English
新闻公告
More
化学进展 2021, Vol. 33 Issue (1): 42-51 DOI: 10.7536/PC201117 前一篇   后一篇

• 综述 •

浅谈纳米酶的高效设计策略

武江洁星1, 魏辉1,2,*()   

  1. 1 南京大学现代工程与应用科学学院生物医学工程系 南京微结构国家实验室(筹) 江苏省功能材料设计原理与应用技术重点实验室 南京 210023
    2 南京大学化学化工学院生命分析化学国家重点实验室 化学与生物医药创新研究院 南京 210023
  • 收稿日期:2020-11-15 修回日期:2020-12-07 出版日期:2021-01-24 发布日期:2020-12-09
  • 通讯作者: 魏辉
  • 作者简介:
    * Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(21874067); 国家自然科学基金项目(21722503); 国家重点研发计划(2019YFA0709200); 中国科学院创新交叉团队(JCTD-2020-08); 江苏高校优势学科建设工程和南京大学中央高校基本科研业务费(14380145)

Efficient Design Strategies for Nanozymes

Jiangjiexing Wu1, Hui Wei1,2,*()   

  1. 1 Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University,Nanjing 210023, China
    2 State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center(ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
  • Received:2020-11-15 Revised:2020-12-07 Online:2021-01-24 Published:2020-12-09
  • Contact: Hui Wei
  • Supported by:
    the National Natural Science Foundation of China(21874067); the National Natural Science Foundation of China(21722503); the National Key R&D Program of China(2019YFA0709200); the CAS Interdisciplinary Innovation Team(JCTD-2020-08); the PAPD program, and the Fundamental Research Funds for the Central Universities(14380145)

作为纳米尺度的新效应,纳米酶因其优异的材料性能和酶学特性引起了研究人员的广泛关注,并在分析检测、疾病诊断治疗、环境监测保护等领域展现出独特的魅力。然而,在过去的几十年中,受限于纳米材料复杂组分和模糊的催化位点等,如何高效设计纳米酶一直是纳米酶领域亟待解决的关键问题之一。本文综述了目前纳米酶高效设计的几种策略,如高通量计算筛选、理性设计和仿生设计,并重点阐述了金属有机框架仿生设计中构效关系的研究。最后,对纳米酶高效设计的未来发展进行了展望。

The enzyme-like activity of nanozymes is an emerging effect of nanomaterials. Due to the excellent physicochemical properties and unique enzyme-like activities, nanozymes have become promising functional nanomaterials. Till now nanozymes have been used in biomedical sensing, diagnosis and therapeutics, as well as environment protection. Despite of the great success achieved in the past several decades, how to efficiently design nanozymes is still one of the bottlenecks in the field, which is originated from the complicated composition and ambiguity in the active sites of nanomaterials. To tackle these challenges, this insight first summarizes the current efficient design strategies of nanozymes, such as computation-aided high throughput screening, rational design, and biomimetic design. And then, the development of bio-inspired metal-organic framework(MOF) nanozymes, particularly the structure-activity relationship study, is highlighted. At the end, combined with current research trend, several directions and inspirations for the future study are suggested to advance the nanozymes research.

