English
新闻公告
More
化学进展 2020, Vol. 32 Issue (4): 406-416 DOI: 10.7536/PC190732 前一篇   后一篇

• •

钛及钛合金表面羟基磷灰石涂层结合强度及稳定性

林巧霞1, 殷萌1, 魏延1, 杜晶晶1, 陈维毅1,2, 黄棣1,2,**()   

  1. 1. 太原理工大学生物医学工程学院生物医学工程系 纳米生物材料与再生医学研究中心 太原 030024
    2. 太原理工大学生物医学工程研究所 材料强度与结构冲击山西省重点实验室 太原 030024
  • 收稿日期:2019-07-25 修回日期:2019-12-27 出版日期:2020-04-05 发布日期:2020-03-30
  • 通讯作者: 黄棣
  • 作者简介:
    * 通信作者 Corresponding author e-mail:
  • 基金资助:
    国家自然科学基金项目(11632013, 11502158, 11802197, 11902214); 山西省重点研发国际合作项目(201803D421060); 山西省自然科学基金项目(201801D221439)

The Bonding Strength and Stability Between Hydroxyapatite Coating and Titanium or Titanium Alloys

Qiaoxia Lin1, Meng Yin1, Yan Wei1, Jingjing Du1, Weiyi Chen1,2, Di Huang1,2,**()   

  1. 1. Research Center for Nano-biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
    2. Institute of Applied Mechanics & Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China;
  • Received:2019-07-25 Revised:2019-12-27 Online:2020-04-05 Published:2020-03-30
  • Contact: Di Huang
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(11632013, 11502158, 11802197, 11902214); the International Cooperation Project Foundation of Shanxi Province(201803D421060); the Natural Science Foundation for Young Scientist of Shanxi Province(201801D221439)

钛(Ti)及其合金凭借优异的机械性能和良好的生物相容性,一直是骨和牙种植体的主要临床应用材料。由于钛及其合金自身的生物惰性,不易与周围骨组织进行快速的骨整合,因此其表面的生物活性有待进一步提高。羟基磷灰石(HA)是人体骨和牙齿的主要无机成分,具有良好的生物活性和生物相容性,受其力学性能的制约,常被作为涂层材料覆盖在钛基体表面,用以提高植入体的生物活性。但一直存在涂层与基体界面结合强度低和涂层力学稳定性差的问题,成为限制其临床广泛应用的主要因素。本文从涂层结构设计、成分设计及制备方法等方面,就国内外改善钛基底与HA涂层界面结合性能的研究现状和发展动态作一综述,为高性能钛植入体的制备和应用提供参考。

Titanium (Ti) and Ti alloys have been the main clinical application materials for bone and dental implants due to their excellent mechanical properties and good biocompatibility. However, it is not easy to achieve rapid osseointegration with surrounding bone tissues because of the biological inertia of titanium materials. Therefore, the biological activity of implant surface is further required. Hydroxyapatite (HA) is the main inorganic component of human bones and teeth, which has good bioactivity and biocompatibility. But restricted by its own brittleness, HA is often used as a coating material to cover the surface of Ti substrates to improve the biological activity of implants. However, the problems of weak bonding strength between coating and substrate and poor mechanical stability of coating have been the main factors limiting the wide clinical applications of HA coated titanium implants. From the aspects of coating structure, composition and preparation method, the research status and development trend of improving the interface bonding strength between Ti substrate and HA coating at home and abroad are summarized, which could provide a reference for the preparation and application of high-performance titanium implants.

