English
新闻公告
More
化学进展 2023, Vol. 35 Issue (2): 274-286 DOI: 10.7536/PC220716 前一篇   后一篇

• 综述 •

多组分自组装小分子水凝胶中的自分类组装

李良春1,*(), 郑仁林1, 黄毅1, 孙荣琴2   

  1. 1 西南科技大学生命科学与工程学院 绵阳 621010
    2 西南科技大学材料科学与工程学院 绵阳 621010
  • 收稿日期:2022-07-14 修回日期:2022-08-12 出版日期:2023-02-24 发布日期:2022-09-19
  • 作者简介:
    李良春 2007年中科院昆明植物所博士毕业,随后在中科院成都有机化学研究所开展博士后工作(2007~2010年),2010年获评副研究员,2011年在香港科技大学工作1年。2012年至今,在西南科技大学生命科学与工程学院工作。主要科研重点为功能导向的活性分子设计、合成与应用,如短肽及环肽自组装,生物活性分子的发现、结构衍生及其功能化应用等。已发表科研论文40余篇,主持完成国家自然科学基金1项,参与国家科技重大专项1项,参与国家自然科学基金项目多项。

Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels

Liangchun Li1(), Renlin Zheng1, Yi Huang1, Rongqin Sun2   

  1. 1 School of Life Science and Engineering, Southwest University of Science and Technology,Mianyang 621010, China
    2 School of Materials Science and Engineering, Southwest University of Science and Technology,Mianyang 621010, China
  • Received:2022-07-14 Revised:2022-08-12 Online:2023-02-24 Published:2022-09-19
  • Contact: *e-mail: lilc76@gmail.com

多组分组装包含多个可以形成自组装的组分,这在自然过程中是很常见的现象。可以通过分析嵌入天然超分子结构中的结构特点,并根据预测的分子相互作用设计创新材料,但因为对于分子本身性质的理解有限,设计可控层级结构的小分子水凝胶目前仍然面临一定困难,距离自然形成的多层级复杂可控组装体系也比较远。在多组分的超分子化学领域,我们有必要利用系统论的方法研究多组分自组装网络的结构与功能,除了理解组分分子单体的性质,还需要对组分分子形成的化学网络进行研究,才能更好地理解自然。当在多组分系统中触发自组装时,通常产生三种组装方式,即共组装(Co-assembly)、自分类(Self-sorting)和异质多维组装(Multidimensional hierarchical combination of assemblies or heterojunction)。这三种组装体系相互竞争但也可能并存,导致多组分组装体系的复杂性与多元响应性,因此对多组分组装构建块或组装体系的设计与组装结构预测也就具有很大挑战性。多层次的多组分组装过程允许多个自组装体协同和正交运行,并具有精确的空间和时间控制。而自分类现象是多种相关(生物)化学过程(如相分离、动力学解析或自我复制等)的基础,自分类现象可以是自恋的,也可以是社会的,对多组分组装体系中自分类组装进行研究,对于加深理解组分分子相互关系实现对网络的控制,从而实现多层级复杂组装体系的可控构建具有重大意义。本文将就多组分组装体系的特点、研究方法展开综述,并展示多组分组装体系的自分类组装的特点、控制等领域研究成果,讨论小分子凝胶剂在多组分自分类组装水凝胶组装体系的研究进展,以期促进对该领域的理解和深入研究。

Multicomponent assembly includes multiple components that can form self-assemblies, which is a common phenomenon in natural processes. We can analyze the structural characteristics embedded in the natural supramolecular structure and design innovative materials according to the predicted molecular interactions. However, due to the limited understanding of the nature of the molecules, the design of low molecular weight hydrogels (LMWGs) with controllable hierarchical structure is still facing certain difficulties, and it is far from the naturally formed high-level complex living system. In the field of multicomponent supramolecular chemistry, it is necessary for us to study the structure and function of multicomponent self-assembly networks by using the method of system theory. In addition to understanding the properties of component molecular monomers, we also need to study the chemical networks formed by component molecules for the better understanding of nature. When self-assembly is triggered in a multicomponent system, there are usually three assembly pathways, namely, co-assembly, self-sorting and multidimensional hierarchical combination of assemblies or heterojunction. These three assembly systems compete with each other but may also coexist, resulting in the complexity and multiple responsiveness of the multicomponent assembly system. Therefore, the design and assembly structure prediction of the multicomponent assembly building blocks or assembly systems are also very challenging. The high-level and multicomponent assembly process allows multiple self-assemblies to operate cooperatively and orthogonally, and has precise spatial control. The self-sorting is the basis of many related (biological) chemical processes (such as phase separation, kinetic analysis or self-replication), which can be narcissistic or social. The study of self-sorting assembly in multicomponent assembly system is of great significance for deepening the understanding of the relationship between components and molecules, realizing the control of the network, and realizing the controllable construction of high-level complex assembly system. In this paper, the characteristics and research methods of multicomponent assembly are reviewed, and the research results of self-sorting in the fields of self-assembly characteristics and control of multicomponent assembly are displayed and discussed, in order to promote the understanding and in-depth research in this field.