Contents

1 An emerging effect of nanomaterials: enzyme-like activity of nanozymes

2 One of the bottlenecks: how to efficiently design nanozymes

2.1 Computation-aided high throughput screening

2.2 Rational design

2.3 Biomimetic design

3 Bio-inspired design of MOF nanozyme and its structure-activity relationship

4 Conclusions and outlook

()
图1 纳米酶的类酶催化活性是继纳米材料的光、电、磁、力等效应之后新发现的纳米效应
Fig. 1 Enzyme-like activity of nanozymes is an emerging property of nanomaterials besides their unique optical, electric, magnetic, and mechanical properties
图2 纳米酶领域发表论文数量 (a)和被引量(b)
Fig. 2 Number of published (a) and cited(b) papers on nanozymes. Data are from the web of science and Google scholar
图3 文献统计类过氧化物酶纳米酶所对应的动力学数值
Fig. 3 The kinetic data of peroxidase-mimicking nanozymes in the literature
图4 类过氧化物酶纳米酶的催化活性预测[13]
Fig. 4 Computation-aided design of nanomaterials-based peroxidase mimics[13]. Copyright 2020, American Chemical Society
图5 eg电子用于指导合成八面体配位金属氧化物(如钙钛矿)纳米酶[17]
Fig. 5 Evaluation of eg occupancy as an effective descriptor for catalytic activity of perovskite transition metal oxides-based peroxidase mimics[17]. Copyright 2019, Nature Publishing Group
图6 借鉴天然酶活性位点构建高活性类过氧化物酶纳米酶[18]
Fig. 6 Mimicking the active site of natural enzymes to improve the peroxidase-like activity of Fe3O4 nanoparticles[18]. Copyright 2017, Royal Society of Chemistry
图7 MOF与金属蛋白酶的相似结构特性[25]
Fig. 7 Similar properties between metalloenzyme active sites and metal sites in metal-organic frameworks[25]. Copyright 2020, Royal Society of Chemistry
图8 类过氧化物酶PCN-222的示意图[28]
Fig. 8 Network topology of peroxidase-mimicking PCN-222(Fe)[28]. Copyright 2012, John Wiley and Sons
图9 MOF模拟磷酸三酯酶的示意图[23]
Fig. 9 Schematic of the synthesis and hydrolysis of phosphotriesterase-mimicking MOFs[23]. Copyright 2016, Royal Society of Chemistry
图10 蛋白调控工程启发的MOF纳米酶构效关系研究[55]
Fig. 10 Protein engineering-inspired MOF nanozyme modulation[55]. Copyright 2021, John Wiley and Sons
图11 具有类GPx催化活性的MOF纳米酶设计及广谱抗炎应用[56]
Fig. 11 Illustration of the synthesis of rationally designed GPx-mimicking MIL-47(Ⅴ)-X MOF nanozymes for anti-inflammation therapy[56]. Copyright 2021, John Wiley and Sons
图12 纳米酶高效设计策略
Fig. 12 Efficient design strategies for nanozymes
[1]
Frontiera R R, Haynes C L. Proc. Natl. Acad. Sci. U. S. A., 2019, 116: 22891.
[2]
Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P. Nature , 2018, 556: 43.

doi: 10.1038/nature26160     URL    
[3]
Sun S, Zeng H. J. Am. Chem. Soc., 2002, 124: 8204.

doi: 10.1021/ja026501x     URL    
[4]
Banerjee A, Bernoulli D, Zhang H, Yuen M F, Liu J, Dong J, Ding F, Lu J, Dao M, Zhang W, Lu Y, Suresh S. Science , 2018, 360: 300.
[5]
Manea F, Houillon F B, Pasquato L, Scrimin P. Angew. Chem. Int. Ed., 2004, 43: 6165.

doi: 10.1002/(ISSN)1521-3773     URL    
[6]
Gao L Z, Zhuang J, Nie L, Zhang J B, Zhang Y, Gu N, Wang T H, Feng J, Yang D L, Perrett S, Yan X Y. Nat. Nanotechnol., 2007, 2: 577.

doi: 10.1038/nnano.2007.260     URL    
[7]
Wei H, Wang E K. Chem. Soc. Rev., 2013, 42: 6060.

doi: 10.1039/c3cs35486e     URL    
[8]
Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, Qin L, Wei H. Chem. Soc. Rev., 2019, 48: 1004.

doi: 10.1039/C8CS00457A     URL    
[9]
Huang Y, Ren J, Qu X. Chem. Rev., 2019, 119: 4357.

doi: 10.1021/acs.chemrev.8b00672     URL    
[10]
Jiang D, Ni D, Rosenkrans Z T, Huang P, Yan X, Cai W. Chem. Soc. Rev., 2019, 48: 3683.

doi: 10.1039/C8CS00718G     URL    
[11]
Wang Z, Zhang R, Yan X, Fan K. Mater. Today , 2020, 41: 81.
[12]
Esterhuizen J A, Goldsmith B R, Linic S. Chem , 2020, 6: 3100.

