English
新闻公告
More
化学进展 2016, Vol. 28 Issue (10): 1560-1568 DOI: 10.7536/PC160632 前一篇   后一篇

• 综述与评论 •

铋单质及其复合材料在光催化中的应用

张小婧1,2, 刘旸2, 张骞2, 周莹1,2*   

  1. 1. 西南石油大学油气藏地质及开发工程国家重点实验室 成都 610500;
    2. 西南石油大学材料科学与工程学院 成都 610500
  • 收稿日期:2016-06-01 修回日期:2016-09-01 出版日期:2016-10-15 发布日期:2016-11-05
  • 通讯作者: 周莹 E-mail:yzhou@swpu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51102245,21403172),四川省杰出青年基金(No.2014JQ0017)和四川省青年科技创新研究团队(No.2016TD0011)资助

Bismuth and Bismuth Composite Photocatalysts

Zhang Xiaojing1,2, Liu Yang2, Zhang Qian2, Zhou Ying1,2*   

  1. 1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
    2. Shool of Materials Science and Engineering, Southwest Petroleum University, Chengdu 610500, China
  • Received:2016-06-01 Revised:2016-09-01 Online:2016-10-15 Published:2016-11-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51102245, 21403172), the Sichuan Science and Technology Foundation for Distinguished Young Scholars (No. 2014JQ0017) and the Innovative Research Team of Sichuan Province (No. 2016TD0011)
单质铋作为近年来报道的新型光催化材料受到了研究者的广泛关注,本文主要介绍了铋单质的光敏化、半导体光催化及等离子体共振光催化机理。阐述了以沉淀法、溶剂热法、电化学法为代表的铋单质光催化材料的主要制备方法,并探讨了制备方法中表面活性剂、反应温度以及pH对合成铋单质的影响。归纳了铋单质尺寸和形貌对其吸光性能的影响。在此基础上进一步综述了以铋-二氧化钛、铋-铋系氧化物、铋-氧化锌、铋-氮化碳(C3N4)为主要代表的铋-半导体复合光催化材料,并归纳了其光催化增强机理,最后阐述了铋单质及其复合光催化材料的发展趋势。
As a new type of photocatalyst, elemental bismuth has attracted wide attentions for energy conversion and environmental remediation. In this review, the photocatalytic mechanism of elemental Bi including photosensitization, photocatalysis and plasma resonance is discussed. In addition, the main preparation methods such as precipitation, solvothermal and electrochemical methods are described as well. Moreover, the influences of surface active agents, reaction temperature and pH values on the synthesis of bismuth particles are discussed in details. Generally, the optical properties of bismuth are strongly affected by its size and morphology, which is one of the key factors for photocatalytic applications. Besides, bismuth-semiconductor composites including Bi-titanium dioxide, Bi-bismuth oxides, Bi-zinc oxides and Bi-C3N4 are also reported as a kind of promising non-noble metal photocatalysts due to their enhanced oxygen vacancy density and increased photo-generated carriers mobility caused by the formation of heterojunction, which could be prepared by one-step hydrothermal process or reduction methods through polybasic alcohol or light irradiation. Furthermore, the narrowed band gap of the compound and the plasma resonance effect of bismuth are also demonstrated to be the reasons for the enhanced photocatalytic activities. Finally, on the basis of the above work, the development of Bi-semiconductor composite photocatalysts is discussed and the opinions on future trend are presented as well.

Contents
1 Introduction
2 Bismuth photocatalyst
2.1 The photocatalytic mechanism of bismuth
2.2 The relationship among the size, morphology, absorption of bismuth
2.3 The preparation methods of bismuth
3 Bismuth composite photocatalysts
3.1 Bi-TiO2
3.2 Bi-bismuth oxides
3.3 Bi-other semiconductors
4 Conclusion

中图分类号: 

