English
新闻公告
More
化学进展 2022, Vol. 34 Issue (3): 487-498 DOI: 10.7536/PC211124   后一篇

• 邀请综述 •

室温磷光凝胶研究进展

王金凤1, 李爱森2, 李振1,2,3,*()   

  1. 1 天津大学分子聚集态科学研究院 天津 300072
    2 天津大学-新加坡国立大学福州联合学院天津大学福州国际校区 福州 350207
    3 武汉大学化学与分子科学学院 武汉 430072
  • 收稿日期:2021-11-29 修回日期:2022-01-30 出版日期:2022-03-24 发布日期:2022-02-28
  • 通讯作者: 李振
  • 基金资助:
    天津大学启动基金和国家自然科学基金项目(22105143)

The Progress of Room Temperature Phosphorescent Gel

Jinfeng Wang1, Aisen Li2, Zhen Li1,2,3()   

  1. 1 Institute of Molecular Aggregation Science, Tianjin University,Tianjin 300072, China
    2 Joint School of National University of Singapore and Tianjin University,International Campus of Tianjin University, Fuzhou 350207, China
    3 College of Chemistry and Molecular Sciences, Wuhan University,Wuhan 430072, China
  • Received:2021-11-29 Revised:2022-01-30 Online:2022-03-24 Published:2022-02-28
  • Contact: Zhen Li
  • Supported by:
    Starting Foundation of Tianjin University and the National Natural Science Foundation of China(22105143)

室温磷光(RTP)材料因其独特的发光性质和在光电、传感、生物成像及信息加密等领域广阔的应用前景吸引了研究者的兴趣。近年来,科学家探索了各种方法调控有机分子的室温磷光,并通过磷光分子结构设计以及磷光保护基质的构建成功构筑了长寿命和高量子效率的有机室温磷光材料。超分子凝胶作为诱导室温磷光的新基质,具有三维网络结构、热可逆性质及刺激响应性等优势而引起关注。本综述围绕无金属室温磷光凝胶材料和含金属室温磷光凝胶材料,总结了近年来关于室温磷光凝胶材料的研究现状,并在此基础上,简要展望了室温磷光凝胶材料研究的发展趋势。

Room temperature phosphorescence (RTP) has arouse much interest due to their unique luminescence properties and wide potential applications in optoelectronics, sensing, bio-imaging and security devices. In recent years, various methods to promote phosphorescence emission at room temperature have been explored. At present, the commonly used methods for constructing room temperature phosphorescent materials with long lifetime and high quantum yield mainly center on the design of phosphorescent molecular structure and the construction of phosphorescent protective matrix. Supramolecular gel, as a new matrix for inducing room temperature phosphorescence, has attracted much attention owing to the advantages of three-dimensional network structure, thermal reversibility and stimulus responsiveness. This review focuses on metal-free room temperature phosphorescent gel and metal-containing room temperature phosphorescent gel, and summarizes current research status in recent years. In addition, a brief prospect for the future development of room temperature phosphorescent gel research is provided.

