English
新闻公告
More
化学进展 2021, Vol. 33 Issue (7): 1100-1114 DOI: 10.7536/PC200803 前一篇   后一篇

• 综述 •

光催化制氢的助催化剂

郭俊兰1, 梁英华1,2,*(), 王欢2, 刘利2(), 崔文权2,*   

  1. 1 河北工业大学 化工学院 天津 300130
    2 华北理工大学化学工程学院 河北省环境光电催化材料重点实验室 唐山 063210
  • 收稿日期:2020-08-03 修回日期:2020-12-16 出版日期:2020-12-28 发布日期:2020-12-28
  • 通讯作者: 梁英华, 崔文权
  • 基金资助:
    河北省自然科学基金重点项目(B2020209017); 唐山市能源与环境光催化基础创新团队资助

The Cocatalyst in Photocatalytic Hydrogen Evolution

Junlan Guo1, Yinghua Liang1,2(), Huan Wang2, Li Liu2(), Wenquan Cui2   

  1. 1 School of Chemical Engineering and Technology, Hebei University of Technology,Tianjin 300130, China
    2 College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology,Tangshan 063210, China
  • Received:2020-08-03 Revised:2020-12-16 Online:2020-12-28 Published:2020-12-28
  • Contact: Yinghua Liang, Wenquan Cui
  • Supported by:
    Natural Science Foundation of Hebei Province of China(B2020209017); Project of Science and Technology Innovation Team, Tang Shan.

随着能源和环境问题的日益突出,构建可持续发展、绿色环保和新型高效的能源体系,成为当今世界关注的焦点。由于太阳能清洁、低成本和环境友好等特性,利用太阳能光催化制氢成为解决能源问题的有效策略。单一的半导体光催化剂由于光的利用率低、电荷空穴易复合和缺少充足的活性位点等缺点,很难满足光催化的所有要求,常引入助催化剂来解决这一问题。负载助催化剂可以促进电荷分离,提高光催化效率。本文主要介绍助催化剂在光催化制氢中所起的作用,比如增强光的吸收、促进电荷分离、增加活性位点、提高H的吸附能力等,同时介绍了助催化剂的负载方法;总结了助催化剂对于活性的影响因素,包括尺寸效应、位置效应、构型效应、数量效应等,为设计高效稳定的助催化剂提供思路。最后对光催化制氢的助催化剂的未来发展进行展望。

Nowadays, development of a sustainable, green, new and efficient energy system has drawn much attention with the increasingly prominent energy and environmental problems. Photocatalytic production of H2 utilizing solar energy appears to be a promising strategy to solve the energy issues since it is clean, low-cost, and environmentally friendly. It is difficult for single semiconductor photocatalyst to meet all the requirements of photocatalysis because of its low utilization efficiency of light, fast recombination rate of electron-hole pairs, and insufficient active sites. Cocatalysts are often used to improve the photocatalytic activity. The loading of cocatalyst could facilitate charge separation and enhance the photocatalytic efficiency. In this review, we mainly outline the roles of cocatalysts in photocatalytic hydrogen production, such as enhancing light absorption, promoting charge separation, increasing active sites, and improving the ability of H adsorption, and introduce the loading method of cocatalysts. Moreover, the influencing factors of cocatalysts on activity, including size effect, position effect, configuration effect and quantity quantal effect are summarized, which sheds light on designing efficient and stable cocatalysts, and the concluding perspectives on future development of cocatalysts for photocatalytic hydrogen production are also presented.