()
[1] Fujishima A, Honda K. Nature, 1972, 238:37.
[2] Somorjai G A, Frei H, Park J Y. J. Am. Chem. Soc., 2009, 131:16589.
[3] Bauer A, Westkamper F, Grimme S, Bach T. Nature, 2005, 436:1139.
[4] Maldotti A, Molinari A, Amadelli R. Chem. Rev., 2002, 102:3811.
[5] Frank S N, Bard A J. J. Am. Chem. Soc., 1977, 99:303.
[6] Frank S N, Bard A J. J. Phys. Chem., 1977, 81:1484.
[7] Asahi R, Morikawa T, Ohwaki T, Ohwaki T, Aoki K, Taga Y. Science, 2001, 293:269.
[8] Yu H G, Irie H, Hashimoto K. J. Am. Chem. Soc., 2010, 132:6898.
[9] Cong Y, Zhang J L, Chen F, Anpo M, He D. J. Phys. Chem. C, 2007, 111:10618.
[10] Liu G, Jimmy C Y, Lu G Q M, Cheng H M. Chem. Commun., 2011, 47:6763.
[11] 于洪涛(Yu H T),全燮(Quan X). 化学进展(Progress in Chemistry), 2009, 21:406.
[12] Chen X, Liu L, Peter Y Y, Mao S S. Science, 2011, 331:746.
[13] 李二军(Li E J),陈浪(Chen L),章强(Zhang Q),李文华(Li W H), 尹双凤(Yin S F). 化学进展(Progress in Chemistry),2010, 22:2282.
[14] Zhao Z Y, Zhou Y, Wang F, Zhang K, Yu S, Cao K. ACS Appl. Mater. Interfaces, 2015, 7:730.
[15] Zhou Y, Zhao Z Y, Wang F, Cao K, Doronkin D E. J. Hazard. Mater., 2016, 307:163.
[16] Liu G, Yin L C, Niu P, Jiao W, Cheng H M. Angew. Chem. Int. Ed., 2013, 52:6242.
[17] Liu G, Niu P, Yin L C, Cheng H M. J. Am. Chem. Soc., 2012, 134:9070.
[18] Wang F, Ng W K H, Yu J C, Zhu H J, Li C H, Zhang L, Liu Z F, Li Q. Appl. Catal. B, 2012, 111/112:409.
[19] Xu X X, Randorn C, Efstathiou P, Irvine J T S. Nature Mater., 2012, 11:595.
[20] Zhang Q, Zhou Y, Wang F, Dong F, Li W, Li H, Patzke G R. J. Mater. Chem. A, 2014, 2:11065.
[21] Dong F, Xiong T, Sun Y, Zhao Z, Zhou Y, Feng X, Wu Z. Chem. Commun., 2014, 50:10386.
[22] Qin F, Li G, Xiao H, Lu Z, Sun H, Chen R. Dalton Trans., 2012, 41:11263.
[23] Qin F, Wang R M, Li G F, Tian F, Zhao H P, Chen R. Catal. Commun., 2013, 42:14.
[24] Zhao J, Han Q F, Zhu J W, Wu X D, Wang X. Nanoscale, 2014, 6:10062.
[25] Ma D C, Zhao J Z, Zhao Y, Hao X L, Lu Y. Chem. Eng. J., 2012, 209:273.
[26] Gao F F, Zhao Y, Li Y W, Wu G G, Lu Y, Song Y H, Huang Z F, Li N, Zhao J Z. J. Colloid. Interf. Sci., 2015, 448:564.
[27] Ma D C, Zhao Y., Zhao J Z, Li Y W, Lu Y, Zhao D J. Superlattice. Microst., 2015, 83:411.
[28] Wang Z, Jiang C L, Huang R, Peng H, Tang X D. J. Phys. Chem. C, 2014, 118:1155.
[29] Cui Z K, Zhang Y G, Li S L, Ge S X. Catal. Commun., 2015, 72:97.
[30] Li J, Fan H Q, Chen J, Liu L J. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2009, 340:66.
[31] Ma D C, Zhao J Z, Zhao Y, Hao X L, Li L Z, Zhang L, Lu Y, Yu C Z. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2012, 395:279.
[32] Ma D C, Zhao J Z, Li Y L, Su X D, Hou S G, Zhao Y, Hao X L, Li L Z. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2010, 368:105.