Contents

1 Introduction

2 Metal-free room temperature phosphorescent gel

3 Metal-containing room temperature phosphorescent gel

4 Conclusion and outlook

()
图1 环糊精作为主体的RTP凝胶材料:(a)基于β-环糊精主体聚合物(poly-β-CD)和α-溴代萘聚合物(poly-α-BrNp)主客体自组装水凝胶的形貌及自愈特特性[41];(b)基于4-溴-1,8-萘二甲酸酐聚合物(BrNpA)和γ-环糊精(γ-CD)主客体自组装水凝胶[42];(c)干凝胶G/α-CD形成过程示意图、可逆室温磷光发射开关示意图及干凝胶G/α-CD的可逆室温磷光发射开关机制[43]
Fig.1 RTP gel based on cyclodextrin. (a) Construction of the supramolecular polymeric hydrogel by host-guest interaction between poly-β-CD /poly-α-BrNp polymers and its rapidly self-healing property[41]; (b) Schematic representation of the CD-RTP gel based on host-guest interaction between poly-BrNpA and γ-CD[42]; (c) Schematic representation of xerogel formation and reversible white-light emission switching and schematic of the possible emission switch processes based on cyclodextrin polypseudorotaxane xerogel[43]
图2 (a)基于葫芦[8]脲(CB[8])和三嗪衍生物(TBP)自组装体系(凝胶)的多色发光性能;(b)多色水凝胶的应用及RTP在细胞成像领域的应用[44]
Fig.2 (a) Polychromatic luminescence properties of gels based on the cucurbit[8]uril (CB[8]) and triazine derivative (TBP); (b) Photographs of multicolor hydrogels under daylight and 365 nm UV light; TBP-CB[8] complex, bright field, and merge confocal microscopic images of HeLa cells cultured with a mixture of TBP with 1.0 equiv CB[8] (10 mm)[44]
图3 超分子自组装形成RTP凝胶: (a)由DBS超分子凝胶诱导的3-BrQ RTP示意图[46]; (b)3-BrQ在DBS凝胶(黑线)和NaDC溶液(红线)中(10和80 ℃)的“开-关”可逆RTP[46]; (c)BrQ-DBC凝胶形成及对温度、pH 和氧化还原反应的响应示意图[47];(d)BrQ-DBC凝胶在加热和冷却循环过程中的RTP强度[47];(e)PtOEP、DPA和LBG的分子结构[48];(f)二组分凝胶PtOEP/LBG的吸收光谱(红色实线)和发射光谱(红色虚线),DPA/LBG的吸收光谱(黑色实线)和发射光谱(黑色虚线)[48]
Fig.3 RTP gels based on supramolecular self-assembly. (a) Schematic illustration of 3-BrQ RTP induced by DBS supramolecular gels[46]; (b) “On-off” reversible RTP of 3-BrQ in DBS gels (black line) and NaDC solutions (red line) at 10 and 80 ℃[46]; (c) Schematic illustration of BrQ-DBC gel formation and responsiveness of temperature, pH and redox[47]; (d) RTP spectra of BrQ-DBC gels during a cycle of heating and cooling[47]; (e) Chemical structure of PtOEP, DPA and LBG[48]; (f) Normalized absorption (solid line) and emission (dashed line) spectra of the PtOEP/LBG binary gel (red line) and the DPA/LBG binary gel (black line)[48]
图4 通过静电相互作用形成RTP凝胶: (a)混合水凝胶和干凝胶的构建示意图; (b)凝胶材料的发射光谱、寿命及干凝胶室温磷光强度对湿度的响应和可逆性[49];(c)NDI衍生物和黏土的结构及自组装示意图[50];(d)CPthBr、CB[7] 和 LP 的分子结构、形成凝胶示意图、凝胶材料的磷光发射(CPthBr)和延迟荧光发射(SRG和SR101)谱图、CPthBr-SRG-LP 和 CPthBr-SR101-LP混合水凝胶的寿命衰减图(插图:水凝胶在254 nm紫外光照射下的“NCU”发光照片)[51]
Fig.4 RTP gel based on electrostatic interaction. (a) Construction of the AC/SCD?PYCl hybrid hydrogel and xerogel[49];(b) photoluminescence spectra of the AC/SCD?PYCl hydrogel and xerogel, phosphorescence decay curve for the xerogel, effect of humidity on the phosphorescence spectrum of the AC/SCD?PYCl gel; (c) Molecular structures of pNDI and BrNDI, schematic diagram of Laponite (LP) structure and schematic of the proposed ionic hybrid self-assembly of exfoliated LP nanoplates[50]; (d) Molecular structure and schematic representation of CPthBr, CB[7] and LP, normalized gated emission spectra and delayed fluorescence lifetime decay plot of 10:1 CPthBr-SRG-LP and CPthBr-SR101-LP hybrid hydrogels[51]