Contents

1 Introduction

2 The category of cocatalyst

2.1 Metal-based cocatalyst

2.2 Metal-free cocatalyst

2.3 Multicomponent cocatalyst

3 The loading method of cocatalyst on photocatalyst

4 The effect of the cocatalyst on photocatalytic hydrogen evolution

4.1 Size effect

4.2 Location effect

4.3 Configuration effect

4.4 Quantal effect

4.5 Others

5 Conclusion and outlook

()
图1 光催化剂分解水制氢示意图
Fig. 1 Illustration of H2production over water splitting on photocatalyst
图2 光催化生成氢气的反应路径
Fig. 2 Reaction pathway for photocatalytic H2 evolution
图3 助催化剂在光催化制氢中的作用
Fig. 3 Roles of cocatalyst in photocatalytic H2 evolution
表1 常见金属的功函数值[37]
Table 1 Electron work functions of frequently used metals[37]
图4 单原子助催化剂的优点
Fig. 4 Merits of the Single-atom cocatalyst
图5 金属复合物助催化剂的分类和功能
Fig. 5 The category and roles of metal compound cocatalyst
图6 (a)CoP/g-C3N4的反应机理,(b)双质子吸附位点反应过程示意图
Fig. 6 (a)The photocatalytic reaction mechanism of CoP/g-C3N4, (b) Dual proton adsorption site reaction process of CoP/g-C3N4
图7 光催化生成H2的Pt纳米簇的LUMO位置示意图[150]
Fig. 7 The LUMO position of Pt cluster in photocatalytic H2 evolution[150]
图8 (a) CdSe@CdS/Ni的电荷传递动力学示意图;(b) Ni纳米颗粒的尺寸效应[157]
Fig. 8 (a) Illustration of the charge transfer mechanism of CdSe@CdS/Ni; (b) The size effect of Ni on CdSe@CdS/Ni[157]
图9 (a) MOx@TiO2@Pt的产氢机理[164],(b) CoOx/TiO2/Pt的产氢机理,(c) BiVO4的不同晶面上选择性沉积助催化剂
Fig. 9 (a) The mechanism for H2 production by MOx@TiO2@Pt[164], (b) The mechanism for H2 evolution on CoOx/TiO2/Pt, (c) The selective deposition of reduction and oxidation cocatalysts on different facets of BiVO4
图10 光催化剂-助催化剂体系中的电荷传递动力学示意图
Fig. 10 Illustration of charge transfer kinetics in photocatalyst-cocatalyst system
图11 不同数量Pt的CdS/Pt电荷传递示意图[176]
Fig. 11 Illustration of charge transfer of CdS/Pt with various Pt contents[176]
[1]
Ida S, Sato K, Nagata T, Hagiwara H, Watanabe M, Kim N, Shiota Y, Koinuma M, Takenaka S, Sakai T, Ertekin E, Ishihara T. Angew. Chem. Int. Ed., 2018, 57(29):9073.

doi: 10.1002/anie.201803214     URL    
[2]
Jiang W Y, Bai S, Wang L M, Wang X J, Yang L, Li Y R, Liu D, Wang X N, Li Z Q, Xiong Y J. Small., 2016, 12:1640.

doi: 10.1002/smll.201503552     URL    
[3]
Schneider J, Matsuoka M, Takeuchi M, Zhang J L, Horiuchi Y, Anpo M, Bahnemann D W. Chem. Rev., 2014, 114(19):9919.

doi: 10.1021/cr5001892     pmid: 25234429
[4]
Wen J Q, Li X, Liu W, Fang Y P, Xie J, Xu Y H. Chin. J. Catal., 2015, 36(12):2049.

doi: 10.1016/S1872-2067(15)60999-8     URL    
[5]
Bi L L. Doctoral Dissertation of Jilin University, 2019.
( 毕玲玲. 吉林大学博士学位论文, 2019.)
[6]
Tsuji I, Kato H, Kudo A. Angew. Chem., 2005, 117(23):3631.

doi: 10.1002/(ISSN)1521-3757     URL    
[7]
Sasaki Y, Iwase A, Kato H, Kudo A. J. Catal., 2008, 259(1):133.

doi: 10.1016/j.jcat.2008.07.017     URL    
[8]
Sayed F N, Jayakumar O D, Sasikala R, Kadam R M, Bharadwaj S R, Kienle L, Schürmann U, Kaps S, Adelung R, Mittal J P, Tyagi A K. J. Phys. Chem. C, 2012, 116(23):12462.

doi: 10.1021/jp3029962     URL    
[9]
Yu J G, Qi L F, Jaroniec M. J. Phys. Chem. C, 2010, 114(30):13118.

doi: 10.1021/jp104488b     URL    
[10]
Lin H Y, Yang H C, Wang W L. Catal. Today, 2011, 174(1):106.

doi: 10.1016/j.cattod.2011.01.052     URL    
[11]
Korzhak A V, Ermokhina N I, Stroyuk A L, Bukhtiyarov V K, Raevskaya A E, Litvin V I, Kuchmiy S Y, Ilyin V G, Manorik P A. J. Photochem. Photobiol. A: Chem., 2008, 198(2/3):126.

doi: 10.1016/j.jphotochem.2008.02.026     URL    
[12]
Shiraishi Y, Kofuji Y, Kanazawa S, Sakamoto H, Ichikawa S, Tanaka S, Hirai T. Chem. Commun., 2014, 50(96):15255.

doi: 10.1039/C4CC06960A     URL    
[13]
Sun C Z, Zhang H, Liu H, Zheng X X, Zou W X, Dong L, Qi L. Appl. Catal. B: Environ., 2018, 235:66.

doi: 10.1016/j.apcatb.2018.04.050     URL    
[14]
Zhao H, Wang J W, Dong Y M, Jiang P P. ACS Sustainable Chem. Eng., 2017, 5(9):8053.

doi: 10.1021/acssuschemeng.7b01665     URL    
[15]
Zhao H, Sun S N, Jiang P P, Xu Z J. Chem. Eng. J., 2017, 315:296.