Contents

1 Introduction

2 Characteristics of multicomponent assembly system

3 Study on multicomponent self-assembly from the viewpoint of system theory

4 Study on self-sorting assembly of multicomponent self-assembly hydrogels and their control factors

4.1 Utilizing the difference and complementarity of structures to achieve control

4.2 Utilizing the chiral inductions to achieve control

4.3 Utilizing the dynamic process to achieve control

5 Image research method in the researches of self-sorting assembled hydrogels

6 Conclusion and outlook

()
图1 多组分组装机制示意图
Fig.1 Schematic illustration of multicomponent self-assemblies
图2 肽两亲物(PA-E3)和1,3:2,4-二亚苄基-D-山梨醇(DBS-COOH)凝胶剂的化学结构[54]
Fig.2 The chemical structures of PA-E3 and DBS-COOH[54]
图3 pH调控的p型凝胶剂和n型凝胶剂的化学结构[91]
Fig.3 The chemical structures of pH tunable n-type and p-type gelators[91]
图4 (a)Fmoc IKVAV 和Fmoc YIGSR的分子结构;(b)两种短肽形成自分类组装示意图[95]
Fig.4 (a) Molecular structures of Fmoc-IKVAV and Fmoc-YIGSR; (b) Schematic representation of molecular self-assembly of the two peptides showing differential fibrous morphology, while their composite gels showing coexistence of self-sorted fibrous morphology of both the peptides. Reprinted with permission from [95]. Copyright 2020 American Chemical Society
图5 不同pH条件下表现为不同的组装体系(从自分类到共组装的转变)[42]
Fig.5 Different pH conditions show different assembly systems (from self-sorting to co-assembly). Reprinted with permission from [42].? 2021 The Authors. Published by Wiley-VCH GmbH
图6 SucVal8和两种L-脯氨酸衍生物(ProValDoc和ProVal8)的分子结构[98]
Fig.6 The chemical structures of SucVal8 and two derivatives of L-proline (ProValDoc and ProVal8)[98].
图7 手性诱导的不同反式-1,2-二取代环己烷衍生物结构及多组分组装结果示意图[101]
Fig.7 The chemical structures of chirality induced self-assemblies of trans-1,2-disubstituted cyclohexane derivatives and the schematic illustrations[101]
图8 具有不同取代基的凝胶剂(LPF和LPFEG)分子结构[104]
Fig.8 The chemical structures of gelators with different substitutions (LPF and LPFEG)[104]
图9 (a)基于腙的多组分水凝胶剂分子结构;(b)不同多级自分类组装过程示意图[105]
Fig.9 (a) The chemical structures of the multicomponent hydrogelators based on hydrazine; (b) schematic diagram of different multi-level self-sorting assembly pathways. Reprinted with permission from [105]. ?2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
图10 通过肟交换将互穿自分类组装网络转换为平行自分类组装网络的示意图[108]
Fig.10 Schematic illustration of the transformation from the interpenetrated self-sorting double network (SDN) to the parallel SDN by the oxime-exchange protocol. Reprinted with permission from [108]. Copyright ? 2020, The Authors.
[1]
Das A K, Gavel P K. Soft Matter, 2020, 16(44): 10065.

doi: 10.1039/D0SM01136C     URL    
[2]
Feng X Y, Luo Y N, Li F J, Jian X T, Liu Y. Gels, 2021, 7(3): 105.

doi: 10.3390/gels7030105     URL    
[3]
Li L C, Sun R Q, Zheng R L, Huang Y. Mater. Des., 2021, 205: 109759.

doi: 10.1016/j.matdes.2021.109759     URL    
[4]
Li L C, Sun R Q, Zheng R L. Mater. Des., 2021, 197: 109209.

doi: 10.1016/j.matdes.2020.109209     URL    
[5]
Jiang Y X, Zhang W, Yang F D, Wan C, Cai X, Liu J B, Zhang Q L, Li Z G, Han W. Sci. Adv., 2021, 7(4): eabd0492.

doi: 10.1126/sciadv.abd0492     URL    
[6]
Liang J Q, Guo P P, Qin X J, Gao X H, Ma K, Zhu X F, Jin X, Xu W W, Jiang L X, Duan P F. ACS Nano, 2020, 14(3): 3190.