Contents

1 Introduction

2 Structural design

2.1 Interface roughening

2.2 Interface nanocrystallization

2.3 Interface gradient design

3 Composition design

3.1 Inorganic ion addition

3.2 Metal and bioceramic addition

3.3 Other

4 Preparation

4.1 High-temperature preparation

4.2 Low-temperature preparation

4.3 Composite preparation

5 Conclusion and outlook

()
图1 物理吸附、化学键合和机械互锁的示意图[13]
Fig. 1 Schematic illustration of physical adsorption, chemical bonding, and mechanical interlocking[13]
图2 梯度涂层示意图[34]
Fig. 2 Schematic representation of the graded coating[34]
图3 HA沿OH通道c轴的透视图:报道了一些可能的取代离子, 两个三角形沿着c轴在相同水平处连接Ca(Ⅱ)离子[38]
Fig. 3 Perspective view along the c-axis of the OH channel environment. Some of the possible substituting ions are reported. The two triangles join Ca(Ⅱ) ions at the same level along the c-axis[38]
图4 PVD磁控溅射制备纯HA涂层和离子取代HA涂层的示意图[37]
Fig. 4 Schematic illustration of PVD magnetron sputtering for pure-HA and ion substituted-HA coatings[37]
图5 掺杂聚多巴胺的聚吡咯纳米线表面矿化形成磷酸钙的示意图 (a,b)多巴胺和吡咯通过电聚合沉积在Ti表面形成聚吡咯纳米线;(c,d)聚吡咯纳米线由于掺杂聚多巴胺而具有的儿茶酚基团促进磷酸钙晶体形成[56]
Fig. 5 The schematic illustration of formation of calcium phosphate biominerals on the polypyrrole nanowires doped with polydopamine. (a, b) the polypyrrole nanowires deposited on the biomedical titanium through the simultaneous electrical polymerization of dopamine and pyrrole. (c, d) catechol moiety on the surface of conducting polypyrrole nanowires doped with polydopamine assists calcium phosphate crystal formation[56]
图6 纤维增强增韧示意图 (A, C)被纤维增强的基体产生裂缝的两个视图;(B, D)A和C的透视图,以更好地理解“加强筋”作用[67]
Fig. 6 A typical representation of strengthening and toughening by fibres (A, C) represent two views of crack in a body being perturbed by fibres, (B, D) represent the see-through image of the body presented in A and C, for a better understanding of the reinforcement effects[67]
表1 HA涂层的高温制备法[13,37,68~73]
Table 1 Different high-temperature preparation methods to form HA coating[13,37,68~73]
表2 HA涂层的低温制备法[13,43,70,77~79]
Table 2 Different low-temperature preparation methods to form HA coating[13,43,70,77~79]
图7 激光辅助冷喷涂系统示意图[88]
Fig. 7 Schematic diagram of laser-assisted cold spray system[88]
[1]
Niinomi M , Liu Y , Nakai M , Liu H H , Li H . Regener. Biomater, 2016,3(3):173.
[2]
Hamidi M , Harun W S W , Samykano M, Ghani S a C, Ghazalli Z, Ahmad F, Sulong A B . Mater. Sci. Eng. C-Mater. Biol. Appl., 2017,78:1263. https://linkinghub.elsevier.com/retrieve/pii/S0928493117317186

doi: 10.1016/j.msec.2017.05.016     URL    
[3]
Tien Y C , Chih T T , Lin J H C , Ju C P , Lin S D. J. Bone Joint Surg. Br., 2004, 86-B(7):1072. http://online.boneandjoint.org.uk/doi/10.1302/0301-620X.86B7.14578

doi: 10.1302/0301-620X.86B7.14578     URL    
[4]
Koutsopoulos S . J Biomed. Mater. Res., 2002,62(4):600. http://doi.wiley.com/10.1002/%28ISSN%291097-4636

doi: 10.1002/(ISSN)1097-4636     URL    
[5]
Carrado A , Perrin Schmitt F , Le Q V , Giraudel M , Fischer C , Koenig G , Jacomine L , Behr L , Chalom A , Fiette L , Morlet A , Pourroy G . Dent. Mater, 2017,33(3):321. https://linkinghub.elsevier.com/retrieve/pii/S0109564117300027

doi: 10.1016/j.dental.2016.12.013     URL    
[6]
Yang C Y , Wang B C , Chang E , Wu B C .J Mater. Sci.-Mater. Med., 1995,6(5):258. http://link.springer.com/10.1007/BF00120268

doi: 10.1007/BF00120268     URL    
[7]
Nguyen H Q , Deporter D A , Pilliar R M , Valiquette N , Yakubovich R . Biomaterials, 2004,25(5):865. f246a59e-6bde-480d-b48e-190c4e9b25a2 http://www.sciencedirect.com/science/article/pii/S0142961203006070

doi: 10.1016/S0142-9612(03)00607-0     URL    
[8]
孙金平(Sun J P) . 哈尔滨工业大学博士论文(Doctoral Dissertation of Harbin Institute of Technology), 2014.
[9]
姚蔚(Yao W) . 太原理工大学博士论文(Doctoral Dissertation of Taiyuan University of Technology), 2016.
[10]
Zhang C , Leng Y , Chen J .J Biomed. Mater. Res., 2001,56(3):342. http://doi.wiley.com/10.1002/%28ISSN%291097-4636

