English
新闻公告
More
化学进展 2016, Vol. 28 Issue (12): 1762-1773 DOI: 10.7536/PC160803 前一篇   后一篇

• 综述与评论 •

丙烯直接气相临氢环氧化催化剂结构调控和催化剂构-效关系研究进展

宋钊宁1, 冯翔1*, 刘熠斌1, 杨朝合1, 周兴贵2   

  1. 1. 中国石油大学 重质油国家重点实验室 青岛 266580;
    2. 华东理工大学 化学工程联合国家重点实验室 上海 200237
  • 收稿日期:2016-08-01 修回日期:2016-11-01 出版日期:2016-12-25 发布日期:2016-12-23
  • 通讯作者: 冯翔,e-mail:xiangfeng@upc.edu.cn E-mail:xiangfeng@upc.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21476263,21606254),山东省自然科学基金项目(No.2016ZRE28229),中国博士后科学基金特别资助项目(No.2016T90657),中国博士后基金项目(No.2015M582160)和山东省博士后创新项目(No.201601011)资助

Advances in Manipulation of Catalyst Structure and Relationship of Structure-Performance for Direct Propene Epoxidation with H2 and O2

Song Zhaoning1, Feng Xiang1*, Liu Yibin1, Yang Chaohe1, Zhou Xinggui2   

  1. 1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266580, China;
    2. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2016-08-01 Revised:2016-11-01 Online:2016-12-25 Published:2016-12-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21476263, 21606254), the Shandong Provincial Natural Science Foundation (No.2016ZRE28229), the Special Grade of China Postdoctoral Science Foundation (No.2016T90657),the China Postdoctoral Science Foundation (No.2015M582160) and the Postdoctoral Innovation Project of Shandong(No.201601011).
环氧丙烷(PO)是仅次于聚丙烯和丙烯腈的第三大丙烯衍生物,广泛应用于轻工、医药和纺织等行业。相比于传统的氯醇法和共氧化法,在临氢条件下使用氧气直接氧化丙烯生产PO的工艺具有绿色环保、操作简单、经济性高等优势,是当前国内外PO生产领域的研究热点。本文针对该领域仍存在的催化剂寿命短、活性低等亟待解决的问题,综述了国内外近年来的研究进展,着重介绍催化剂中含钛载体的表面和结构性质、金属颗粒的形貌和电子效应对丙烯直接气相环氧化反应活性、稳定性的影响机制,并评述了催化剂的反应机理及结焦失活机理。此外,还总结了Cs、Ag、Pd、Pt、Ge、表面烷基化、离子液体、氮掺杂等助剂对催化性能的影响,分析了丙烯环氧化反应过程尚存的难题。最后,从载体材料的选择、催化剂性能的改进等方面展望了可能的解决途径和方向。
Propylene oxide (PO), as the third largest propene derivative ranking behind polypropylene and acrylonitrile, is widely used in light industry, pharmaceutical and textile industries. Compared with traditional chlorohydrin and hydroperoxide processes, direct propene epoxidation with hydrogen and oxygen to synthesize PO has the advantages of being green, simple and profitable. It is therefore a current worldwide research hotspot. Herein, recent progress is reviewed with the purpose of solving remaining problems such as poor stability and low activity. Moreover, the effect of surface and structural properties of Ti-containing supports together with the morphologic and electronic effect of gold nanoparticles on catalytic activity and stability are introduced. The reaction mechanism and deactivation mechanism are further discussed. The influences of additives such as Cs, Ag, Pd, Pt, Ge, surface alkylation, ionic liquid and nitrogen doping on catalytic performance are summarized. The existing problems in direct propene epoxidation with H2 and O2 are also analyzed. In the end, possible solutions and directions from the aspects of selecting supports and improving catalytic performance are remarked.