doi: 10.1021/acsnano.9b08408     URL    
[7]
Li C X, Sang Y T, Jin X, Duan P F, Liu M H. Angew. Chem. Int. Ed., 2022, 61(38): e202206332.
[8]
Ji W, Tang Y M, Makam P, Yao Y F, Jiao R R, Cai K Y, Wei G H, Gazit E. J. Am. Chem. Soc., 2021, 143(42): 17633.

doi: 10.1021/jacs.1c07915     pmid: 34647727
[9]
Bera S, Chakraborty A, Karak S, Halder A, Chatterjee S, Saha S, Banerjee R. Chem. Mater., 2018, 30(14): 4755.

doi: 10.1021/acs.chemmater.8b01698     URL    
[10]
Li L C, Xie L, Zheng R L, Sun R Q. Front. Chem., 2021, 9: 739791.

doi: 10.3389/fchem.2021.739791     URL    
[11]
Pang X L, Xie D Y, Ge X T, Li Y J, Zhen X L, Yu X D. Supramol. Chem., 2016, 28(3/4): 335.

doi: 10.1080/10610278.2015.1102262     URL    
[12]
Chu C W, Schalley C A. Org. Mater., 2021, 3(1): 25.
[13]
Chen J F, Lin Q, Yao H, Zhang Y M, Wei T B. Mater. Chem. Front., 2018, 2(5): 999.

doi: 10.1039/C8QM00065D     URL    
[14]
Chen J, Li Q, Wu P C, Liu J, Wang D, Yuan X H, Zheng R L, Sun R Q, Li L C. Front. Chem., 2020, 8: 368.

doi: 10.3389/fchem.2020.00368     pmid: 32426330
[15]
Basak S, Singh I, Kraatz H B. Chemistryselect, 2017, 2: 451.

doi: 10.1002/slct.201601278     URL    
[16]
Mondal B, Bairagi D, Nandi N, Hansda B, Das K S, Edwards-Gayle C J C, Castelletto V, Hamley I W, Banerjee A. Langmuir, 2020, 36(43): 12942.

doi: 10.1021/acs.langmuir.0c02205     URL    
[17]
Okesola B O, Smith D K. Chem. Soc. Rev., 2016, 45(15): 4226.

doi: 10.1039/C6CS00124F     URL    
[18]
Giuri D, D’Agostino S, Ravarino P, Faccio D, Falini G, Tomasini C. ChemNanoMat, 2022, 8: e202200093.
[19]
Wang C, Zhang J J. ACS Appl. Bio Mater., 2022, 5(5): 1934.

doi: 10.1021/acsabm.1c01197     URL    
[20]
Yuan L, Liu L. Sens. Actuat. B Chem., 2021, 344: 130232.

doi: 10.1016/j.snb.2021.130232     URL    
[21]
Zhu J, Zhang Z, Wang R, Zhong K, Zhang K, Zhang N, Liu W, Feng F, Qu W. ACS Appl. Nano Mater., 2022, 5: 3146.

doi: 10.1021/acsanm.2c00056     URL    
[22]
Xie Y, Ma C, Yang X, Wang J C, Long G, Zhou J B. Adv. Drug Deliv. Rev., 2021, 176: 113868.

doi: 10.1016/j.addr.2021.113868     URL    
[23]
Li X, Zhang H J, Liu L Y, Cao C Y, Wei P, Yi X, Zhou Y F, Lv Q Y, Zhou D F, Yi T. J. Mater. Chem. B, 2021, 9(41): 8686.

doi: 10.1039/D1TB01628H     URL    
[24]
Cheng H B, Zhang S C, Qi J, Liang X J, Yoon J. Adv. Mater., 2021, 33(26): 2007290.

doi: 10.1002/adma.v33.26     URL    
[25]
Olivieri E, Quintard G, Naubron J V, Quintard A. J. Am. Chem. Soc., 2021, 143(32): 12650.

doi: 10.1021/jacs.1c05183     pmid: 34351739
[26]
Zeng L, Song M M, Gu J, Xu Z Y, Xue B, Li Y, Cao Y. Biomimetics, 2019, 4(2): 36.

doi: 10.3390/biomimetics4020036     URL    
[27]
Du H, Liu J, Pan B Y, Yang H Y, Liu G B, Lu K. Food Hydrocoll., 2022, 131: 107751.

doi: 10.1016/j.foodhyd.2022.107751     URL    
[28]
Rajasekar M, Lavanya M. RSC Adv., 2022, 12(25): 15925.

doi: 10.1039/d2ra00924b     pmid: 35733685
[29]
Chen H M, Cai X X, Cheng J, Wang S Y. Trends Food Sci. Technol., 2022, 120: 212.