doi: 10.1002/(ISSN)1097-4636     URL    
[11]
曹阳(Cao Y) . 四川大学博士论文(Doctoral Dissertation of Sichuan University), 2005.
[12]
Huang Y , Zhang X J , Zhang H L , Qiao H X , Zhang X Y , Jia T J , Han S G , Gao Y , Xiao H Y , Yang H J. Ceram. Int., 2017,43(1):992. https://linkinghub.elsevier.com/retrieve/pii/S0272884216317801

doi: 10.1016/j.ceramint.2016.10.031     URL    
[13]
Harun W S W , Asri R I M , Alias J , Zulkifli F H , Kadirgama K , Ghani S a C , Shariffuddin J H M . Ceram. Int., 2018,44(2):1250. https://linkinghub.elsevier.com/retrieve/pii/S0272884217323635

doi: 10.1016/j.ceramint.2017.10.162     URL    
[14]
Guipont V , Jeandin M , Bansard S , Khor K A , Nivard M , Berthe L , Cuq Lelandais J P , Boustie M. J. Biomed. Mater. Res. Part A, 2010,95A(4):1096. http://doi.wiley.com/10.1002/jbm.a.v95a%3A4

doi: 10.1002/jbm.a.v95a:4     URL    
[15]
Wei D Q , Du Q , Guo S , Jia D C , Wang Y M , Li B Q , Zhou Y. Surf. Coat. Technol., 2018,340:93. https://linkinghub.elsevier.com/retrieve/pii/S0257897218301324

doi: 10.1016/j.surfcoat.2018.02.023     URL    
[16]
Zavgorodniy A V , Borrero Lopez O , Hoffman M , Legeros R Z , Rohanizadeh R . J. Biomed. Mater. Res. Part B, 2011,99B(1):58. http://doi.wiley.com/10.1002/jbm.b.v99b.1

doi: 10.1002/jbm.b.v99b.1     URL    
[17]
Yang S , Man H C , Xing W , Zheng X B. Surf. Coat. Technol., 2009,203(20/21):3116. https://linkinghub.elsevier.com/retrieve/pii/S0257897209002941

doi: 10.1016/j.surfcoat.2009.03.034     URL    
[18]
Farnoush H , Mohandesi J A , Fatmehsari D H , Moztarzadeh F . Ceram. Int, 2012,38(6):4885. https://linkinghub.elsevier.com/retrieve/pii/S0272884212001940

doi: 10.1016/j.ceramint.2012.02.079     URL    
[19]
Oh I K , Nomura N , Chiba A , Murayama Y , Masahashi N , Lee B T , Hanada S .J Mater. Sci.-Mater. Med., 2005,16(7):635. http://link.springer.com/10.1007/s10856-005-2534-4

doi: 10.1007/s10856-005-2534-4     URL    
[20]
Ji X L , Lou W W , Wang Q , Ma J F , Xu H H , Bai Q , Liu C T , Liu J S. Int. J. Mol. Sci., 2012,13(4):5242. http://www.mdpi.com/1422-0067/13/4/5242

doi: 10.3390/ijms13045242     URL    
[21]
Webster T J , Siegel R W , Bizios R . Scripta Mater, 2001,44(8/9):1639. https://linkinghub.elsevier.com/retrieve/pii/S1359646201008739

doi: 10.1016/S1359-6462(01)00873-9     URL    
[22]
Ning C Y , Wang Y J , Lu W W , Qiu Q X , Lam R W M , Chen X F, Chiu K Y, Ye J D, Wu G, Wu Z H, Chow S P.. J. Mater. Sci.-Mater. Med., 2006,17(10):875. http://link.springer.com/10.1007/s10856-006-0176-9

doi: 10.1007/s10856-006-0176-9     URL    
[23]
Huang Y H , Zheng H X , Lin A , Nishimura I. Rare Metal Mat. Eng., 2010,39:1. https://linkinghub.elsevier.com/retrieve/pii/S1875537210600719

doi: 10.1016/S1875-5372(10)60071-9     URL    
[24]
Bai L , Liu Y L , Du Z B , Weng Z M , Yao W , Zhang X Y , Huang X B , Yao X H , Crawford R , Hang R Q , Huang D , Tang B , Xiao Y . Acta Biomater, 2018,76:344. https://linkinghub.elsevier.com/retrieve/pii/S1742706118303696