Contents
1 Introduction
2 Effect of support properties
2.1 Different Ti-containing supports
2.2 Hydrophobicity of supports
2.3 Si/Ti molar ratio
3 Effect of properties of gold nanoparticles
3.1 Gold nanoparticle size
3.2 Gold active sites
3.3 Gold deposition location
4 Effect of promoters
5 Conclusion

中图分类号: 

()
[1] 唐绪龙(Kang X L), 蔡挺(Cai T), 张春玲(Zhang C L), 许晓东(Xu X D), 吴晓云(Wu X Y), 乔丽坤(Qiao L K). 现代化工(Modern Chemical Industry), 2013, 32(12):1.
[2] 刘波(Liu B), 张晓莉(Zhang X L), 赵丽(Zhao L), 王琪(Wang Q), 王芸(Wang Y). 当代化工(Contemporary Chemical Industry), 2016, 45(2):336.
[3] 薛金召(Xue J Z), 牛小娟(Niu X J), 汪希领(Wang X L), 王先锋(Wang X F), 申明(Shen M),郭秋强(Guo Q Q). 化工进展(Chemical Industry and Engineering Progress), 2015, 34(9):3500.
[4] 于春梅(Yu C M), 史广明(Shi G M). 石油化工技术与经济(Techno-Economics in Petrochemicals), 2015(3):1.
[5] Hayashi T, Tanaka K, Haruta M. J. Catal., 1998, 178:566.
[6] 张健(Zhang J), 谢妤(Xie Y), 牛志蒙(Niu Z M). 化工科技(Science & Technology in Chemical Industry), 2010, 18(3):75.
[7] 杨林(Yang L), 蔡挺(Cai T), 张春玲(Zhang C L), 许晓东(Xu X D), 吴晓云(Wu X Y). 广州化工(Guangzhou Chemical Industry), 2010, 38(6):28.
[8] 庞义军(Pang Y J), 陈晓晖(Chen X H), 许承志(Xu C Z), 雷阳军(Lei Y J), 魏可镁(Wei K M). 化学进展(Progress in Chemistry), 2014, 26(8):1307.
[9] Haruta M, Uphade B, Tsubota S, Miyamoto A. Res. Chem. Termediat., 1998, 24:329.
[10] Chen J, Halin S J, Pidko E A, Verhoeven M, Ferrandez D M P, Hensen E J, Schouten J C, Nijhuis T A. ChemCatChem, 2013, 5:467.
[11] Uphade B, Yamada Y, Akita T, Nakamura T, Haruta M. Appl. Catal. A Gen., 2001, 215:137.
[12] Uphade B, Akita T, Nakamura T, Haruta M. J. Catal., 2002, 209:331.
[13] Liu C H, Guan Y, Hensen E J, Lee J F, Yang C M. J. Catal., 2011, 282:94.
[14] Lu J, Zhang X, Bravo-Suárez J J, Bando K K, Fujitani T, Oyama S T. J. Catal., 2007, 250:350.
[15] Yang H, Tang D, Lu X, Yuan Y. J. Phys. Chem. C, 2009, 113:8186.
[16] Ren Y, Xu L, Zhang L, Wang J, Liu Y, He M, Wu P. Pure Appl. Chem., 2011, 84:561.
[17] Sinha A K, Seelan S, Tsubota S, Haruta M. Angew. Chem. Int. Edit., 2004, 43:1546.
[18] Kapoor M, Sinha A, Seelan S, Inagaki S, Tsubota S, Yoshida H, Haruta M. Chem. Commun., 2002, 23:2902.
[19] Lee W S, Akatay M C, Stach E A, Ribeiro F H, Delgass W N. J. Catal., 2012, 287:178.
[20] Feng X, Duan X, Qian G, Zhou X, Chen D, Yuan W. Appl. Catal. B-Environ., 2014, 150:396.
[21] Xu L, Ren Y, Wu H, Liu Y, Wang Z, Zhang Y, Xu J, Peng H, Wu P. J. Mater. Chem., 2011, 21:10852.
[22] Murzin D Y, Simakova O A, Simakova I L, Parmon V N. React. Kinet. Catal. L., 2011, 104:259.
[23] Qi C. Gold Bull., 2008, 41:224.