doi: 10.1016/j.chempr.2020.09.001     URL    
[13]
Shen X, Wang Z, Gao X, Zhao Y. ACS Catal., 2020, 10: 12657.

doi: 10.1021/acscatal.0c03426     URL    
[14]
Sabatier P. La Catalyse en Chimie Organique . Paris et Liège: Librairie Polytechnique , 1920.
[15]
Medford A J, Vojvodic A, Hummelshøj J S, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov J K. J. Catal., 2015, 328: 36.

doi: 10.1016/j.jcat.2014.12.033     URL    
[16]
Zhao Z J, Liu S, Zha S, Cheng D, Studt F, Henkelman G, Gong J. Nat. Rev. Mater. , 2019, 4: 792.

doi: 10.1038/s41578-019-0152-x     URL    
[17]
Wang X, Gao X J, Qin L, Wang C, Song L, Zhou Y N, Zhu G, Cao W, Lin S, Zhou L, Wang K, Zhang H, Jin Z, Wang P, Gao X, Wei H. Nat. Commun., 2019, 10: 704.

doi: 10.1038/s41467-019-08657-5     URL    
[18]
Fan K L, Wang H, Xi J Q, Liu Q, Meng X Q, Duan D M, Gao L Z, Yan X Y. Chem. Commun., 2017, 53: 424.
[19]
Zhang Z J, Zhang X H, Liu B W, Liu J W. J. Am. Chem. Soc., 2017, 139: 5412.

doi: 10.1021/jacs.7b00601     URL    
[20]
Chen T M, Tian X M, Huang L, Xiao J, Yang G W. Nanoscale , 2017, 9: 15673.

doi: 10.1039/C7NR05629J     URL    
[21]
Dong J L, Song L N, Yin J J, He W W, Wu Y H, Gu N, Zhang Y. ACS Appl. Mater. Interfaces , 2014, 6: 1959.

doi: 10.1021/am405009f     URL    
[22]
Li J N, Liu W Q, Wu X C, Gao X F. Biomaterials , 2015, 48: 37.

doi: 10.1016/j.biomaterials.2015.01.012     URL    
[23]
Nath I, Chakraborty J, Verpoort F. Chem. Soc. Rev., 2016, 45: 4127.

doi: 10.1039/C6CS00047A     URL    
[24]
Zhang M, Gu Z Y, Bosch M, Perry Z, Zhou H C. Coordin. Chem. Rev., 2015, 293/294: 327.
[25]
Bour J R, Wright A M, He X, Dincă M. Chem. Sci., 2020, 11: 1728.

doi: 10.1039/C9SC06418D     URL    
[26]
Niu X, Li X, Lyu Z, Pan J, Ding S, Ruan X, Zhu W, Du D, Lin Y. Chem. Commun., 2020, 56: 11338.

doi: 10.1039/D0CC04890A     URL    
[27]
Ma L, Jiang F, Fan X, Wang L, He C, Zhou M, Li S, Luo H, Cheng C, Qiu L. Adv. Mater., 2020, 32: 2003065.

doi: 10.1002/adma.v32.49     URL    
[28]
Feng D W, Gu Z Y, Li J R, Jiang H L, Wei Z W, Zhou H C. Angew. Chem. Int. Ed. , 2012, 51: 10307.

doi: 10.1002/anie.201204475     URL    
[29]
Wang K C, Feng D W, Liu T F, Su J, Yuan S, Chen Y P, Bosch M, Zou X D, Zhou H C. J. Am. Chem. Soc., 2014, 136: 13983.

doi: 10.1021/ja507269n    
[30]
Cheng H J, Liu Y F, Hu Y H, Ding Y B, Lin S C, Cao W, Wang Q, Wu J J X, Muhammad F, Zhao X Z, Zhao D, Li Z, Xing H, Wei H. Anal. Chem., 2017, 89: 11552.