doi: 10.1016/j.actbio.2018.06.023     URL    
[25]
Zhou Y L , Wu C T , Chang J . Mater Today, 2019,24:41. https://linkinghub.elsevier.com/retrieve/pii/S1369702118301457

doi: 10.1016/j.mattod.2018.07.016     URL    
[26]
Yang L K , Shen P , Guo R F , Li Y L , Jiang Q C. Scripta Mater., 2019,167:101. https://linkinghub.elsevier.com/retrieve/pii/S1359646219302039

doi: 10.1016/j.scriptamat.2019.04.004     URL    
[27]
Yamada K , Imamura K , Itoh H , Iwata H , Maruno S . Biomaterials, 2001,22(16):2207. 5c6e410f-1a33-4b41-b9f7-0ef4bab68df3 http://www.sciencedirect.com/science/article/pii/S0142961200004026

doi: 10.1016/S0142-9612(00)00402-6     URL    
[28]
Xie X H , Yu X W , Zeng S X , Du R L , Hu Y H , Yuan Z , Lu E Y , Dai K R , Tang T T .J Mater. Sci.-Mater. Med., 2010,21(7):2165. http://link.springer.com/10.1007/s10856-010-4077-6

doi: 10.1007/s10856-010-4077-6     URL    
[29]
Huang J C , Ni Y J , Wang Z C. Surf. Coat. Technol., 2010,204(21/22):3387. https://linkinghub.elsevier.com/retrieve/pii/S0257897210002616

doi: 10.1016/j.surfcoat.2010.03.058     URL    
[30]
Lin D Y , Zhao Y T. Adv. Eng. Mater., 2011,13(1/2):B18. http://doi.wiley.com/10.1002/adem.201080025

doi: 10.1002/adem.201080025     URL    
[31]
Rocha R C , De Sousa Galdino A G , Da Silva S N, Pereira Machado M L. Mater. Res.-Ibero-am. J. Mater., 2018,21(4).
[32]
Han C J , Li Y , Wang Q , Cai D S , Wei Q S , Yang L , Wen S F , Liu J , Shi Y S. Mater. Des., 2018,141:256. https://linkinghub.elsevier.com/retrieve/pii/S0264127517311425

doi: 10.1016/j.matdes.2017.12.037     URL    
[33]
Kim E J , Jeong Y H , Choe H C , Brantley W A . Thin Solid Films, 2014,572:113. 7e080c6c-b218-4dca-ae12-e78545791944 http://dx.doi.org/10.1016/j.tsf.2014.08.035

doi: 10.1016/j.tsf.2014.08.035     URL    
[34]
Henao J , Cruz Bautista M , Hincapie Bedoya J , Ortega Bautista B , Corona Castuera J , Giraldo Betancur A L , Espinosa Arbelaez D G, Alvarado Orozco J M, Clavijo Mejia G A, Trapaga Martinez L G, Poblano Salas C A.. J. Therm. Spray Technol., 2018,27(8):1302. https://doi.org/10.1007/s11666-018-0811-2

doi: 10.1007/s11666-018-0811-2     URL    
[35]
Wang J , Chao Y L , Wan Q B , Zhu Z M , Yu H Y. Acta Biomater., 2009,5(5):1798. https://linkinghub.elsevier.com/retrieve/pii/S1742706109000087

doi: 10.1016/j.actbio.2009.01.005     URL    
[36]
Cao L , Ullah I , Li N , Niu S Y , Sun R J , Xia D D , Yang R , Zhang X .J Mater. Sci. Technol., 2019,35(5):719. https://linkinghub.elsevier.com/retrieve/pii/S1005030218302810

doi: 10.1016/j.jmst.2018.10.020     URL    
[37]
Qadir M , Li Y , Wen C . Acta Biomater, 2019,89:14. https://linkinghub.elsevier.com/retrieve/pii/S1742706119301722

doi: 10.1016/j.actbio.2019.03.006     URL    
[38]
Bigi A , Boanini E , Gazzano M . 7-Ion Substitution in Biological and Synthetic Apatites. Boston: Woodhead Publishing, 2016. 235.
[39]
Boanini E , Gazzano M , Bigi A . Acta Biomater, 2010,6(6):1882. https://linkinghub.elsevier.com/retrieve/pii/S1742706109005820