doi: 10.1016/j.tifs.2021.12.027     URL    
[30]
Zhou P, Wang J Q, Wang M, Hou J, Lu J R, Xu H. J. Colloid Interface Sci., 2019, 548: 244.

doi: 10.1016/j.jcis.2019.04.019     URL    
[31]
Bondoc R. Self-assembling biomaterials: molecular design, characterization and application in biology and medicine. Focus on Catalysts, 2018, 371.
[32]
Chakraborty P, Adler-Abramovich L, Gazit E. Multifunctional Hydrogels for Biomedical Applications. John Wiley & Sons, Ltd, 2022, 127.
[33]
Sikdar P, Uddin M M, Dip T M, Islam S, Hoque M S, Dhar A K, Wu S Y. Mater. Adv., 2021, 2(14): 4532.

doi: 10.1039/D1MA00193K     URL    
[34]
Ract J N R, da Cruz R G, Pereira C G. Thermodynamics of Phase Equilibria in Food Engineering. Amsterdam: Elsevier, 2019, 563.
[35]
Ben Messaoud G, Le Griel P, Hermida-Merino D, Roelants S L K W, Soetaert W, Stevens C V, Baccile N. Chem. Mater., 2019, 31(13): 4817.

doi: 10.1021/acs.chemmater.9b01230    
[36]
Scarel E, Bellotto O, Rozhin P, Kralj S, Tortora M, Vargiu A V, de Zorzi R, Rossi B, Marchesan S. Soft Matter, 2022, 18(11): 2129.

doi: 10.1039/D1SM01824H     URL    
[37]
Sharma A, Gupta A, Khan N, DuttKonar A. New J. Chem., 2020, 44(22): 9213.

doi: 10.1039/D0NJ01583K     URL    
[38]
Levine M S, Ghosh M, Hesser M, Hennessy N, DiGuiseppi D M, Adler-Abramovich L, Schweitzer-Stenner R. Soft Matter, 2020, 16(33): 7860.

doi: 10.1039/D0SM00035C     URL    
[39]
Kadeeja A, Joseph S, Abraham J N. Soft Matter, 2020, 16(27): 6294.

doi: 10.1039/d0sm00670j     pmid: 32462156
[40]
Li L C, Chen J, Wang Z, Xie L, Feng C, He G, Hu H L, Sun R Q, Zhu H J. Colloids Surf. A Physicochem. Eng. Aspects, 2021, 628: 127289.

doi: 10.1016/j.colsurfa.2021.127289     URL    
[41]
Panja S, Seddon A, Adams D J. Chem. Sci., 2021, 12(33): 11197.

doi: 10.1039/D1SC02854E     URL    
[42]
Panja S, Dietrich B, Shebanova O, Smith A J, Adams D J. Angew. Chem. Int. Ed., 2021, 60(18): 9973.

doi: 10.1002/anie.v60.18     URL    
[43]
Rosa E, Diaferia C, Gianolio E, Sibillano T, Gallo E, Smaldone G, Stornaiuolo M, Giannini C, Morelli G, Accardo A. Macromol. Biosci., 2022, 22(7): 2200128.

doi: 10.1002/mabi.v22.7     URL    
[44]
Draper E R, Adams D J. Chem. Soc. Rev., 2018, 47(10): 3395.

doi: 10.1039/c7cs00804j     pmid: 29419826
[45]
Chivers P R A, Smith D K. Nat. Rev. Mater., 2019, 4(7): 463.

doi: 10.1038/s41578-019-0111-6    
[46]
Raeburn J, Adams D J. Chem. Commun., 2015, 51(25): 5170.

doi: 10.1039/C4CC08626K     URL    
[47]
Ahmadi Z, Yadav S, Kar A K, Jha D, Gautam H K, Patnaik S, Kumar P, Sharma A K. Biomater. Adv., 2022, 133: 112633.

doi: 10.1016/j.msec.2021.112633     URL    
[48]
Xing P Y, Tham H P, Li P Z, Chen H Z, Xiang H J, Zhao Y L. Adv. Sci., 2018, 5(1): 1700552.

doi: 10.1002/advs.201700552     URL    
[49]
Aida T, Meijer E W, Stupp S I. Science, 2012, 335(6070): 813.

doi: 10.1126/science.1205962     pmid: 22344437
[50]
Cartwright J H E. Philos. Trans. R. Soc. Math. Phys. Eng. Sci., 2016, 374: 20150449.
[51]
Wang C, Wang Z Q, Zhang X. Acc. Chem. Res., 2012, 45(4): 608.

doi: 10.1021/ar200226d     URL    
[52]
Sheehan F, Sementa D, Jain A, Kumar M, Tayarani-Najjaran M, Kroiss D, Ulijn R V. Chem. Rev., 2021, 121(22): 13869.