图5 凝胶聚合物g-1IBDP和g-2IBDP的分子结构示意图[52]
Fig.5 Schematic representation of molecular structure of gel polymers g-1IBDP and g-2IBDP[52]
图6 (a)Pd-mTCPP和PEG-diamine的结构及水凝胶的形成[53];(b)水凝胶植入BALB/c小鼠皮下的成像(每10天成像一次)[53]; (c)G/DBC凝胶的双有序结构诱导Pd-TCPP的RTP示意图[54];(d)胶束-杂化超分子凝胶中Al3+增强Pd-TCPP的RTP示意图及光谱图[57];(e)紫外光照射增强M/DBC凝胶中Pd-TCPP的RTP的示意图[58];(f)紫外光照射增强RTP光谱图及寿命[58]
Fig.6 (a) Chemical structures of Pd-mTCPP, PEG-diamines and generation of hydrogel[53]; (b) Hydrogel was implanted subcutaneously in a BALB/c mouse and imaged every 10 d[53]; (c) Schematic illustrating RTP of Pd-TCPP induced by the dual-ordered structure of G/DBC gels[54]; (d) Schematic illustration of Al3+ enhanced RTP of Pd-porphyrin resided in micelle-hybrid supramolecular gels[57]; (e) Schematic illustration of enhancing RTP of Pd-TCPP in M/DBC gels under UV irradiation[58]; (f) RTP spectra of Pd-TCPP in M/DBC gels under different conditions and RTP decay curves of Pd-TCPP in M/DBC gels[58]
图7 (a)Pt-乙炔络合物形成RTP凝胶示意图;(b)不同条件下的磷光量子产率[59]; (c)8-喹啉铂(Ⅱ)络合物的结构[60]; (d)8-喹啉铂(Ⅱ)络合物溶液态(实线)和凝胶态(虚线)的磷光发射图和照片及CLSM形貌图[60]
Fig.7 (a) Schematic illustrating of RTP gel formation based on Pt-acetylide complex; (b) Phosphorescent quantum yield[59]; (c) Structure of 8-quinolinol platinum(Ⅱ)[60]; (d) Luminescence spectra of the 1Pt in solution (solid) and gel state (dashed) as well as optical and CLSM images[60]
图8 (a)磷光体和聚合物的分子结构;(b)不同凝胶的磷光发射;(c)微凝胶对温度的刺激性响应特性[62]
Fig.8 (a) Molecular structure of phosphor and polymer; (b) Photoluminescence spectra for different forms of phosphorescent hydrogels; (c) Temperature-dependent photoluminescence enhancement of the hybrid microgel upon heating from room temperature (RT) to 37 ℃[62]
图9 (a)金(I)芳炔化合物的结构;(b)298 K,紫外灯(λ=365 nm)照射不同时间下除氧Au2的DMSO溶液的发射光谱及图片;(c)298 K,在含Au2的DMSO凝胶上用365 nm紫外灯书写-擦除-重写图片;(d)298 K,含Au2的DMSO凝胶在紫外灯(λ=365 nm)照射不同时间下发射光谱[63]
Fig.9 (a) Structures of complexes Au1~Au5; (b) Emission of an aerated DMSO solution of Au2 upon continuous excitation at 365 nm at 298 K and its photographs; (c) Photographic description on the writing-erasing-rewriting processes with a 365 nm UV lamp on a piece of DMSO gel containing Au2 at 298 K; (d) Emission of DMSO gel containing Au2 upon continuous excitation at 365 nm[63]
图10 (a)Ag9NCs的合成及不同温度下的发光性能;(b)加入EtOH后不同凝胶化时间的发射谱及不同状态下的寿命;(c)凝胶化过程;(d)MOGs在不同温度下的发射及循环图[64]
Fig.10 (a) Illustration of the synthesis of Ag9NCs and their emission photographs; (b) Time-dependent optical properties of the MOG after addition of EtOH; (c) Illustration of the time-dependent gelation process; (d) Emission of the MOG under different temperature, TEM image and the reversible change of the PL intensity of the MOG[64]
[1]
Li J A, Zhou J H, Mao Z, Xie Z L, Yang Z, Xu B J, Liu C, Chen X, Ren D Y, Pan H, Shi G, Zhang Y, Chi Z G. Angew. Chem. Int. Ed., 2018, 57(22): 6449.