doi: 10.1016/j.actbio.2009.12.041     URL    
[40]
Tite T , Popa A C , Balescu L M , Bogdan I M , Pasuk I , Ferreira J M F , Stan G E Materials, 2018,11(11).
[41]
Lou W W , Dong Y W , Zhang H L , Jin Y F , Hu X H , Ma J F , Liu J S , Wu G. Int. J. Mol. Sci., 2015,16(9):21070. http://www.mdpi.com/1422-0067/16/9/21070

doi: 10.3390/ijms160921070     URL    
[42]
Yilmaz B , Alshemary A Z , Evis Z. J . Microchem J., 2019,144:443. https://linkinghub.elsevier.com/retrieve/pii/S0026265X18307057

doi: 10.1016/j.microc.2018.10.007     URL    
[43]
Guillem Marti J , Cinca N , Punset M , Cano I G , Gil F J , Guilemany J M , Dosta S . Colloid Surf. B-Biointerfaces, 2019,180:245. https://linkinghub.elsevier.com/retrieve/pii/S0927776519302796

doi: 10.1016/j.colsurfb.2019.04.048     URL    
[44]
Tang J R , Zhao Z P , Liu H S , Cui X Y , Wang J Q , Xiong T Y. Mater. Lett., 2019,250:197. https://linkinghub.elsevier.com/retrieve/pii/S0167577X19306937

doi: 10.1016/j.matlet.2019.04.123     URL    
[45]
Morks M F . J Mech. Behav. Biomed. Mater., 2008,1(1):105. https://linkinghub.elsevier.com/retrieve/pii/S1751616107000070

doi: 10.1016/j.jmbbm.2007.04.003     URL    
[46]
Xu J L , Joguet D , Cizek J , Khor K A , Liao H L , Coddet C , Chen W N. Surf. Coat. Technol., 2012,206(22):4659. https://linkinghub.elsevier.com/retrieve/pii/S0257897212004410

doi: 10.1016/j.surfcoat.2012.05.042     URL    
[47]
Ke D X , Robertson S F , Dernell W S , Bandyopadhyay A , Bose S . ACS Appl. Mater. Interfaces, 2017,9(31):25731. https://pubs.acs.org/doi/10.1021/acsami.7b05574

doi: 10.1021/acsami.7b05574     URL    
[48]
Xiao X F , Liu R F , Zheng Y Z . J Mater. Sci., 2006,41(11):3417. http://link.springer.com/10.1007/s10853-005-5340-y

doi: 10.1007/s10853-005-5340-y     URL    
[49]
Farnoush H , Rezaei Z . Ceram. Int., 2017,43(15):11885. https://linkinghub.elsevier.com/retrieve/pii/S0272884217312385

doi: 10.1016/j.ceramint.2017.06.036     URL    
[50]
Yang L K , Shen P , Guo R F , Jiang Q C. Ceram. Int., 2018,44(13):15219. https://linkinghub.elsevier.com/retrieve/pii/S0272884218313087

doi: 10.1016/j.ceramint.2018.05.163     URL    
[51]
Rezazadeh Shirdar M , Sudin I , Taheri M M , Keyvanfar A , Yusop M Z M , Kadir M R A Vacuu, 2015,122:82. https://linkinghub.elsevier.com/retrieve/pii/S0042207X15300610

doi: 10.1016/j.vacuum.2015.09.008     URL    
[52]
Yao H L , Hu X Z , Bai X B , Wang H T , Chen Q Y , Ji G C. Surf. Coat. Tech., 2018,351:177. https://linkinghub.elsevier.com/retrieve/pii/S0257897218307898

doi: 10.1016/j.surfcoat.2018.07.082     URL    
[53]
Askari N , Yousefpour M , Rajabi M. Int. J. Appl. Ceram. Technol., 2018,15(4):970.
[54]
Xia Z M , Yu X H , Wei M . J. Biomed. Mater. Res. Part B, 2012,100B(3):871. http://doi.wiley.com/10.1002/jbm.b.v100b.3

doi: 10.1002/jbm.b.v100b.3     URL    
[55]
Huang S S , Liang N Y , Hu Y , Zhou X , Abidi N. Biomed. Res. Int., 2016.
[56]
Wang Z G , Zeng J Q , Tan G X , Liao J W , Zhou L , Chen J Q , Yu P , Wang Q Y , Ning C Y. Bioact. Mater., 2018,3(1):74.
[57]
Zhu B W , Wang S M , Wang L , Yang Y , Liang J , Cao B C . Coatings, 2017,7(7).
[58]
Chen W Z , Shen X K , Hu Y , Xu K , Ran Q C , Yu Y L , Dai L L , Yuan Z , Huang L , Shen T T , Cai K Y . Biomaterials, 2017,114:82. https://linkinghub.elsevier.com/retrieve/pii/S0142961216306056