doi: 10.1021/acs.chemrev.1c00089     URL    
[53]
Lu H Y, Wang X, Hao J C. Chin. Sci. Bull., 2021, 66(14): 1733.

doi: 10.1360/TB-2020-1418     URL    
[54]
Okesola B O, Wu Y H, Derkus B, Gani S, Wu D S, Knani D, Smith D K, Adams D J, Mata A. Chem. Mater., 2019, 31(19): 7883.

doi: 10.1021/acs.chemmater.9b01882     URL    
[55]
Khalily M A, Bakan G, Kucukoz B, Topal A E, Karatay A, Yaglioglu H G, Dana A, Guler M O. ACS Nano, 2017, 11(7): 6881.

doi: 10.1021/acsnano.7b02025     URL    
[56]
Xing P Y, Zhao Y L. Acc. Chem. Res., 2018, 51(9): 2324.

doi: 10.1021/acs.accounts.8b00312     URL    
[57]
Colquhoun C, Draper E R, Eden E G B, Cattoz B N, Morris K L, Chen L, McDonald T O, Terry A E, Griffiths P C, Serpell L C, Adams D J. Nanoscale, 2014, 6(22): 13719.

doi: 10.1039/C4NR04039B     URL    
[58]
Draper E R, Eden E G B, McDonald T O, Adams D J. Nat. Chem., 2015, 7(10): 848.

doi: 10.1038/nchem.2347     pmid: 26391086
[59]
Alakpa E V, Jayawarna V, Lampel A, Burgess K V, West C C, Bakker S C J, Roy S, Javid N, Fleming S, Lamprou D A, Yang J L, Miller A, Urquhart A J, Frederix P W J M, Hunt N T, PÉault B, Ulijn R V, Dalby M J. Chem, 2016, 1(3): 512.

doi: 10.1016/j.chempr.2016.08.001     URL    
[60]
Wu D D, Lei H, Xie X, Zhou L, Zheng P, Cao Y, Zhang Y. Nano Res., 2022, 15(5): 4294.

doi: 10.1007/s12274-022-4089-9    
[61]
Xu J W, Qi G Y, Wang W Q, Sun X S. Npj Sci. Food, 2021, 5: 14.

doi: 10.1038/s41538-021-00096-1    
[62]
Noblett A D, Baek K, Suggs L J. ACS Biomater. Sci. Eng., 2021, 7(6): 2605.

doi: 10.1021/acsbiomaterials.0c01658     URL    
[63]
Shigemitsu H, Fujisaku T, Tanaka W, Kubota R, Minami S, Urayama K, Hamachi I. Nat. Nanotechnol., 2018, 13(2): 165.

doi: 10.1038/s41565-017-0026-6     pmid: 29311611
[64]
Mayoral M J, Rest C, Schellheimer J, Stepanenko V, Fernández G. Chem. Eur. J., 2012, 18(49): 15607.

doi: 10.1002/chem.201202367     URL    
[65]
Zhao X T, Wang H, Li B Y, Zheng B, Yang D, Xu W H, Li X P, Yang X J, Wu B. Chem. Commun., 2021, 57(49): 6078.

doi: 10.1039/D1CC01652K     URL    
[66]
Tomimasu N, Kanaya A, Takashima Y, Yamaguchi H, Harada A. J. Am. Chem. Soc., 2009, 131(34): 12339.

doi: 10.1021/ja903988c     pmid: 19705917
[67]
Huang Z H, Chen X Y, Wu G L, Metrangolo P, Whitaker D, McCune J A, Scherman O A. J. Am. Chem. Soc., 2020, 142(16): 7356.

doi: 10.1021/jacs.0c02275     URL    
[68]
Giraud T, Bouguet-Bonnet S, StÉbÉ M J, Richaudeau L, Pickaert G, Averlant-Petit M C, Stefan L. Nanoscale, 2021, 13(23): 10566.

doi: 10.1039/D1NR02417E     URL    
[69]
Halperin-Sternfeld M, Ghosh M, Sevostianov R, Grigoriants I, Adler-Abramovich L. Chem. Commun., 2017, 53(69): 9586.

doi: 10.1039/C7CC04187J     URL    
[70]
Has C, Sunthar P. J. Liposome Res., 2020, 30(4): 336.

doi: 10.1080/08982104.2019.1668010    
[71]
Qiu H B, Hudson Z M, Winnik M A, Manners I. Science, 2015, 347(6228): 1329.

doi: 10.1126/science.1261816     URL    
[72]
Wang J, Liu K, Xing R R, Yan X H. Chem. Soc. Rev., 2016, 45(20): 5589.

