Liu Ouyang, Zhang Li, Li Yang. Molecules, 2019, 24(14): 2586.

doi: 10.3390/molecules24142586     URL    
[59]
Huang Y, Zhao X, Zhang Z Y, Liang Y P, Yin Z H, Chen B J, Bai L, Han Y, Guo B L. Chem. Mater., 2020, 32(15): 6595.

doi: 10.1021/acs.chemmater.0c02030     URL    
[60]
Geng H M, Cui J W, Hao J C. Acta Chimica Sinica, 2020, 78(2): 105.

doi: 10.6023/A19080301     URL    
耿慧敏, 崔基炜, 郝京诚. 化学进展. 2020, 78(2): 105.).
[61]
Zhu W Z, Peck Y, Iqbal J, Wang D A. Biomaterials, 2017, 147: 99.

doi: 10.1016/j.biomaterials.2017.09.016     URL    
[62]
Liu F F, Liu X, Chen F, Fu Q. Prog. Polym. Sci., 2021, 123: 101472.

doi: 10.1016/j.progpolymsci.2021.101472     URL    
[63]
Liu K, Dong X Z, Wang Y, Wu X P, Dai H L. Carbohydr. Polym., 2022, 298: 120047.

doi: 10.1016/j.carbpol.2022.120047     URL    
[64]
Kim K, Ryu J H, Koh M Y, Yun S P, Kim S, Park J P, Jung C W, Lee M S, Seo H I, Kim J H, Lee H. Sci. Adv., 2021, 7(13): eabc9992.

doi: 10.1126/sciadv.abc9992     URL    
[65]
Zhong Y J, Seidi F, Wang Y L, Zheng L, Jin Y C, Xiao H N. Carbohydr. Polym., 2022, 298: 120103.

doi: 10.1016/j.carbpol.2022.120103     URL    
[66]
Sun C Y, Zeng X L, Zheng S H, Wang Y L, Li Z Y, Zhang H N, Nie L L, Zhang Y F, Zhao Y B, Yang X L. Chem. Eng. J., 2022, 427: 130843.

doi: 10.1016/j.cej.2021.130843     URL    
[67]
An S, Jeon E J, Han S Y, Jeon J, Lee M J, Kim S, Shin M, Cho S W. Small, 2022, 18(41): 2202729.

doi: 10.1002/smll.v18.41     URL    
[68]
Li Y P, Li L, Zhang Z P, Cheng J R, Fei Y S, Lu L B. Chem. Eng. J., 2021, 420: 129736.

doi: 10.1016/j.cej.2021.129736     URL    
[69]
Kim S, Moon J M, Choi J S, Cho W K, Kang S M. Adv. Funct. Mater., 2016, 26(23): 4099.

doi: 10.1002/adfm.v26.23     URL    
[70]
Osman A, Lin E H, Hwang D S. Carbohydr. Polym., 2023, 299: 120172.

doi: 10.1016/j.carbpol.2022.120172     URL    
[71]
Zhang H, Zhao T Y, Newland B, Liu W G, Wang W, Wang W X. Prog. Polym. Sci., 2018, 78: 47.

doi: 10.1016/j.progpolymsci.2017.09.002     URL    
[72]
Brubaker C E, Kissler H, Wang L J, Kaufman D B, Messersmith P B. Biomaterials, 2010, 31(3): 420.

doi: 10.1016/j.biomaterials.2009.09.062     pmid: 19811819
[73]
Hu S S, Pei X B, Duan L L, Zhu Z, Liu Y H, Chen J Y, Chen T, Ji P, Wan Q B, Wang J. Nat. Commun., 2021, 12: 1689.

doi: 10.1038/s41467-021-21989-5    
[74]
Mazzotta M G, Putnam A A, North M A, Wilker J J. J. Am. Chem. Soc., 2020, 142(10): 4762.

doi: 10.1021/jacs.9b13356     pmid: 32069400
[75]
Ma C, Pang H W, Cai L P, Huang Z H, Gao Z H, Li J Z, Zhang S F. J. Clean. Prod., 2021, 308: 127309.

doi: 10.1016/j.jclepro.2021.127309     URL    
[76]
David B Tiu B, Delparastan P, Ney M R, Gerst M, Messersmith P B. ACS Appl. Mater. Interfaces, 2019, 11(31): 28296.

doi: 10.1021/acsami.9b08429     URL    
[77]
Mu Y B, Wu X, Pei D F, Wu Z L, Zhang C, Zhou D S, Wan X B. ACS Biomater. Sci. Eng., 2017, 3(12): 3133.

doi: 10.1021/acsbiomaterials.7b00673     URL    
[78]
Wang R, Li J Z, Chen W, Xu T T, Yun S F, Xu Z, Xu Z Q, Sato T, Chi B, Xu H. Adv. Funct. Mater., 2017, 27(8): 1604894.