[24] Nijhuis T A, Visser T, Weckhuysen B M. J. Phys. Chem. B., 2005, 109:19309.
[25] Qi C, Akita T, Okumura M, Haruta M. Appl. Catal. A-Gen., 2001, 218:81.
[26] Sinha A, Seelan S, Tsubota S, Haruta M. Top. Catal., 2004, 29:95.
[27] Uphade B, Okumura M, Tsubota S, Haruta M. Appl. Catal. A-Gen., 2000, 190:43.
[28] Qi C, Akita T, Okumura M, Kuraoka K, Haruta M. Appl. Catal. A-Gen., 2003, 253:75.
[29] Sinha A, Seelan S, Akita T, Tsubota S, Haruta M. Appl. Catal. A-Gen., 2003, 240:243.
[30] Sinha A, Seelan S, Akita T, Tsubota S, Haruta M. Catal. Lett., 2003, 85:223.
[31] Qi C, Okumura M, Akita T, Haruta M. Appl. Catal. A-Gen., 2004, 263:19.
[32] Lu J, Zhang X, Bravo-Suárez J J, Tsubota S, Gaudet J, Oyama S T. Catal. Today, 2007, 123:189.
[33] Chowdhury B, Bravo-Suárez J, Tsubota S, Haruta M. Angew. Chem. Int. Ed., 2006, 118:426.
[34] Sinha A, Seelan S, Okumura M, Akita T, Tsubota S, Haruta M. J. Phys. Chem. B, 2005, 109:3956.
[35] Sacaliuc E, Beale A M, Weckhuysen B M, Nijhuis T A. J. Catal., 2007, 248:235.
[36] Chowdhury B, Bando K, Bravo-Suárez J, Tsubota S, Haruta M. J. Mol. Catal. A-Chem., 2012, 359:21.
[37] Shekhar M, Wang J, Lee W S, Williams W D, Kim S M, Stach E A, Miller J T, Delgass W N, Ribeiro F H. J. Am. Chem. Soc., 2012, 134:4700.
[38] Zhan G, Du M, Sun D, Huang J, Yang X, Ma Y, Ibrahim A R, Li Q. Ind. Eng. Chem. Res., 2011, 50:9019.
[39] Huang J, Lima E, Akita T, Guzmán A, Qi C, Takei T, Haruta M. J. Catal., 2011, 278:8.
[40] Feng X, Duan X, Qian G, Zhou X, Chen D, Yuan W. J. Catal., 2014, 317:99.
[41] Lee W S, Akatay M C, Stach E A, Ribeiro F H, Delgass W N. J. Catal., 2013, 308:98.
[42] Du M, Zhan G, Yang X, Wang H, Lin W, Zhou Y, Zhu J, Lin L, Huang J, Sun D. J. Catal., 2011, 283:192.
[43] Huang J, Takei T, Akita T, Ohashi H, Haruta M. Appl. Catal. B-Environ., 2010, 95:430.
[44] Lu J, Zhang X, Bravo-Suárez J J, Fujitani T, Oyama S T. Catal. Today, 2009, 147:186.
[45] Liu Y, Zhang X, Suo J. Chinese J. Catal., 2013, 34:336.
[46] Liu T, Hacarlioglu P, Oyama S T, Luo M F, Pan X R, Lu J Q. J. Catal., 2009, 267:202.
[47] Taylor B, Lauterbach J, Delgass W N. Catal. Today, 2007, 123:50.
[48] Cumaranatunge L, Delgass W N. J. Catal., 2005, 232:38.
[49] Yap N, Andres R, Delgass W. J. Catal., 2004, 226:156.
[50] Nijhuis T A, Huizinga B J, Makkee M, Moulijn J A. Ind. Eng. Chem. Res., 1999, 38:884.
[51] Lee W-S, Akatay M C, Stach E A, Ribeiro F H, Delgass W N. J. Catal., 2014, 313:104.
[52] Wu G, Wang Y, Wang L, Feng W, Shi H, Lin Y, Zhang T, Jin X, Wang S, Wu X. Chem. Eng. J., 2013, 215:306.