doi: 10.1039/C6CS00176A     URL    
[73]
Juan W, Qianli Z, Xuehai Y. ACTA Chim. Sin., 2017, 75: 933.
[74]
Raymond D M, Nilsson B L. Chem. Soc. Rev., 2018, 47(10): 3659.

doi: 10.1039/C8CS00115D     URL    
[75]
Fuentes-CaparrÓs A M, de Paula GÓmez-Franco F, Dietrich B, Wilson C, Brasnett C, Seddon A, Adams D J. Nanoscale, 2019, 11(7): 3275.

doi: 10.1039/c8nr09423c     pmid: 30720823
[76]
Lin Y Y, Penna M, Thomas M R, Wojciechowski J P, Leonardo V, Wang Y, Pashuck E T, Yarovsky I, Stevens M M. ACS Nano, 2019, 13(2): 1900.
[77]
Nitschke J R. Nature, 2009, 462: 736.

doi: 10.1038/462736a    
[78]
Ashkenasy G, Hermans T M, Otto S, Taylor A F. Chem. Soc. Rev., 2017, 46(9): 2543.

doi: 10.1039/c7cs00117g     pmid: 28418049
[79]
Serrano-Molina D, Montoro-García C, Mayoral M J, de Juan A, González-Rodríguez D. J. Am. Chem. Soc., 2022, 144(12): 5450.

doi: 10.1021/jacs.1c13295     pmid: 35311263
[80]
He Z F, Jiang W, Schalley C A. Chem. Soc. Rev., 2015, 44(3): 779.

doi: 10.1039/C4CS00305E     URL    
[81]
Panja S, Dietrich B, Smith A J, Seddon A, Adams D J. ChemSystemsChem, 2022, 4(4): e202200008.
[82]
Chatterjee A, Reja A, Pal S, Das D. Chem. Soc. Rev., 2022, 51(8): 3047.

doi: 10.1039/D1CS01178B     URL    
[83]
Mattia E, Otto S. Nat. Nanotechnol., 2015, 10(2): 111.

doi: 10.1038/nnano.2014.337     pmid: 25652169
[84]
Islam S, Powner M W. Chem, 2017, 2(4): 470.

doi: 10.1016/j.chempr.2017.03.001     URL    
[85]
Das K, Gabrielli L, Prins L J. Angew. Chem. Int. Ed., 2021, 60(37): 20120.

doi: 10.1002/anie.v60.37     URL    
[86]
Safont-Sempere M M, Fernández G, Würthner F. Chem. Rev., 2011, 111(9): 5784.

doi: 10.1021/cr100357h     pmid: 21846150
[87]
Boekhoven J, Brizard A M, Stuart M C A, Florusse L, Raffy G, del Guerzo A, van Esch J H. Chem. Sci., 2016, 7(9): 6021.

doi: 10.1039/c6sc01021k     pmid: 30034743
[88]
Morris K L, Chen L, Raeburn J, Sellick O R, Cotanda P, Paul A, Griffiths P C, King S M, O’Reilly R K, Serpell L C, Adams D J. Nat. Commun., 2013, 4: 1480.

doi: 10.1038/ncomms2499     pmid: 23403581
[89]
Smith M M, Smith D K. Soft Matter, 2011, 7(10): 4856.

doi: 10.1039/c1sm05316g     URL    
[90]
Nuthanakanti A, Walunj M B, Torris A, Badiger M V, Srivatsan S G. Nanoscale, 2019, 11(24): 11956.

doi: 10.1039/c9nr01863h     pmid: 31188377
[91]
Draper E R, Dietrich B, Adams D J. Chem. Commun., 2017, 53: 1868.

doi: 10.1039/C6CC08337D     URL    
[92]
Cross E R, Sproules S, Schweins R, Draper E R, Adams D J. J. Am. Chem. Soc., 2018, 140(28): 8667.

doi: 10.1021/jacs.8b05359     URL    
[93]
Draper E R, Lee J R, Wallace M, Jäckel F, Cowan A J, Adams D J. Chem. Sci., 2016, 7(10): 6499.

doi: 10.1039/c6sc02644c     pmid: 28451108
[94]
Castilla A M, Draper E R, Nolan M C, Brasnett C, Seddon A, Mears L L E, Cowieson N, Adams D J. Sci. Rep., 2017, 7: 8380.

doi: 10.1038/s41598-017-08644-0     pmid: 28827598
[95]
Jain R, Roy S. ACS Biomater. Sci. Eng., 2020, 6(5): 2832.

doi: 10.1021/acsbiomaterials.9b01998     URL    
[96]
Sahoo J K, VandenBerg M A, Ruiz Bello E E, Nazareth C D, Webber M J. Nanoscale, 2019, 11(35): 16534.