doi: 10.1002/adfm.v27.8     URL    
[79]
Gan D L, Xu T, Xing W S, Ge X, Fang L M, Wang K F, Ren F Z, Lu X. Adv. Funct. Mater., 2019, 29(1): 1805964.

doi: 10.1002/adfm.v29.1     URL    
[80]
Zhao N Y, Yuan W Z. Compos. B Eng., 2022, 230: 109525.

doi: 10.1016/j.compositesb.2021.109525     URL    
[81]
Ma Z W, Bao G Y, Li J Y. Adv. Mater., 2021, 33(24): 2007663.

doi: 10.1002/adma.v33.24     URL    
[82]
Deng K, Yuk H, Guo C F, Zhao X, Wu J, Varela C E, Chen X, Roche E T. Nat. Mater. 2020, 20: 229.

doi: 10.1038/s41563-020-00814-2    
[83]
Luo J, Yang J J, Zheng X R, Ke X, Chen Y T, Tan H, Li J S. Adv. Healthcare Mater., 2020, 9(4): 1901423.

doi: 10.1002/adhm.v9.4     URL    
[84]
Peng H T, Shek P N. Expert Rev. Med. Devices, 2010, 7(5): 639.

doi: 10.1586/erd.10.40     URL    
[85]
Mehdizadeh M, Yang J. Macromol. Biosci., 2013, 13(3): 271.

doi: 10.1002/mabi.201200332     URL    
[86]
Seyednejad H, Imani M, Jamieson T, Seifalian A M. Br. J. Surg., 2008, 95(10): 1197.

doi: 10.1002/bjs.6357     pmid: 18763249
[87]
Klimo P, Khalil A, Slotkin J R, Smith E R, Scott R M, Goumnerova L C. Oper. Neurosurg., 2007, 60(4): 305.

doi: 10.1227/01.NEU.0000255416.55560.D2     URL    
[88]
Fortelny R H, Petter-Puchner A H, Walder N, Mittermayr R, Öhlinger W, Heinze A, Redl H. Surg. Endosc., 2007, 21(10): 1781.

doi: 10.1007/s00464-007-9243-7     pmid: 17356940
[89]
Chen T, Chen Y J, Rehman H U, Chen Z, Yang Z, Wang M, Li H, Liu H Z. ACS Appl. Mater. Interfaces, 2018, 10(39): 33523.

doi: 10.1021/acsami.8b10064     URL    
[90]
Annabi N, Rana D, Shirzaei Sani E, Portillo-Lara R, Gifford J L, Fares M M, Mithieux S M, Weiss A S. Biomaterials, 2017, 139: 229.

doi: S0142-9612(17)30322-8     pmid: 28579065
[91]
Guan T, Li J Y, Chen C Y, Liu Y. Adv. Sci., 2022, 9(10): 2104165.

doi: 10.1002/advs.v9.10     URL    
[92]
Xu M, Khan A, Wang T J, Song Q, Han C M, Wang Q Q, Gao L L, Huang X, Li P, Huang W. ACS Appl. Bio Mater., 2019, 2(8): 3329.

doi: 10.1021/acsabm.9b00353     URL    
[93]
Zhao X, Guo B L, Wu H, Liang Y P, Ma P X. Nat. Commun., 2018, 9: 2784.

doi: 10.1038/s41467-018-04998-9     pmid: 30018305
[94]
Liang Y Q, Li Z L, Huang Y, Yu R, Guo B L. ACS Nano, 2021, 15(4): 7078.

doi: 10.1021/acsnano.1c00204     URL    
[95]
Guo S, Ren Y K, Chang R, He Y M, Zhang D, Guan F X, Yao M H. ACS Appl. Mater. Interfaces, 2022, 14(30): 34455.

doi: 10.1021/acsami.2c08870     URL    
[96]
Cheng H, Shi Z, Yue K, Huang X S, Xu Y C, Gao C H, Yao Z Q, Zhang Y S, Wang J. Acta Biomater., 2021, 124: 219.

doi: 10.1016/j.actbio.2021.02.002     pmid: 33556605
[97]
Álvarez-Lerma F, Olaechea-Astigarraga P, Palomar-Martínez M, Catalan M, Nuvials X, Gimeno R, Gracia-Arnillas M P, Seijas-Betolaza I. J. Hosp. Infect., 2018, 100(3): e204.

doi: 10.1016/j.jhin.2018.04.027     pmid: 29751023
[98]
Arciola C R, Campoccia D, Montanaro L. Nat. Rev. Microbiol., 2018, 16(7): 397.

doi: 10.1038/s41579-018-0019-y     pmid: 29720707
[99]
Long L, Fan Y Q, Yang X, Ding X K, Hu Y, Zhang G C, Xu F J. Chem. Eng. J., 2022, 444: 135426.