doi: 10.1016/j.cej.2017.01.034     URL    
[16]
Sanchez M L K, Wu C H, Adams M W W, Dyer R B. Chem. Commun., 2019, 55(39):5579.

doi: 10.1039/C9CC01150A     URL    
[17]
Tabata M, Maeda K, Ishihara T, Minegishi T, Takata T, Domen K. J. Phys. Chem. C, 2010, 114(25):11215.

doi: 10.1021/jp103158f     URL    
[18]
Lin B, Li J L, Xu B, Yan X Q, Yang B L, Wei J J, Yang G D. Appl. Catal. B: Environ., 2019, 243:94.

doi: 10.1016/j.apcatb.2018.10.029     URL    
[19]
Zhang Q, Li N, Goebl J, Lu Z D, Yin Y D. J. Am. Chem. Soc., 2011, 133(46):18931.

doi: 10.1021/ja2080345     pmid: 21999679
[20]
Gao Y Y, Cheng F, Fang W N, Liu X G, Wang S Y, Nie W, Chen R T, Ye S, Zhu J, An H Y, Fan C H, Fan F T, Li C. Natl. Sci. Rev., 2020,nwaa151.
[21]
Grabowska E, Zaleska A, Sorgues S, Kunst M, Etcheberry A, Colbeau-Justin C, Remita H. J. Phys. Chem. C, 2013, 117(4):1955.

doi: 10.1021/jp3112183     URL    
[22]
Gao Y Y, Cheng F, Fang W N, Liu X G, Wang S Y, Nie W, Chen R T, Ye S, Zhu J, An H Y, Fan C H, Fan F T, Li C. Natl. Sci. Rev., 2020, 8(6):1.
[23]
Wang W N, An W J, Ramalingam B, Mukherjee S, Niedzwiedzki D M, Gangopadhyay S, Biswas P. J. Am. Chem. Soc., 2012, 134(27):11276.

doi: 10.1021/ja304075b     URL    
[24]
Ivanova I, Kandiel T A, Cho Y J, Choi W, Bahnemann D. ACS Catal., 2018, 8(3):2313.

doi: 10.1021/acscatal.7b04326     URL    
[25]
Reichert R, Jusys Z, Behm R J. J. Phys. Chem. C, 2015, 119(44):24750.

doi: 10.1021/acs.jpcc.5b08428     URL    
[26]
Zhu Y X, Marianov A, Xu H M, Lang C, Jiang Y J. ACS Appl. Mater. Interfaces, 2018, 10(11):9468.

doi: 10.1021/acsami.8b00393     URL    
[27]
Majeed I, Manzoor U, Kanodarwala F K, Nadeem M A, Hussain E, Ali H, Badshah A, Stride J A, Nadeem M A,. Catal. Sci. Technol., 2018, 8(4):1183.

doi: 10.1039/C7CY02219K     URL    
[28]
Wang X F, Ruan Y E, Feng S J, Chen S H, Su K X. ACS Sustainable Chem. Eng., 2018, 6(9):11424.

doi: 10.1021/acssuschemeng.8b01364     URL    
[29]
Su R, Dimitratos N, Liu J J, Carter E, Althahban S, Wang X Q, Shen Y B, Wendt S, Wen SX D, (Hans) Niemantsverdriet J W, Iversen B B, Kiely C J, Hutchings G J, Besenbacher F. ACS Catal., 2016, 6(7):4239.

doi: 10.1021/acscatal.6b00982     URL    
[30]
Hussain E, Majeed I, Nadeem M A, Badshah A, Chen Y X, Nadeem M A, Jin R C. J. Phys. Chem. C, 2016, 120(31):17205.

doi: 10.1021/acs.jpcc.6b04695     URL    
[31]
Xiao S N, Liu P J, Zhu W, Li G S, Zhang D Q, Li H X. Nano Lett., 2015, 15(8):4853.

doi: 10.1021/acs.nanolett.5b00082     URL    
[32]
Oshikiri M, Ye J H, Boero M. J. Phys. Chem. C, 2014, 118(24):12845.

doi: 10.1021/jp502099v     URL    
[33]
Vu M H, Sakar M, Nguyen C C, Do T O. ACS Sustainable Chem. Eng., 2018, 6(3):4194.

doi: 10.1021/acssuschemeng.7b04598     URL    
[34]
Zhen W L, Ma J T, Lu G X. Appl. Catal. B: Environ., 2016, 190:12.

doi: 10.1016/j.apcatb.2016.02.061     URL    
[35]
Zhukovskyi M, Tongying P, Yashan H, Wang Y X, Kuno M. ACS Catal., 2015, 5(11):6615.