doi: 10.1039/C9NR03440D     URL    
[97]
Wakabayashi R, Imatani R, Katsuya M, Higuchi Y, Noguchi H, Kamiya N, Goto M. Chem. Commun., 2022, 58(4): 585.

doi: 10.1039/D1CC05560G     URL    
[98]
Singh N, Zhang K, Angulo-Pachon C A, Mendes E, van Esch J H, Escuder B. Chem. Sci., 2016, 7(8): 5568.

doi: 10.1039/C6SC01268J     URL    
[99]
He H W, Zheng H, Ma M, Shi Y Q, Gao Z L, Chen S, Wang X. Chem. Commun., 2020, 56(20): 2983.

doi: 10.1039/C9CC09816J     URL    
[100]
Gupta D, Sasmal R, Singh A, Joseph J P, Miglani C, Agasti S S, Pal A. Nanoscale, 2020, 12(36): 18692.

doi: 10.1039/D0NR04581K     URL    
[101]
Kulkarni C, Berrocal J A, Lutz M, Palmans A R A, Meijer E W. J. Am. Chem. Soc., 2019, 141(15): 6302.

doi: 10.1021/jacs.9b00452     URL    
[102]
Basak S, Singh I, Ferranco A, Syed J, Kraatz H B. Angew. Chem. Int. Ed., 2017, 56(43): 13288.

doi: 10.1002/anie.201706162     URL    
[103]
Li Y X, Xu L, Kang S M, Zhou L, Liu N, Wu Z Q. Angew. Chem. Int. Ed., 2021, 60(13): 7174.

doi: 10.1002/anie.v60.13     URL    
[104]
Liu G F, Zhou C, Teo W L, Qian C, Zhao Y L. Angew. Chem. Int. Ed., 2019, 58(28): 9366.

doi: 10.1002/anie.v58.28     URL    
[105]
Wang Y M, Piskorz T K, Lovrak M, Mendes E, Guo X H, Eelkema R, van Esch J H. Adv. Sci., 2020, 7(7): 1902487.

doi: 10.1002/advs.v7.7     URL    
[106]
Wang Y M, Lovrak M, Liu Q, Maity C, Le Sage V A A, Guo X H, Eelkema R, van Esch J H. J. Am. Chem. Soc., 2019, 141(7): 2847.

doi: 10.1021/jacs.8b09596     URL    
[107]
Wang H C, Liu L Q, Bai S Y, Guo X H, Eelkema R, van Esch J H, Wang Y M. Soft Matter, 2020, 16(41): 9406.

doi: 10.1039/D0SM01584A     URL    
[108]
Kubota R, Nagao K, Tanaka W, Matsumura R, Aoyama T, Urayama K, Hamachi I. Nat. Commun., 2020, 11: 4100.

doi: 10.1038/s41467-020-17984-x     pmid: 32796855
[109]
Dhiman S, Andrian T, Gonzalez B S, Tholen M M E, Wang Y Y, Albertazzi L. Chem. Sci., 2022, 13(8): 2152.

doi: 10.1039/D1SC05506B     URL    
[110]
Pujals S, Feiner-Gracia N, Delcanale P, Voets I, Albertazzi L. Nat. Rev. Chem., 2019, 3(2): 68.

doi: 10.1038/s41570-018-0070-2    
[111]
Schermelleh L, Ferrand A, Huser T, Eggeling C, Sauer M, Biehlmaier O, Drummen G P C. Nat. Cell Biol., 2019, 21(1): 72.

doi: 10.1038/s41556-018-0251-8     pmid: 30602772
[112]
Onogi S, Shigemitsu H, Yoshii T, Tanida T, Ikeda M, Kubota R, Hamachi I. Nat. Chem., 2016, 8(8): 743.

doi: 10.1038/nchem.2526    
[113]
Kubota R, Liu S, Shigemitsu H, Nakamura K, Tanaka W, Ikeda M, Hamachi I. Bioconjugate Chem., 2018, 29(6): 2058.

doi: 10.1021/acs.bioconjchem.8b00260     pmid: 29742348
[114]
Kubota R, Nakamura K, Torigoe S, Hamachi I. ChemistryOpen, 2020, 9(1): 67.

doi: 10.1002/open.201900328     pmid: 31988842
[115]
Cao X H, Gao A P, Hou J T, Yi T. Coord. Chem. Rev., 2021, 434: 213792.

doi: 10.1016/j.ccr.2021.213792     URL    
[116]
Makiguchi W, Tanabe J, Yamada H, Iida H, Taura D, Ousaka N, Yashima E. Nat. Commun., 2015, 6: 7236.