doi: 10.1016/j.cej.2022.135426     URL    
[100]
Lu B Y, Han X, Zou D, Luo X, Liu L, Wang J Y, Maitz M F, Yang P, Huang N, Zhao A S. Mater. Today Bio, 2022, 16: 100392.
[101]
Zhao X X, Alexander Irvine S, Agrawal A, Cao Y, Lim P Q, Tan S Y, Venkatraman S S. Acta Biomater., 2015, 26: 159.

doi: 10.1016/j.actbio.2015.08.024     URL    
[102]
Yuk H, Zhang T, Lin S T, Alberto Parada G, Zhao X H. Nat. Mater., 2016, 15(2): 190.

doi: 10.1038/nmat4463    
[103]
Li X, Su X L. J. Mater. Chem. B, 2018, 6(29): 4714.

doi: 10.1039/C8TB01078A     URL    
[104]
Fullenkamp D E, Rivera J G, Gong Y K, Lau K H A, He L H, Varshney R, Messersmith P B. Biomaterials, 2012, 33(15): 3783.

doi: 10.1016/j.biomaterials.2012.02.027     pmid: 22374454
[105]
García-Fernández L, Cui J X, Serrano C, Shafiq Z, Gropeanu R A, Miguel V S, Ramos J I, Wang M, Auernhammer G K, Ritz S, Golriz A A, Berger R, Wagner M, del Campo A. Adv. Mater., 2013, 25(4): 529.

doi: 10.1002/adma.201203362     URL    
[106]
Ryu J H, Messersmith P B, Lee H. ACS Appl. Mater. Interfaces, 2018, 10(9): 7523.

doi: 10.1021/acsami.7b19865     URL    
[107]
Maier G P, Rapp M V, Waite J H, Israelachvili J N, Butler A. Science, 2015, 349(6248): 628.

doi: 10.1126/science.aab0556     pmid: 26250681
[108]
Statz A R, Meagher R J, Barron A E, Messersmith P B. J. Am. Chem. Soc., 2005, 127(22): 7972.

doi: 10.1021/ja0522534     URL    
[109]
Yang S J, Zou L Y, Liu C, Zhong Q, Ma Z Y, Yang J, Ji J, Müller-Buschbaum P, Xu Z K. ACS Appl. Mater. Interfaces, 2020, 12(48): 54094.

doi: 10.1021/acsami.0c16142     URL    
[110]
Li J, Celiz A D, Yang J, Yang Q, Wamala I, Whyte W, Seo B R, Vasilyev N V, Vlassak J J, Suo Z, Mooney D J. Science, 2017, 357(6349): 378.

doi: 10.1126/science.aah6362     pmid: 28751604
[111]
Wan X Z, Gu Z, Zhang F L, Hao D Z, Liu X, Dai B, Song Y Y, Wang S T. NPG Asia Mater., 2019, 11: 49.

doi: 10.1038/s41427-019-0150-x    
[112]
Yang J W, Bai R B, Chen B H, Suo Z G. Adv. Funct. Mater., 2020, 30(2): 1901693.

doi: 10.1002/adfm.v30.2     URL    
[113]
Pan M F, Nguyen K C T, Yang W S, Liu X, Chen X Z, Major P W, Le L H, Zeng H B. Chem. Eng. J., 2022, 434: 134418.

doi: 10.1016/j.cej.2021.134418     URL    
[114]
Ma L, Su B H, Cheng C, Yin Z H, Qin H, Zhao J M, Sun S D, Zhao C S. J. Membr. Sci., 2014, 470: 90.

doi: 10.1016/j.memsci.2014.07.030     URL    
[115]
Ma L, Cheng C, Nie C X, He C, Deng J, Wang L R, Xia Y, Zhao C S. J. Mater. Chem. B, 2016, 4(19): 3203.

doi: 10.1039/C6TB00636A     URL    
[116]
Fu M J, Liang Y J, Lv X, Li C N, Yang Y Y, Yuan P Y, Ding X. J. Mater. Sci. Technol., 2021, 85: 169.

doi: 10.1016/j.jmst.2020.12.070     URL    
[117]
Barthelat F. J. Mech. Phys. Solids, 2014, 73: 22.

doi: 10.1016/j.jmps.2014.08.008     URL    
[118]
Rego S J, Vale A C, Luz G M, Mano J F, Alves N M. Langmuir, 2016, 32(2): 560.

doi: 10.1021/acs.langmuir.5b03508     URL    
[119]
Zhang C, Wu B H, Zhou Y S, Zhou F, Liu W M, Wang Z K. Chem. Soc. Rev., 2020, 49(11): 3605.

doi: 10.1039/c9cs00849g     pmid: 32393930
[120]
Kim K, Kim K, Ryu J H, Lee H. Biomaterials, 2015, 52: 161.