[53] Lu X, Zhao G, Lu Y. Catal. Sci. Technol., 2013, 3:2906.
[54] Wang X, Zhang X, Wang Y, Liu H, Wang J, Qiu J, Ho H L, Han W, Yeung K L. Chem. Eng. J., 2011, 175:408.
[55] Taylor B, Lauterbach J, Delgass W N. Appl. Catal. A Gen., 2005, 291:188.
[56] Bravo-Suárez J J, Bando K K, Lu J, Haruta M, Fujitani T, Oyama T. J. Phys. Chem. C, 2008, 112:1115.
[57] Feng X, Duan X, Yang J, Qian G, Zhou X, Chen D, Yuan W. Chem. Eng. J., 2015, 278:234.
[58] Qi C, Huang J, Bao S, Su H, Akita T, Haruta M. J. Catal., 2011, 281:12.
[59] Jin F, Lin T H, Chang C C, Wan B Z, Lee J F, Cheng S. RSC Adv., 2015, 5:61710.
[60] Williams W D, Shekhar M, Lee W S, Kispersky V, Delgass W N, Ribeiro F H, Kim S M, Stach E A, Miller J T, Allard L F. J. Am. Chem. Soc., 2010, 132:14018.
[61] Feng X, Chen D, Zhou X. RSC Adv., 2016, 6:44050.
[62] Overbury S, Schwartz V, Mullins D R, Yan W, Dai S. J. Catal., 2006, 241:56.
[63] Janssens T V, Clausen B S, Hvolbæk B, Falsig H, Christensen C H, Bligaard T, Nørskov J K. Top. Catal., 2007, 44:15.
[64] Bardotti L, Jensen P, Hoareau A, Treilleux M, Cabaud B, Perez A, Aires F C S. Surf. Sci., 1996, 367:276.
[65] Blatchford C G, Campbell J, Creighton J. Surf. Sci., 1982, 120:435.
[66] Weitz D, Huang J, Lin M, Sung J. Phys. Rev. Lett., 1985, 54:1416.
[67] Nijhuis T, Weckhuysen B. Catal. Today, 2006, 117:84.
[68] Ruiz A, van der Linden B, Makkee M, Mul G. J. Catal., 2009, 266:286.
[69] Feng X, Duan X, Cheng H, Qian G, Chen D, Yuan W, Zhou X. J. Catal., 2015, 325:128.
[70] Feng X, Liu Y, Li Y, Yang C, Zhang Z, Duan X, Zhou X, Chen D. AICh E J., 2016, 62(11):3963.
[71] Lu J Q, Li N, Pan X R, Zhang C, Luo M F. Catal. Commun., 2012, 28:179.
[72] Jin Q, Bao J, Sakiyama H, Tsubaki N. Res. Chem. Intermediat., 2011, 37:177.
[73] Zwijnenburg A, Saleh M, Makkee M, Moulijn J A. Catal. Today, 2002, 72:59.
[74] 杨佳(Yang J), 张志华(Zhang Z H), 冯翔(Feng X), 段学志(Duan X Z), 周静红(Zhou J H), 周兴贵(Zhou X G). 化工学报(CIESC Journal), 2016, 67(9):3684.
[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[5] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[6] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[7] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[8] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[11] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[12] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[13] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[14] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[15] 林巧霞, 殷萌, 魏延, 杜晶晶, 陈维毅, 黄棣. 钛及钛合金表面羟基磷灰石涂层结合强度及稳定性[J]. 化学进展, 2020, 32(4): 406-416.