doi: 10.1038/ncomms8236     pmid: 26051291
[117]
Mayoral M J, Guilleme J, Calbo J, AragÓ J, Aparicio F, Ortí E, Torres T, González-Rodríguez D. J. Am. Chem. Soc., 2020, 142(50): 21017.

doi: 10.1021/jacs.0c07291     pmid: 33186011
[118]
Klein M L, Shinoda W. Science, 2008, 321(5890): 798.

doi: 10.1126/science.1157834     URL    
[119]
Ghosh M, Bera S, Schiffmann S, Shimon L J W, Adler-Abramovich L. ACS Nano, 2020, 14(8): 9990.

doi: 10.1021/acsnano.0c03085     URL    
[120]
Chakraborty P, Tang Y M, Guterman T, Arnon Z A, Yao Y F, Wei G H, Gazit E. Angew. Chem. Int. Ed., 2020, 59(52): 23731.

doi: 10.1002/anie.v59.52     URL    
[121]
Yang X J, Lu H L, Tao Y H, Zhang H Y, Wang H M. J. Nanobiotechnology, 2022, 20: 77.

doi: 10.1186/s12951-022-01285-0    
[122]
Piras C C, Smith D K. Chem. Eur. J., 2019, 25(48): 11318.
[123]
Ong L L, Hanikel N, Yaghi O K, Grun C, Strauss M T, Bron P, Lai-Kee-Him J, Schueder F, Wang B, Wang P F, Kishi J Y, Myhrvold C, Zhu A, Jungmann R, Bellot G, Ke Y G, Yin P. Nature, 2017, 552(7683): 72.

doi: 10.1038/nature24648     URL    
[124]
Patra J K, Das G, Fraceto L F, Campos E V R, Rodriguez-Torres M D P, Acosta-Torres L S, Diaz-Torres L A, Grillo R, Swamy M K, Sharma S, Habtemariam S, Shin H S. J. Nanobiotechnology, 2018, 16: 71.

doi: 10.1186/s12951-018-0392-8    
[125]
Yan C X, Li Q L, Gong Z Q, Cheng Y Z, Wang L N. Progress in Chemistry, 2021, 33: 1917.
(闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 化学进展,2021, 33: 1917.).
[126]
Baig N, Kammakakam I, Falath W. Mater. Adv., 2021, 2(6): 1821.

doi: 10.1039/D0MA00807A     URL    
[127]
Liu X, Li M M, Liu J Z, Song Y Q, Hu B B, Wu C X, Liu A A, Zhou H, Long J F, Shi L Q, Yu Z L. J. Am. Chem. Soc., 2022, 144(21): 9312.

doi: 10.1021/jacs.2c01025     URL    
[128]
Mueller M, Rasoulinejad S, Garg S, Wegner S V. Nano Lett., 2020, 20(4): 2257.

doi: 10.1021/acs.nanolett.9b04160     pmid: 31751141
[129]
Wang H, Liu C H, Wang K, Wang M H, Yu H, Kandapal S, Brzozowski R, Xu B Q, Wang M, Lu S, Hao X Q, Eswara P, Nieh M P, Cai J F, Li X P. J. Am. Chem. Soc., 2019, 141(40): 16108.

doi: 10.1021/jacs.9b08484     URL    
[130]
Ayme J F, Lehn J M. Chem. Sci., 2020, 11(4): 1114.

doi: 10.1039/C9SC04988F     URL    
[131]
Nguyen M, Vaikuntanathan S. Proc. Natl. Acad. Sci., 2016, 113(50): 14231.

doi: 10.1073/pnas.1609983113     URL    
[132]
Nguyen M, Qiu Y Q, Vaikuntanathan S. Annu. Rev. Condens. Matter Phys., 2021, 12: 273.

doi: 10.1146/conmatphys.2021.12.issue-1     URL    
[133]
Mendes A C, Baran E T, Reis R L, Azevedo H S. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology, 2013, 5(6): 582.
[134]
Pavc D, Sebastian N, Spindler L, Drevenšek-Olenik I, Podboršek G K, Plavec J, Šket P. Nat. Commun., 2022, 13: 1062.

doi: 10.1038/s41467-022-28726-6    
[135]
Singh N, Lopez-Acosta A, Formon G J M, Hermans T M. J. Am. Chem. Soc., 2022, 144(1): 410.

doi: 10.1021/jacs.1c10282     URL    
[136]
Boruah A, Roy A. Biomater. Sci., 2022, 10(17): 4694.

doi: 10.1039/D2BM00775D     URL    
[1] 赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏. 苯丙氨酸二肽类分子自组装:分子设计、结构调控与材料应用[J]. 化学进展, 2014, 26(09): 1445-1459.