doi: 10.1021/acscatal.5b01812     URL    
[36]
Banin U, Ben-Shahar Y, Vinokurov K. Chem. Mater., 2014, 26(1):97.

doi: 10.1021/cm402131n     URL    
[37]
Li X, Yu J G, Jaroniec M, Chen X B. Chem. Rev., 2019, 119(6):3962.

doi: 10.1021/acs.chemrev.8b00400     URL    
[38]
Wood A, Giersig M, Mulvaney P. J. Phys. Chem. B, 2001, 105(37):8810.

doi: 10.1021/jp011576t     URL    
[39]
Zhao G X, Sun Y B, Zhou W, Wang X K, Chang K, Liu G G, Liu H M, Kako T, Ye J H. Adv. Mater., 2017, 29(40):1703258.

doi: 10.1002/adma.201703258     URL    
[40]
An Y, Liu Y Y, An P F, Dong J C, Xu B Y, Dai Y, Qin X Y, Zhang X Y, Whangbo M H, Huang B B. Angew. Chem. Int. Ed., 2017, 56(11):3036.

doi: 10.1002/anie.201612423     URL    
[41]
Tanaka A, Sakaguchi S, Hashimoto K, Kominami H. ACS Catal., 2013, 3(1):79.

doi: 10.1021/cs3006499     URL    
[42]
Chen W, Wang Y H, Liu M, Gao L, Mao L Q, Fan Z Y, Shangguan W F. Appl. Surf. Sci., 2018, 444:485.

doi: 10.1016/j.apsusc.2018.03.068     URL    
[43]
Li X B, Tung C H, Wu L Z. Nat. Rev. Chem., 2018, 2(8):160.

doi: 10.1038/s41570-018-0024-8     URL    
[44]
Wang Y, Ma Y, Li X B, Gao L, Gao X Y, Wei X Z, Zhang L P, Tung C H, Qiao L J, Wu L Z. J. Am. Chem. Soc., 2020, 142(10):4680.

doi: 10.1021/jacs.9b11768     URL    
[45]
Han Z J, Eisenberg R. Acc. Chem. Res., 2014, 47(8):2537.

doi: 10.1021/ar5001605     URL    
[46]
Wang G C, Zhang T, Yu W W, Si R, Liu Y F, Zhao Z K. ACS Catal., 2020, 10(10):5715.

doi: 10.1021/acscatal.0c01099     URL    
[47]
Li X G, Bi W T, Zhang L, Tao S, Chu W S, Zhang Q, Luo Y, Wu C Z, Xie Y. Adv. Mater., 2016, 28(12):2427.

doi: 10.1002/adma.201505281     URL    
[48]
Yi L H, Lan F J, Li J G, Zhao C X. ACS Sustainable. Chem. Eng., 2018, 6:12766.

doi: 10.1021/acssuschemeng.8b02001     URL    
[49]
Zhao Q, Sun J, Li S C, Huang C P, Yao W F, Chen W, Zeng T, Wu Q, Xu Q J. ACS Catal., 2018, 8(12):11863.

doi: 10.1021/acscatal.8b03737     URL    
[50]
Zhao Q, Yao W F, Huang C P, Wu Q, Xu Q J. ACS Appl. Mater. Interfaces, 2017, 9(49):42734.

doi: 10.1021/acsami.7b13566     URL    
[51]
Zhang L J, Zheng R, Li S, Liu B K, Wang D J, Wang L L, Xie T F. ACS Appl. Mater. Interfaces, 2014, 6(16):13406.

doi: 10.1021/am501216b     URL    
[52]
Wei Y, Cheng G, Xiong J Y, Xu F F, Chen R. ACS Sustainable Chem. Eng., 2017, 5(6):5027.

doi: 10.1021/acssuschemeng.7b00417     URL    
[53]
Zhang H B, Zhang P, Qiu M, Dong J C, Zhang Y F, Lou X W D. Adv. Mater., 2018: 1804883.
[54]
Yu J G, Hai Y, Cheng B. J. Phys. Chem. C, 2011, 115(11):4953.

doi: 10.1021/jp111562d     URL    
[55]
Ran J R, Yu J G, Jaroniec M. Green Chem., 2011, 13(10):2708.

doi: 10.1039/c1gc15465f     URL    
[56]
Ma S, Deng Y P, Xie J, He K L, Liu W, Chen X B, Li X. Appl. Catal. B: Environ., 2018, 227:218.

doi: 10.1016/j.apcatb.2018.01.031     URL    
[57]
Tong R, Sun Z, Wang X N, Wang S P, Pan H. J. Phys. Chem. C, 2019, 123(43):26136.

doi: 10.1021/acs.jpcc.9b07922    
[58]
Sun Z J, Chen H L, Zhang L, Lu D P, Du P W. J. Mater. Chem. A, 2016, 4(34):13289.