doi: 10.1021/acs.analchem.7b02895     URL    
[31]
Huang Y, Zhao M T, Han S K, Lai Z C, Yang J, Tan C L, Ma Q L, Lu Q P, Chen J Z, Zhang X, Zhang Z C, Li B, Chen B, Zong Y, Zhang H. Adv. Mater., 2017, 29: 1700102.

doi: 10.1002/adma.201700102     URL    
[32]
Liu F F, He J, Zeng M L, Hao J, Guo Q H, Song Y H, Wang L. J. Nanopart. Res. , 2016, 18: 106.

doi: 10.1007/s11051-016-3416-z     URL    
[33]
Cui L, Wu J, Li J, Ju H X. Anal. Chem. , 2015, 87: 10635.

doi: 10.1021/acs.analchem.5b03287     URL    
[34]
Liu Y, Cheng Y, Zhang H, Zhou M, Yu Y, Lin S, Jiang B, Zhao X, Miao L, Wei C W, Liu Q, Lin Y W, Du Y, Butch C J, Wei H. Sci. Adv. , 2020, 6: eabb2695.

doi: 10.1126/sciadv.abb2695     URL    
[35]
Li P, Klet R C, Moon S Y, Wang T C, Deria P, Peters A W, Klahr B M, Park H J, Al-Juaid S S, Hupp J T, Farha O K. Chem. Commun., 2015, 51: 10925.

doi: 10.1039/C5CC03398E     URL    
[36]
Moon S Y, Wagner G W, Mondloch J E, Peterson G W, DeCoste J B, Hupp J T, Farha O K. Inorg. Chem., 2015, 54: 10829.

doi: 10.1021/acs.inorgchem.5b01813     URL    
[37]
Nunes P, Gomes A C, Pillinger M, Goncalves I S, Abrantes M. Micropor. Mesopor. Mat., 2015, 208: 21.

doi: 10.1016/j.micromeso.2015.01.016     URL    
[38]
LÓpez-Maya E, Montoro C, Rodríguez-Albelo L M, Aznar Cervantes S D, Lozano-PÉrez A A, Cenís J L, Barea E, Navarro J A R. Angew. Chem. Int. Ed., 2015, 54: 6790.

doi: 10.1002/anie.201502094     URL    
[39]
Lee D T, Zhao J, Peterson G W, Parsons G N. Chem. Mater., 2017, 29: 4894.

doi: 10.1021/acs.chemmater.7b00949     URL    
[40]
Katz M J, Mondloch J E, Totten R K, Park J K, Nguyen S T, Farha O K, Hupp J T. Angew. Chem. Int. Ed., 2014, 53: 497.

doi: 10.1002/anie.v53.2     URL    
[41]
Katz M J, Moon S Y, Mondloch J E, Beyzavi M H, Stephenson C J, Hupp J T, Farha O K. Chem. Sci. , 2015, 6: 2286.

doi: 10.1039/C4SC03613A     URL    
[42]
Mondloch J E, Katz M J, Isley Iii W C, Ghosh P, Liao P, Bury W, Wagner G W, Hall M G, DeCoste J B, Peterson G W, Snurr R Q, Cramer C J, Hupp J T, Farha O K. Nat. Mater., 2015, 14: 512.

doi: 10.1038/nmat4238     URL    
[43]
Moon S Y, Liu Y, Hupp J T, Farha O K. Angew. Chem. Int. Ed., 2015, 54: 6795.

doi: 10.1002/anie.201502155     URL    
[44]
Liu Y L, Zhao X J, Yang X X, Li Y F. Analyst , 2013, 138: 4526.

doi: 10.1039/c3an00560g    
[45]
Zhang J W, Zhang H T, Du Z Y, Wang X Q, Yua S H, Jiang H L. Chem. Commun., 2014, 50: 1092.

doi: 10.1039/C3CC48398C     URL    
[46]
Wang Y, Zhu Y J, Binyam A, Liu M S, Wu Y N, Li F T. Biosens. Bioelectron., 2016, 86: 432.

doi: 10.1016/j.bios.2016.06.036     URL    
[47]
Lin T R, Qin Y M, Huang Y L, Yang R T, Hou L, Ye F G, Zhao S L. Chem. Commun., 2018, 54: 1762.