doi: 10.1002/anie.201800762     URL    
[2]
Zhou X, Du F Y, Xie S M, Huang Y, Wang E J, Wang S M. New Chemical Materials, 2021, 49(2):204.
(周徐, 杜飞跃, 谢叔媚, 黄茵, 王二静, 王世敏. 化工新型材料, 2021, 49(2):204.).
[3]
Yuan W Z, Shen X Y, Zhao H, Lam J W Y, Tang L, Lu P, Wang C L, Liu Y, Wang Z M, Zheng Q, Sun J Z, Ma Y G, Tang B Z. J. Phys. Chem. C, 2010, 114(13): 6090.

doi: 10.1021/jp909388y     URL    
[4]
He Z K, Zhao W J, Lam J W Y, Peng Q, Ma H L, Liang G D, Shuai Z G, Tang B Z. Nat. Commun., 2017, 8: 416.

doi: 10.1038/s41467-017-00362-5     URL    
[5]
Gong Y Y, Zhao L F, Peng Q, Fan D, Yuan W Z, Zhang Y M, Tang B Z. Chem. Sci., 2015, 6(8): 4438.

doi: 10.1039/C5SC00253B     URL    
[6]
An Z F, Zheng C, Tao Y, Chen R F, Shi H F, Chen T, Wang Z X, Li H H, Deng R R, Liu X G, Huang W. Nat. Mater., 2015, 14(7): 685.

doi: 10.1038/nmat4259     URL    
[7]
Yang X G, Zhai Z M, Liu X Y, Li J Y, Li F F, Ma L F. Dalton Trans., 2020, 49(3): 598.

doi: 10.1039/C9DT04046C     URL    
[8]
Bolton O, Lee K, Kim H J, Lin K Y, Kim J. Nat. Chem., 2011, 3(3): 205.

doi: 10.1038/nchem.984     pmid: 21336325
[9]
Lee D, Bolton O, Kim B C, Youk J H, Takayama S, Kim J. J. Am. Chem. Soc., 2013, 135(16): 6325.

doi: 10.1021/ja401769g     URL    
[10]
Bolton O, Lee D, Jung J, Kim J. Chem. Mater., 2014, 26(22): 6644.

doi: 10.1021/cm503678r     URL    
[11]
Kwon M S, Lee D, Seo S, Jung J, Kim J. Angew. Chem. Int. Ed., 2014, 53(42): 11177.

doi: 10.1002/anie.201404490     URL    
[12]
Lee D, Ma X, Jung J, Jeong E J, Hashemi H, Bregman A, Kieffer J, Kim J. Phys. Chem. Chem. Phys., 2015, 17(29): 19096.

doi: 10.1039/C5CP01003A     URL    
[13]
Yang J, Gao H Q, Wang Y S, Yu Y, Gong Y B, Fang M M, Ding D, Hu W P, Tang B Z, Li Z. Mater. Chem. Front., 2019, 3(7): 1391.

doi: 10.1039/C9QM00108E     URL    
[14]
Yang J, Zhen X, Wang B, Gao X M, Ren Z C, Wang J Q, Xie Y J, Li J R, Peng Q, Pu K Y, Li Z. Nat. Commun., 2018, 9: 840.

doi: 10.1038/s41467-018-03236-6     pmid: 29483501
[15]
Liao Q Y, Gao Q H, Wang J Q, Gong Y B, Peng Q, Tian Y, Fan Y Y, Guo H J, Ding D, Li Q Q, Li Z. Angew. Chem. Int. Ed., 2020, 59(25): 9946.