[33] Ma D C, Chu R, Yang S S, Zhao Y, Hao X L, Zhang Li, Lu Y, Yu C Z. Adv. Powder. Technol., 2013, 24:79.
[34] Yin Y D, Erdonmez C, Aloni S, Alivisatos A P. J. Am. Chem. Soc., 2006, 128:12671.
[35] Zhu J J, Kan C X, Wan J G, Han M,Wang G H. J. Nanomater., 2011, 2011:1.
[36] Chen Y, Chen D L, Chen J F, Lu Q J, Zhang M, Liu B T, Wang Q Y, Wang Z F. J. Alloy. Compd., 2015, 651:114.
[37] Liu X W, Cao H Q, Yin J F. Nano Res., 2011, 4:470.
[38] Qu L L, Luo Z J, Tang C. Mater. Res. Bull., 2013, 48:4601.
[39] Chu S S, Yang C, Niu C G, Li Z J, Wang J D, Su X T. Mater. Lett., 2014, 136:366.
[40] Zhang L L, Lyu L, Nie Y L, Hu C. Sep. Purif. Technol., 2016:157:203.
[41] Huang C J, Hu J L, Fan W J, Wu X, Qiu X Q. Chem. Eng. Sci., 2015, 131:155.
[42] Chang C, Zhu L Y, Fu Y, Chu X L. Chem. Eng. J., 2013, 233:305.
[43] Chen Y, Liu B, Chen J, Chen D, Yan X, Xiao W, Ge L, Tu M, Wang Q, Wang Z. Mater. Lett., 2015, 161:289.
[44] Liu Z S, Wu B T. Mat. Sci. Semicon. Proc., 2015, 31:68.
[45] Wang Q S, Song L X, Teng Y, Xia J, Zhao L, Ruan M M. RSC Adv., 2015, 5:80853.
[46] Ma H C, Zhao M, Xing H M, Fu Y H, Zhang X F, Dong X L. J. Mater. Sci:Mater. Electron., 2015, 26:10002.
[47] Zhang X M, Ji G B, Liu Y S, Zhou X G, Zhu Y, Shi D N, Zhang P, Gao X Z, Wang B Y. Phys. Chem. Chem. Phys., 2015, 17:8078.
[48] Chang X F, Wang S B, Qi Q, Gondal M A, Rashid S G, Gao S, Yang D Y, Shen K, Xu Q Y, Wang P. Dalton Trans., 2015, 44:15888.
[49] Gao M C, Zhang D F, Pu X P, Ding K Y, Li H, Zhang T T, Ma H Y. Sep. Purif. Technol., 2015, 149:288.
[50] Chen D L, Zhang M, Lu, Q J, Chen J F, Liu B T, Wang Z F. J. Alloy. Compd., 2015, 646:647.
[51] Zheng C R, Cao C B, Ali Z. Phys. Chem. Chem. Phys., 2015, 17:13347.
[52] Huang Y C, Long B, Li H B, Balogun M S, Rui Z B, Tong Y X, Ji H B. Adv. Mater. Interfaces, 2015, 2:1500249.
[53] Lu S Y, Yu Y N, Bao S J, Liao S H. RSC Adv., 2015, 5:85500.
[54] Huang Y K, Kang S F, Yang Y, Qin H F, Ni Z J, Yang S J, Li X Y. Appl. Catal. B-Environ., 2016, 196:89.
[55] Dong F, Li Q, Sun Y, Ho W K. ACS Catal., 2014, 4:4341.
[56] Sun Y J, Zhao Z W., Dong F, Zhang W. Phys. Chem. Chem.Phys., 2015, 17:10383.
[57] Chandraboss V L, Kamalakkannan J, Prabha S. RSC Adv., 2015, 5:25857.
[58] Dong F, Zhao Z W, Sun Y J, Zhang Y X, Yan S, Wu Z B. Environ. Sci. Technol., 2015, 49:12432.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[9] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[10] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[11] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[12] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[13] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[14] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[15] 毕洪飞, 刘劲松, 吴正颖, 索赫, 吕学良, 付云龙. 硫化铟锌的改性合成及光催化特性[J]. 化学进展, 2021, 33(12): 2334-2347.