doi: 10.1039/C6TA04696G     URL    
[59]
Moniruddin M, Oppong E, Stewart D, McCleese C, Roy A, Warzywoda J, Nuraje N. Inorg. Chem., 2019, 58(18):12325.

doi: 10.1021/acs.inorgchem.9b01854     pmid: 31483615
[60]
Yamakata A, Kawaguchi M, Nishimura N, Minegishi T, Kubota J, Domen K. J. Phys. Chem. C, 2014, 118(41):23897.

doi: 10.1021/jp508233z     URL    
[61]
Mao Z Y, Chen J J, Yang Y F, Wang D J, Bie L J, Fahlman B D. ACS Appl. Mater. Interfaces, 2017, 9(14):12427.

doi: 10.1021/acsami.7b00370     URL    
[62]
Shen R C, Xie J, Lu X Y, Chen X B, Li X. ACS Sustainable Chem. Eng., 2018, 6:4026.

doi: 10.1021/acssuschemeng.7b04403     URL    
[63]
Zong X, Yan H J, Wu G P, Ma G J, Wen F Y, Wang L, Li C. J. Am. Chem. Soc., 2008, 130(23):7176.

doi: 10.1021/ja8007825     pmid: 18473462
[64]
Zhou W J, Yin Z Y, Du Y P, Huang X, Zeng Z Y, Fan Z X, Liu H, Wang J Y, Zhang H. Small, 2013, 9(1):140.

doi: 10.1002/smll.v9.1     URL    
[65]
Zong X, Han J F, Ma G J, Yan H J, Wu G P, Li C. J. Phys. Chem. C, 2011, 115(24):12202.

doi: 10.1021/jp2006777     URL    
[66]
Zhang J, Yu J G, Zhang Y M, Li Q, Gong J R. Nano Lett., 2011, 11(11):4774.

doi: 10.1021/nl202587b     pmid: 21981013
[67]
Li N X, Huang H L, Bibi R, Shen Q H, Ngulube R, Zhou J C, Liu M C. Appl. Surf. Sci., 2019, 476:378.

doi: 10.1016/j.apsusc.2019.01.105     URL    
[68]
Song X F, Shen W H, Sun Z, Yang C, Zhang P, Gao L. Chem. Eng. J., 2016, 290:74.

doi: 10.1016/j.cej.2016.01.030     URL    
[69]
Yuan J L, Wen J Q, Zhong Y M, Li X, Fang Y P, Zhang S S, Liu W. J. Mater. Chem. A, 2015, 3(35):18244.

doi: 10.1039/C5TA04573H     URL    
[70]
Liu W J, Wang X F, Yu H G, Yu J G. ACS Sustainable Chem. Eng., 2018, 6(9):12436.

doi: 10.1021/acssuschemeng.8b02971     URL    
[71]
Chang K, Li M, Wang T, Ouyang S X, Li P, Liu L Q, Ye J H. Adv. Energy Mater., 2015, 5(10):1402279.

doi: 10.1002/aenm.201402279     URL    
[72]
Liu W, Shen J, Liu Q Q, Yang X F, Tang H. Appl. Surf. Sci., 2018, 462:822.

doi: 10.1016/j.apsusc.2018.08.189     URL    
[73]
Liu X, Jiang Y Q, Li Y D, Wang Z, Li J Z, Huo H, Lin K F, Du Y C. ChemCatChem, 2019, 11(24):6244.

doi: 10.1002/cctc.v11.24     URL    
[74]
Dong Y M, Kong L G, Jiang P P, Wang G L, Zhao N, Zhang H Z, Tang B. ACS Sustainable Chem. Eng., 2017, 5(8):6845.

doi: 10.1021/acssuschemeng.7b01079     URL    
[75]
Sun Z J, Zheng H F, Li J S, Du P W. Energy Environ. Sci., 2015, 8(9):2668.

doi: 10.1039/C5EE01310K     URL    
[76]
Sun Z J, Lv B, Li J S, Xiao M, Wang X Y, Du P W. J. Mater. Chem. A, 2016, 4(5):1598.

doi: 10.1039/C5TA07561K     URL    
[77]
Dong Y M, Kong L G, Wang G L, Jiang P P, Zhao N, Zhang H Z. Appl. Catal. B: Environ., 2017, 211:245.

doi: 10.1016/j.apcatb.2017.03.076     URL    
[78]
Li C M, Du Y H, Wang D P, Yin S M, Tu W G, Chen Z, Kraft M, Chen G, Xu R. Adv. Funct. Mater., 2017, 27(4):1604328.

doi: 10.1002/adfm.v27.4     URL    
[79]
Shi Y M, Zhang B. Chem. Soc. Rev., 2016, 45(6):1781.