doi: 10.1002/anie.201916057     URL    
[16]
Liu J M, Lin L P, Wang H X, Lin S Q, Zhang L H, Cai W L, Lin X, Pan Y Z, Wang X X, Li Z M, Jiao L, Cui M L. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2011, 84(1): 221.

doi: 10.1016/j.saa.2011.09.031     URL    
[17]
Huang J H, Lin W Y. J. Chin. Chemical Soc., 2001, 48(6A): 971.

doi: 10.1002/jccs.200100142     URL    
[18]
Zhu Y X, Peng J H, Zhang Y. Anal. Chimica Acta, 2007, 583(2): 364.

doi: 10.1016/j.aca.2006.10.055     URL    
[19]
Ma X, Cao J J, Wang Q C, Tian H. Chem. Commun., 2011, 47(12): 3559.

doi: 10.1039/c0cc05488g     URL    
[20]
Gong Y F, Chen H, Ma X, Tian H. ChemPhysChem, 2016, 17(12): 1934.

doi: 10.1002/cphc.201500901     URL    
[21]
Ma L W, Sun S Y, Ding B B, Ma X, Tian H. Adv. Funct. Mater., 2021, 31(17): 2010659.

doi: 10.1002/adfm.202010659     URL    
[22]
Wu B, Guo N N, Xu X T, Xing Y M, Shi K, Fang W H, Wang G J. Adv. Optical Mater., 2020, 8(22): 2001192.

doi: 10.1002/adom.202001192     URL    
[23]
Gan N, Shi H F, An Z F, Huang W. Adv. Funct. Mater., 2018, 28(51): 1802657.

doi: 10.1002/adfm.201802657     URL    
[24]
Li J X, Yang B H, Liu H Y. Advances in Analytical Chemistry, 2020, 10: 65.

doi: 10.12677/AAC.2020.103010     URL    
(李佳璇, 杨宝华, 刘红云. 分析化学进展, 2020, 10: 65.).
[25]
Chen X L, Liu K Q, Fang Y. Progress in Chemistry, 2020, 32(7): 861.
(陈香李, 刘凯强, 房喻. 化学进展, 2020, 32(7): 861.).

doi: 10.7536/PC200214    
[26]
Ma M F, Luan T X, Xing P Y, Li Z L, Chu X X, Hao A Y. Progress in Chemistry, 2019, 31(2/3): 225.
(马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 化学进展, 2019, 31(2/3): 225.).
[27]
Gao R, Kodaimati M S, Yan D P. Chem. Soc. Rev., 2021, 50(9): 5564.

doi: 10.1039/D0CS01463J     URL    
[28]
Zhao W J, He Z K, Tang B Z. Nat. Rev. Mater., 2020, 5(12): 869.

doi: 10.1038/s41578-020-0223-z     URL    
[29]
Mukherjee S, Thilagar P. Chem. Commun., 2015, 51(55): 10988.

doi: 10.1039/C5CC03114A     URL    
[30]
Yang J, Fang M M, Li Z. Acc. Mater. Res., 2021, 2(8): 644.

doi: 10.1021/accountsmr.1c00084     URL    
[31]
Yin C J, Ma X. Chemical World, 2022, 63(1): 1.
(殷晨佳, 马骧. 化学世界, 2022, 63(1): 1.).
[32]
Yan Z A, Zou L, Ma X. Chinese Journal of Organic Chemistry, 2020, 40(7): 1814.

doi: 10.6023/cjoc202004003     URL    
(严子昂, 邹雷, 马骧. 有机化学, 2020, 40(7): 1814.).
[33]
Zhang Z Y, Chen Y, Liu Y. Angew. Chem. Int. Ed., 2019, 58(18): 6028.