doi: 10.1039/C7CC09819G     URL    
[48]
Xu W, Kang Y, Jiao L, Wu Y, Yan H, Li J, Gu W, Song W, Zhu C. Nano-Micro Lett., 2020, 12: 184.

doi: 10.1007/s40820-020-00520-3     URL    
[49]
Tan H L, Li Q, Zhou Z C, Ma C J, Song Y H, Xu F G, Wang L. Anal. Chim. Acta , 2015, 856: 90.

doi: 10.1016/j.aca.2014.11.026     URL    
[50]
Wang S Q, Deng W F, Yang L, Tan Y M, Xie Q J, Yao S Z. ACS Appl. Mater. Interfaces , 2017, 9: 24440.

doi: 10.1021/acsami.7b07307     URL    
[51]
Yang H G, Yang R, Zhang P, Qin Y M, Chen T, Ye F G. Microchim. Acta , 2017, 184: 4629.

doi: 10.1007/s00604-017-2509-4     URL    
[52]
Chen W H, Vazquez Gonzalez M, Kozell A, Cecconello A, Willner I. Small , 2018, 14: 1703149.

doi: 10.1002/smll.v14.5     URL    
[53]
Li M, Chen J, Wu W, Fang Y, Dong S. J. Am. Chem. Soc., 2020, 142: 15569.

doi: 10.1021/jacs.0c07273     URL    
[54]
Greig I R. Chem. Soc. Rev., 2010, 39: 2272.

doi: 10.1039/b902741f     URL    
[55]
Wu J, Wang Z, Jin X, Zhang S, Li T, Zhang Y, Xing H, Yu Y, Zhang H, Gao X, Wei H. Adv. Mater., 2021, 33: 2005024.
[56]
Wu J, Yu Y, Cheng Y, Cheng C, Zhang Y, Jiang B, Zhao X, Miao L, Wei H. Angew. Chem. Int. Ed., 2021, 60: 1227.
[57]
Burger B, Maffettone P M, Gusev V V, Aitchison C M, Bai Y, Wang X, Li X, Alston B M, Li B, Clowes R, Rankin N, Harris B, Sprick R S, Cooper A I. Nature , 2020, 583: 237.
[58]
Tovmasyan A, Sheng H, Weitner T, Arulpragasam A, Lu M, Warner D S, Vujaskovic Z, Spasojevic I, Batinic-Haberle I. Med. Princ. Pract., 2013, 22: 103.
[1] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[2] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[3] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[4] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[5] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[6] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[7] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.
[8] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[9] 闫新, 李意羡, 贾月梅, 俞初一. 糖苷化的亚氨基糖:分离、合成与生物活性[J]. 化学进展, 2019, 31(11): 1472-1508.
[10] 李嘉伟, 任颜卫, 江焕峰. 金属有机框架材料在CO2化学固定中的应用[J]. 化学进展, 2019, 31(10): 1350-1361.
[11] 李意羡, 贾月梅, 俞初一. 氟代亚氨基糖的合成与糖苷酶抑制活性[J]. 化学进展, 2018, 30(5): 586-600.
[12] 朱燕燕, 岳宗洋, 边文, 刘瑞林, 马晓迅, 王晓东. 六铝酸盐结构及其在高温反应中的应用[J]. 化学进展, 2018, 30(12): 1992-2002.
[13] 梁茜, 王诚, 雷一杰, 刘亚迪, 赵波, 刘锋. 金属有机框架材料在质子交换膜燃料电池中的潜在应用[J]. 化学进展, 2018, 30(11): 1770-1783.
[14] 代天志, 孙德群. 抗TB活性化合物的研究[J]. 化学进展, 2018, 30(11): 1784-1802.
[15] 殷俞*, 张壮壮, 徐丹, 文志豪, 杨志峰, 袁爱华. 多孔材料基π络合吸附材料的合成及其应用[J]. 化学进展, 2017, 29(6): 628-636.
阅读次数
全文


摘要

浅谈纳米酶的高效设计策略