doi: 10.1039/C6CS90013E     URL    
[80]
Sun Z J, Zheng H F, Li J S, Du P W. Energy Environ. Sci., 2015, 8(9):2668.

doi: 10.1039/C5EE01310K     URL    
[81]
Lubitz W, Ogata H, Rüdiger O, Reijerse E. Chem. Rev., 2014, 114(8):4081.

doi: 10.1021/cr4005814     URL    
[82]
Brown K A, Dayal S, Ai X, Rumbles G, King P W. J. Am. Chem. Soc., 2010, 132(28):9672.

doi: 10.1021/ja101031r     URL    
[83]
Brown K A, Wilker M B, Boehm M, Dukovic G, King P W. J. Am. Chem. Soc., 2012, 134(12):5627.

doi: 10.1021/ja2116348     URL    
[84]
Tard C, Pickett C J. Chem. Rev., 2009, 109(6):2245.

doi: 10.1021/cr800542q     URL    
[85]
Huang J E, Mulfort K L, Du P W, Chen L X. J. Am. Chem. Soc., 2012, 134(40):16472.

doi: 10.1021/ja3062584     pmid: 22989083
[86]
Wang F, Wang W G, Wang X J, Wang H Y, Tung C H, Wu L Z. Angew. Chem., 2011, 123(14):3251.

doi: 10.1002/ange.201006352     URL    
[87]
Li C B, Li Z J, Yu S, Wang G X, Wang F, Meng Q Y, Chen B, Feng K, Tung C H, Wu L Z. Energy Environ. Sci., 2013, 6(9):2597.

doi: 10.1039/c3ee40992a     URL    
[88]
Wen F Y, Wang X L, Huang L, Ma G J, Yang J H, Li C. ChemSusChem, 2012, 5(5):849.

doi: 10.1002/cssc.201200190     URL    
[89]
Cao S W, Liu X F, Yuan Y P, Zhang Z Y, Fang J, Loo S C J, Barber J, Sum T C, Xue C. Phys. Chem. Chem. Phys., 2013, 15(42):18363.

doi: 10.1039/c3cp53350f     URL    
[90]
Holá K, Pavliuk M V, Németh B, Huang P, Zdražil L, Land H, Berggren G, Tian H N. ACS Catal., 2020, 10(17):9943.

doi: 10.1021/acscatal.0c02474     URL    
[91]
Xu H Q, Yang S Z, Ma X, Huang J E, Jiang H L. ACS Catal., 2018, 8(12):11615.

doi: 10.1021/acscatal.8b03233     URL    
[92]
Shen R C, Xie J, Zhang H D, Zhang A P, Chen X B, Li X. ACS Sustainable Chem. Eng., 2018, 6(1):816.

doi: 10.1021/acssuschemeng.7b03169     URL    
[93]
Guo J L, Liang Y H, Liu L, Hu J S, Wang H, An W J, Cui W Q. Appl. Surf. Sci., 2020, 522:146356.

doi: 10.1016/j.apsusc.2020.146356     URL    
[94]
Sun X J, Yang D D, Dong H, Meng X B, Sheng J L, Zhang X, Wei J Z, Zhang F M. Sustain. Energy Fuels, 2018, 2(6):1356.

doi: 10.1039/C8SE00063H     URL    
[95]
Kumar D P, Choi J, Hong S, Reddy D A, Lee S, Kim T K. ACS Sustainable Chem. Eng., 2016, 4(12):7158.

doi: 10.1021/acssuschemeng.6b02032     URL    
[96]
Li K, Zhang Y, Lin Y Z, Wang K, Liu F T. ACS Appl. Mater. Interfaces, 2019, 11(32):28918.

doi: 10.1021/acsami.9b09312     URL    
[97]
Fu J W, Bie C B, Cheng B, Jiang C J, Yu J G. ACS Sustainable Chem. Eng., 2018, 6(2):2767.

doi: 10.1021/acssuschemeng.7b04461     URL    
[98]
Zhang X, Dong H, Sun X J, Yang D D, Sheng J L, Tang H L, Meng X B, Zhang F M. ACS Sustainable Chem. Eng., 2018, 6(9):11563.

doi: 10.1021/acssuschemeng.8b01740     URL    
[99]
Xiang Q J, Yu J G, Jaroniec M. J. Am. Chem. Soc., 2012, 134(15):6575.

doi: 10.1021/ja302846n     URL    
[100]
Chang K, Mei Z W, Wang T, Kang Q, Ouyang S X, Ye J H. ACS Nano, 2014, 8(7):7078.

doi: 10.1021/nn5019945     pmid: 24923678
[101]
Zhang J, Yu J G, Jaroniec M, Gong J R. Nano Lett., 2012, 12(9):4584.