doi: 10.1016/j.biomaterials.2016.10.055     URL    
[59]
Lahiri D , Ghosh S , Agarwal A. Mater. Sci. Eng. C-Mater. Biol. Appl., 2012,32(7):1727. https://linkinghub.elsevier.com/retrieve/pii/S0928493112002147

doi: 10.1016/j.msec.2012.05.010     URL    
[60]
Li M , Xiong P , Yan F , Li S J , Ren C H , Yin Z C , Li A , Li H F , Ji X M , Zheng Y F , Cheng Y . Bioact. Mater., 2018,3(1):1.
[61]
Zhong Z Y , Qin J L , Ma J . Ceram. Int., 2015,41(7):8878. https://linkinghub.elsevier.com/retrieve/pii/S0272884215005507

doi: 10.1016/j.ceramint.2015.03.145     URL    
[62]
Turk S , Altinsoy I , Efe G C , Ipek M , Ozacar M , Bindal C. Mater. Sci. Eng. C-Mater. Biol. Appl., 2019,99:986. https://linkinghub.elsevier.com/retrieve/pii/S0928493118332302

doi: 10.1016/j.msec.2019.02.025     URL    
[63]
Park S , Ruoff R S. Nat. Nanotechnol., 2009,4(4):217. https://doi.org/10.1038/nnano.2009.58

doi: 10.1038/nnano.2009.58     URL    
[64]
Zeng Y X , Pei X B , Yang S Y , Qin H , Cai H , Hu S S , Sui L , Wan Q B , Wang J. Surf. Coat. Technol., 2016,286:72. https://linkinghub.elsevier.com/retrieve/pii/S0257897215304448

doi: 10.1016/j.surfcoat.2015.12.013     URL    
[65]
Suo L , Jiang N , Wang Y , Wang P Y , Chen J Y , Pei X B , Wang J , Wan Q B . J. Biomed. Mater. Res. Part B, 2019,107(3):635. http://doi.wiley.com/10.1002/jbm.b.v107.3

doi: 10.1002/jbm.b.v107.3     URL    
[66]
Zhang L , Liu W W , Yue C G , Zhang T H , Li P , Xing Z W , Chen Y . Carbon, 2013,61:105. fdbe4b15-61a6-4604-b0b8-daaff9ea4558 http://dx.doi.org/10.1016/j.carbon.2013.04.074

doi: 10.1016/j.carbon.2013.04.074     URL    
[67]
Siddiqui H A , Pickering K L , Mucalo M R . Materials, 2018,11(10):1813. http://www.mdpi.com/1996-1944/11/10/1813

doi: 10.3390/ma11101813     URL    
[68]
Sun L , Berndt C C , Gross K A , Kucuk A .J Biomed. Mater. Res., 2001,58(5):570. http://doi.wiley.com/10.1002/%28ISSN%291097-4636

doi: 10.1002/(ISSN)1097-4636     URL    
[69]
Yang Y Z , Kim K H , Ong J L . Biomaterials, 2005,26(3):327. c8564f01-358b-456c-849c-c9bcefa2d01a http://www.sciencedirect.com/science/article/pii/S014296120400167X

doi: 10.1016/j.biomaterials.2004.02.029     URL    
[70]
Mohseni E , Zalnezhad E , Bushroa A R. Int. J. Adhes. Adhes., 2014,48:238. e5985896-634b-466f-a28b-bcd5e268223b http://dx.doi.org/10.1016/j.ijadhadh.2013.09.030

doi: 10.1016/j.ijadhadh.2013.09.030     URL    
[71]
Yang Y C. Surf. Coat. Technol., 2007,201(16/17):7187. https://linkinghub.elsevier.com/retrieve/pii/S0257897207000485

doi: 10.1016/j.surfcoat.2007.01.027     URL    
[72]
Zheng X B , Xie Y T .J Inorg. Mater., 2013,28(1):12. lt;![CDATA[http://pub.chinasciencejournal.com/article/getArticleRedirect.action?doiCode=10.3724/SP.J.1077.2013.12329]]>