doi: 10.1016/j.biomaterials.2015.02.010     URL    
[121]
Lim S, Park T Y, Jeon E Y, Joo K I, Cha H J. Biomaterials, 2021, 278: 121171.

doi: 10.1016/j.biomaterials.2021.121171     URL    
[122]
Ren Y Z, Zhao X, Liang X F, Ma P X, Guo B L. Int. J. Biol. Macromol., 2017, 105: 1079.

doi: 10.1016/j.ijbiomac.2017.07.130     URL    
[123]
De Koker S, Hoogenboom R, De Geest B G. Chem. Soc. Rev., 2012, 41(7): 2867.

doi: 10.1039/c2cs15296g     URL    
[124]
Ye Q, Zhou F, Liu W M. Chem. Soc. Rev., 2011, 40(7): 4244.

doi: 10.1039/c1cs15026j     URL    
[125]
Kaur G, Arora M, Ravi Kumar M N V. J. Pharmacol. Exp. Ther., 2019, 370(3): 529.

doi: 10.1124/jpet.118.255828     pmid: 31010845
[126]
Macedo A S, Castro P M, Roque L, ThomÉ N G, Reis C P, Pintado M E, Fonte P. J. Control. Release, 2020, 320: 125.

doi: 10.1016/j.jconrel.2020.01.006     URL    
[127]
Rich S I, Wood R J, Majidi C. Nat. Electron., 2018, 1(2): 102.

doi: 10.1038/s41928-018-0024-1    
[128]
Li S N, Cong Y, Fu J. J. Mater. Chem. B, 2021, 9(22): 4423.

doi: 10.1039/D1TB00523E     URL    
[129]
Wang X, Sun X T, Gan D L, Soubrier M, Chiang H Y, Yan L W, Li Y Q, Li J J, Yu S, Xia Y, Wang K F, Qin Q Z, Jiang X X, Han L, Pan T S, Xie C M, Lu X. Matter, 2022, 5(4): 1204.

doi: 10.1016/j.matt.2022.01.012     URL    
[130]
Sun J Y, Keplinger C, Whitesides G M, Suo Z G. Adv. Mater., 2014, 26(45): 7608.

doi: 10.1002/adma.v26.45     URL    
[131]
Han L, Liu K Z, Wang M H, Wang K F, Fang L M, Chen H T, Zhou J, Lu X. Adv. Funct. Mater., 2018, 28(3): 1704195.

doi: 10.1002/adfm.v28.3     URL    
[132]
Liao M H, Wan P B, Wen J R, Gong M, Wu X X, Wang Y G, Shi R, Zhang L Q. Adv. Funct. Mater., 2017, 27(48): 1703852.

doi: 10.1002/adfm.v27.48     URL    
[133]
Won H J, Ryplida B, Kim S G, Lee G, Ryu J H, Park S Y. ACS Nano, 2020, 14(7): 8409.

doi: 10.1021/acsnano.0c02517     URL    
[134]
Di X, Hang C, Xu Y, Ma Q Y, Li F F, Sun P C, Wu G L. Mater. Chem. Front., 2020, 4(1): 189.

doi: 10.1039/C9QM00582J     URL    
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[3] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[4] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[5] 杨宇州, 李政, 黄艳凤, 巩继贤, 乔长晟, 张健飞. MOF基水凝胶材料的制备及其应用[J]. 化学进展, 2021, 33(5): 726-739.
[6] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[7] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[8] 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. pH敏感性智能水凝胶的设计及其应用[J]. 化学进展, 2020, 32(2/3): 179-189.
[9] 苏喜, 葛闯, 陈李, 徐溢. 基于水凝胶的细菌传感检测[J]. 化学进展, 2020, 32(12): 1908-1916.
[10] 蔡紫煊, 张斌, 姜丽阳, 李允译, 许国贺, 马晶军. 智能响应型水凝胶药物控释体系及其应用[J]. 化学进展, 2019, 31(12): 1653-1668.
[11] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[12] 窦春妍, 李政, 何贵东, 巩继贤, 刘秀明, 张健飞. γ-聚谷氨酸水凝胶的制备及其应用[J]. 化学进展, 2018, 30(8): 1161-1171.
[13] 黎朝, 於麟, 郑震, 王新灵*. 具有规整结构和高强度的水凝胶的功能化[J]. 化学进展, 2017, 29(7): 706-719.
[14] 王平, 杨巧凤, 赵传壮*. 光响应性微凝胶的分子设计和智能材料构筑[J]. 化学进展, 2017, 29(7): 750-756.
[15] 何晓燕*, 刘利琴, 王萌, 张彩芸, 张云雷, 王敏慧. 各向异性水凝胶的制备方法及性质研究[J]. 化学进展, 2017, 29(6): 649-658.