doi: 10.1021/nl301831h     pmid: 22894686
[102]
Shen R C, Xie J, Ding Y N, Liu S Y, Adamski A, Chen X B, Li X. ACS Sustainable Chem. Eng., 2019, 7(3):3243.

doi: 10.1021/acssuschemeng.8b05185     URL    
[103]
Cheng L H, Xie S M, Zou Y J, Ma D D, Sun D K, Li Z H, Wang Z Y, Shi J W. Int. J. Hydrog. Energy, 2019, 44(8):4133.

doi: 10.1016/j.ijhydene.2018.12.159     URL    
[104]
Zhang W Y, Li Y X, Zeng X P, Peng S Q. Sci. Rep., 2015, 5(1):1.
[105]
Ran J R, Zhang J, Yu J G, Qiao S Z. ChemSusChem, 2014, 7(12):3426.

doi: 10.1002/cssc.v7.12     URL    
[106]
Lu X Y, Xie J, Liu S Y, Adamski A, Chen X B, Li X. ACS Sustainable Chem. Eng., 2018, 6(10):13140.

doi: 10.1021/acssuschemeng.8b02653     URL    
[107]
Ren X N, Hu Z Y, Jin J, Wu L, Wang C, Liu J, Liu F, Wu M, Li Y, Tendeloo G V, Su B L. ACS Appl. Mater. Interfaces, 2017, 9(35):29687.

doi: 10.1021/acsami.7b07226     URL    
[108]
Zhang Z Y, Wang Z, Cao S W, Xue C. J. Phys. Chem. C, 2013, 117(49):25939.

doi: 10.1021/jp409311x     URL    
[109]
Zhu Y X, Marianov A, Xu H M, Lang C, Jiang Y J. ACS Appl. Mater. Interfaces, 2018, 10(11):9468.

doi: 10.1021/acsami.8b00393     URL    
[110]
Li Z J, Wang X H, Tian W L, Meng A L, Yang L N. ACS Sustainable Chem. Eng., 2019, 7(24):20190.

doi: 10.1021/acssuschemeng.9b06430     URL    
[111]
Majeed I, Manzoor U, Kanodarwala F K, Nadeem M A, Hussain E, Ali H, Badshah A, Stride J A, Nadeem M A,. Catal. Sci. Technol., 2018, 8(4):1183.

doi: 10.1039/C7CY02219K     URL    
[112]
Bhunia K, Chandra M, Khilari S, Pradhan D. ACS Appl. Mater. Interfaces, 2019, 11(1):478.

doi: 10.1021/acsami.8b12183     URL    
[113]
Han C C, Lu Y, Zhang J L, Ge L, Li Y J. J. Mater. Chem. A 2015, 3:23274.

doi: 10.1039/C5TA05370F     URL    
[114]
Su R, Tiruvalam R, Logsdail A J, He Q, Downing C A, Jensen M T, Dimitratos N, Kesavan L, Wells P P, Bechstein R, Jensen H H, Wendt S, Catlow C R A, Kiely C J, Hutchings G J, Besenbacher F. ACS Nano, 2014, 8(4):3490.

doi: 10.1021/nn500963m     URL    
[115]
Zhang L X, Liu Q L, Aoki T, Crozier P A. J. Phys. Chem. C, 2015, 119(13):7207.

doi: 10.1021/jp512907g     URL    
[116]
Liu Y P, Wang B X, Zhang Q, Yang S Y, Li Y H, Zuo J L, Wang H J, Peng F. Green Chem., 2020, 22(1):238.

doi: 10.1039/C9GC03323H     URL    
[117]
Bai S, Yang L, Wang C L, Lin Y, Lu J L, Jiang J, Xiong Y J. Angew. Chem. Int. Ed., 2015, 54:14810.

doi: 10.1002/anie.v54.49     URL    
[118]
Chen S B, Zhou X F, Liao J H, Yang S Y, Zhou X S, Gao Q Z, Zhang S Q, Fang Y P, Zhong X H, Zhang S S. J. Mater. Chem. A, 2020, 8(6):3481.

doi: 10.1039/C9TA12915D     URL    
[119]
Zhang K, Ran J R, Zhu B C, Ju H X, Yu J G, Song L, Qiao S Z. Small, 2018, 14(38):1801705.

doi: 10.1002/smll.201801705     pmid: 30152582
[120]
Huang L, Wang X L, Yang J H, Liu G, Han J F, Li C. J. Phys. Chem. C, 2013, 117(22):11584.

doi: 10.1021/jp400010z     URL    
[121]
Yu H G, Huang X, Wang P, Yu J G. J. Phys. Chem. C, 2016, 120(7):3722.

doi: 10.1021/acs.jpcc.6b00126     URL    
[122]
Wei R B, Huang Z L, Gu G H, Wang Z, Zeng L X, Chen Y B, Liu Z Q. Appl. Catal. B: Environ., 2018, 231:101.