doi: 10.1002/anie.201901882     URL    
[34]
Wei P F, Zhang X P, Liu J K, Shan G G, Zhang H K, Qi J, Zhao W J, Sung H H Y, Williams I D, Lam J W Y, Tang B Z. Angew. Chem. Int. Ed., 2020, 59(24): 9293.

doi: 10.1002/anie.201912155     URL    
[35]
Montes-Navajas P, Teruel L, Corma A, Garcia H. Chem. Eur. J., 2008, 14(6): 1762.

doi: 10.1002/chem.200701353     URL    
[36]
Zhang T, Ma X, Wu H W, Zhu L L, Zhao Y L, Tian H. Angew. Chem. Int. Ed., 2020, 59(28): 11206.

doi: 10.1002/anie.201915433     pmid: 31876988
[37]
Qu G J, Zhang Y P, Ma X. Chin. Chemical Lett., 2019, 30(10): 1809.

doi: 10.1016/j.cclet.2019.07.042     URL    
[38]
Li D F, Lu F F, Wang J, Hu W D, Cao X M, Ma X, Tian H. J. Am. Chem. Soc., 2018, 140(5): 1916.

doi: 10.1021/jacs.7b12800     URL    
[39]
Li T, Ma X. Dyes Pigments, 2018, 148: 306.

doi: 10.1016/j.dyepig.2017.09.036     URL    
[40]
Turro N J, Bolt J D, Kuroda Y, Tabushi I. Photochem. Photobiol., 1982, 35(1): 69.

doi: 10.1111/j.1751-1097.1982.tb03812.x     URL    
[41]
Chen H, Ma X, Wu S F, Tian H. Angew. Chem. Int. Ed., 2014, 53(51): 14149.

doi: 10.1002/anie.201407402     pmid: 25323299
[42]
Chen H, Xu L, Ma X, Tian H. Polym. Chem., 2016, 7(24): 3989.

doi: 10.1039/C6PY00703A     URL    
[43]
Li J J, Zhang H Y, Zhang Y, Zhou W L, Liu Y. Adv. Optical Mater., 2019, 7(20): 1900589.

doi: 10.1002/adom.201900589     URL    
[44]
Wang J, Huang Z Z, Ma X, Tian H. Angew. Chem. Int. Ed., 2020, 59(25): 9928.

doi: 10.1002/anie.201914513     pmid: 31799773
[45]
Zhou Y, Zhao D, Li Z Y, Liu G, Feng S H, Zhao B T, Ji B M. Dyes Pigments, 2021, 195: 109725.

doi: 10.1016/j.dyepig.2021.109725     URL    
[46]
Wang H, Wang H, Yang X Q, Wang Q, Yang Y J. Langmuir, 2015, 31(1): 486.

doi: 10.1021/la5040323     URL    
[47]
Yuan J H, Dong X L, Zhang B B, Zhou Q, Lu S, Wang Q, Liao Y G, Yang Y J, Wang H. Dyes Pigments, 2020, 181: 108506.

doi: 10.1016/j.dyepig.2020.108506     URL    
[48]
Duan P F, Yanai N, Nagatomi H, Kimizuka N. J. Am. Chem. Soc., 2015, 137(5): 1887.

doi: 10.1021/ja511061h     URL    
[49]
Fan W T, Chen Y, Niu J, Su T, Li J J, Liu Y. Adv. Photonics Res., 2021, 2(1): 2000080.

doi: 10.1002/adpr.202000080     URL    
[50]
Kuila S M, Rao K V, Garain S, Samanta P K, Das S, Pati S K, Eswaramoorthy M, George S J. Angew. Chem. Int. Ed., 2018, 57(52): 17115.

doi: 10.1002/anie.201810823     URL    
[51]
Garain S, Garain B C, Eswaramoorthy M, Pati S K, George S J. Angew. Chem. Int. Ed., 2021, 60(36): 19720.