doi: 10.3724/SP.J.1077.2013.12329     URL    
[73]
Bsat S , Speirs A , Huang X .J Therm. Spray Technol., 2016,25(6):1088.
[74]
Liu L , Ni X Y , Xiong X B , Ma J , Zeng X R .J Alloys Compd., 2019,788:768.
[75]
Heimann R B. Surf. Coat. Technol., 2016,301:1.
[76]
Vilardell A M , Cinca N , Garcia-Giralt N , Dosta S , Cano I G , Nogués X , Guilemany J M. Mater. Sci. Eng. C-Mater. Biol. Appl., 2020,107:110306.
[77]
Gupta R , Kumar A . Biomed. Mater., 2008,3(3):034005.
[78]
Gardon M , Concustell A , Dosta S , Cinca N , Cano I G , Mater. Sci. Eng. C-Mater. Biol. Appl., 2014,45:117. https://linkinghub.elsevier.com/retrieve/pii/S0928493114005487

doi: 10.1016/j.msec.2014.08.053     URL    
[79]
Robertson S F , Bandyopadhyay A , Bose S. Surf. Coat. Technol., 2019,372:140. https://linkinghub.elsevier.com/retrieve/pii/S0257897219304487

doi: 10.1016/j.surfcoat.2019.04.071     URL    
[80]
Gross K A , Chai C S , Kannangara G S K, Ben-Nissan B, Hanley L. . J. Mater. Sci.-Mater. Med., 1998, 9(12):839. http://link.springer.com/10.1023/A:1008948228880

doi: 10.1023/A:1008948228880     URL    
[81]
Layrolle P , Ito A , Tateishi T . J Am. Ceram. Soc., 1998,81(6):1421. http://doi.wiley.com/10.1111/%28ISSN%291551-2916

doi: 10.1111/(ISSN)1551-2916     URL    
[82]
Hsieh M F , Perng L H , Chin T S , Perng H G . Biomaterials, 2001,22(19):2601. 59984540-0acf-4561-ad3d-40064a6b1432 http://www.sciencedirect.com/science/article/pii/S0142961200004488

doi: 10.1016/S0142-9612(00)00448-8     URL    
[83]
张文涛(Zhang W T) . 吉林大学博士论文(Doctoral Dissertation of Jilin University), 2012.
[84]
Liu Y , Dang Z , Wang Y , Huang J , Li H . Carbon, 2014,67:250. https://linkinghub.elsevier.com/retrieve/pii/S0008622313009421

doi: 10.1016/j.carbon.2013.09.088     URL    
[85]
Lin Q X , Huang D , Du J J , Wei Y , Hu Y C , Lian X J , Xie X , Chen W Y , Zhang Y S. Appl. Surf. Sci., 2019,478:237. https://linkinghub.elsevier.com/retrieve/pii/S0169433219302570

doi: 10.1016/j.apsusc.2019.01.226     URL    
[86]
Bai L , Du Z B , Du J J , Yao W , Zhang J M , Weng Z M , Liu S , Zhao Y , Liu Y L , Zhang X Y , Huang X B , Yao X H , Crawford R , Hang R Q , Huang D , Tang B , Xiao Y . Biomaterials, 2018,162:154. https://linkinghub.elsevier.com/retrieve/pii/S0142961218300814

doi: 10.1016/j.biomaterials.2018.02.010     URL    
[87]
Tlotleng M , Akinlabi E , Shukla M , Pityana S .J Therm. Spray Technol., 2015,24(3):423. http://link.springer.com/10.1007/s11666-014-0199-6

doi: 10.1007/s11666-014-0199-6     URL    
[88]
Yao J H , Yang L J , Li B , Li Z H. Appl. Surf. Sci., 2015,330:300. https://linkinghub.elsevier.com/retrieve/pii/S0169433215000392

doi: 10.1016/j.apsusc.2015.01.029     URL    
[89]
Yang L J , Li Z X , Huang C L , Wang P , Yao J H . Materials Reports A, 2018,32(3):412.
[90]
Hahn B D , Lee J M , Park D S , Choi J J , Ryu J , Yoon W H , Choi J H , Lee B K , Kim J W , Kim H E , Kim S G . Thin Solid Films, 2011,519(22):8085. 4e870845-3263-4a7d-82a9-f847836c5dcf http://dx.doi.org/10.1016/j.tsf.2011.07.008

doi: 10.1016/j.tsf.2011.07.008     URL    
[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[4] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[5] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[6] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[7] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[8] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[11] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[12] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[13] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[14] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[15] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.