doi: 10.1002/anie.202107295     URL    
[52]
Zhang T, Ma X, Tian H. Chem. Sci., 2020, 11(2): 482.

doi: 10.1039/c9sc05502a     pmid: 32190268
[53]
Huang H Y, Song W T, Chen G Y, Reynard J M, Ohulchanskyy T Y, Prasad P N, Bright F V, Lovell J F. Adv. Healthcare Mater., 2014, 3(6): 891.

doi: 10.1002/adhm.201300483     URL    
[54]
Xue R R, Wei S S, Dong X L, Zhu T Y, Yuan J H, Feng L, Wang Q, Yang Y J, Wang H. Appl. Organomet. Chem., 2019, 33(5): e4845.

doi: 10.1002/aoc.4845     URL    
[55]
Liu H, Hao X, Duan C H, Yang H, Lv Y, Xu H J, Wang H D, Huang F, Xiao D B, Tian Z Y. Nanoscale, 2013, 5(19): 9340.

doi: 10.1039/c3nr02522e     URL    
[56]
Zhang Z F, Miao Y M, Lian L W, Yan G Q. Anal. Biochem., 2015, 489: 17.

doi: 10.1016/j.ab.2015.08.002     URL    
[57]
Xue R R, Feng L, Wei S S, Dong X L, Wang Q, Yang Y J, Liao Y G, Wang H. Talanta, 2019, 194: 183.

doi: 10.1016/j.talanta.2018.10.018     URL    
[58]
Yuan J H, Zhou Q, Dong X L, Zhang B B, Wang Q, Yang Y J, Liao Y G, Wang H. Dyes Pigments, 2019, 170: 107654.

doi: 10.1016/j.dyepig.2019.107654     URL    
[59]
Russell G M, Inamori D, Masai H, Tamaki T, Terao J. Polym. Chem., 2019, 10(39): 5280.

doi: 10.1039/C9PY00700H     URL    
[60]
Shirakawa M, Fujita N, Tani T, Kaneko K, Shinkai S. Chem. Commun., 2005(33): 4149.
[61]
Gou F, Cheng J H, Zhang X H, Shen G Y, Zhou X G, Xiang H F. Eur. J. Inorg. Chem., 2016, (30): 4862.
[62]
Marpu S, Hu Z B, Omary M A. Langmuir, 2010, 26(19): 15523.

doi: 10.1021/la101615h     URL    
[63]
Wan S G, Lu W. Angew. Chem. Int. Ed., 2017, 56(7): 1784.

doi: 10.1002/anie.201610762     URL    
[64]
Xie Z C, Sun P P, Wang Z, Li H G, Yu L Y, Sun D, Chen M J, Bi Y T, Xin X, Hao J C. Angew. Chem. Int. Ed., 2020, 59(25): 9922.

doi: 10.1002/anie.201912201     URL    
[65]
Li Q Q, Li Z. Acc. Chem. Res., 2020, 53(4): 962.

doi: 10.1021/acs.accounts.0c00060     URL    
[66]
Wang Y S, Yang J, Gong Y X, Fang M M, Li Z, Tang B Z. SmartMat, 2020, 1(1): e1006.
[67]
Yang J, Fang M M, Li Z. Aggregate, 2020, 1(1): 6.

doi: 10.1002/agt2.2     URL    
[68]
Yang J, Fang M M, Li Z. InfoMat, 2020, 2(5): 791.

doi: 10.1002/inf2.12107     URL    
[1] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[4] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[5] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[6] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[7] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[8] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[9] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[10] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[11] 龚筑轲, 许辉. 晶态咔唑基有机室温磷光材料[J]. 化学进展, 2022, 34(11): 2432-2461.
[12] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[13] 曹新华, 韩晴晴, 高爱萍, 王桂霞. 气态酸和有机胺响应的超分子凝胶[J]. 化学进展, 2021, 33(9): 1538-1549.
[14] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[15] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
阅读次数
全文


摘要

室温磷光凝胶研究进展