doi: 10.1016/j.apcatb.2018.03.014     URL    
[123]
Jiang Q Q, Li L, Bi J H, Liang S J, Liu M H. Nanomaterials, 2017, 7(2):24.

doi: 10.3390/nano7020024     URL    
[124]
Zhang J K, Yu Z B, Gao Z, Ge H B, Zhao S C, Chen C Q, Chen S, Tong X L, Wang M H, Zheng Z F, Qin Y. Angew. Chem. Int. Ed., 2017, 56(3):816.

doi: 10.1002/anie.v56.3     URL    
[125]
Wang D A, Hisatomi T, Takata T, Pan C S, Katayama M, Kubota J, Domen K. Angew. Chem., 2013, 125(43):11462.

doi: 10.1002/ange.v125.43     URL    
[126]
Li R G, Han H X, Zhang F X, Wang D, Li C. Energy Environ. Sci., 2014, 7(4):1369.

doi: 10.1039/C3EE43304H     URL    
[127]
Meng A Y, Zhang J, Xu D F, Cheng B, Yu J G. Appl. Catal. B: Environ., 2016, 198:286.

doi: 10.1016/j.apcatb.2016.05.074     URL    
[128]
Mu L C, Zhao Y, Li A L, Wang S Y, Wang Z L, Yang J X, Wang Y, Liu T F, Chen R T, Zhu J, Fan F T, Li R G, Li C. Energy Environ. Sci., 2016, 9(7):2463.

doi: 10.1039/C6EE00526H     URL    
[129]
Ding J J, Li X Y, Chen L, Zhang X, Yin H, Tian X Y. ACS Appl. Mater. Interfaces., 2019, 11:835.

doi: 10.1021/acsami.8b17663     URL    
[130]
Yang J H, Yan H J, Wang X L, Wen F Y, Wang Z J, Fan D Y, Shi J Y, Li C. J. Catal., 2012, 290:151.

doi: 10.1016/j.jcat.2012.03.008     URL    
[131]
Aronovitch E, Houben L, Bar-Sadan M. Chem. Mater., 2019, 31(18):7231.

doi: 10.1021/acs.chemmater.9b01523    
[132]
Marciniak S J, Ron D. Physiol. Rev., 2006, 86(4):1133.

pmid: 17015486
[133]
Shi X W, Fujitsuka M, Kim S, Majima T. Small, 2018, 14(11):1703277.

doi: 10.1002/smll.v14.11     URL    
[134]
Wang X Z, Meng S L, Xiao H Y, Feng K, Wang Y, Jian J X, Li X B, Tung C H, Wu L Z. Angew. Chem. Int. Ed., 2020, 59(42):18400.

doi: 10.1002/anie.v59.42     URL    
[135]
Zhang L Y, Morello G, Carr S B, Armstrong F A. J. Am. Chem. Soc., 2020, 142(29):12699.

doi: 10.1021/jacs.0c04302     URL    
[136]
Wang W J, Song X W, Hong Z X, Li B B, Si Y N, Ji C Q, Su K Z, Tan Y X, Ju Z F, Huang Y Y, Chen C N, Yuan D Q. Appl. Catal. B: Environ., 2019, 258:117979.

doi: 10.1016/j.apcatb.2019.117979     URL    
[137]
Gao S, Fan W H, Liu Y, Jiang D Y, Duan Q. Int. J. Hydrog. Energy, 2020, 45(7):4305.

doi: 10.1016/j.ijhydene.2019.11.206     URL    
[138]
Xie G C, Zhang K, Guo B D, Liu Q, Fang L, Gong J R. Adv. Mater., 2013, 25(28):3820.

doi: 10.1002/adma.v25.28     URL    
[139]
Zhang J, Yu J G, Jaroniec M, Gong J R. Nano Lett., 2012, 12(9):4584.

doi: 10.1021/nl301831h     pmid: 22894686
[140]
Lv X J, Zhou S X, Zhang C, Chang H X, Chen Y, Fu W F. J. Mater. Chem., 2012, 22(35):18542.

doi: 10.1039/c2jm33325b     URL    
[141]
Wang Y, Yu J G, Xiao W, Li Q. J. Mater. Chem. A, 2014, 2(11):3847.

doi: 10.1039/C3TA14908K     URL    
[142]
Zhao L W, Xu H B, Jiang B, Huang Y D. Part. Part. Syst. Charact., 2017, 34(3):1600323.

doi: 10.1002/ppsc.v34.3     URL    
[143]
Li X Y, Chen F, Lian C J, Zheng S Z, Hu Q H, Duo S W, Li W K, Hu C Y. J. Clust. Sci., 2016, 27(6):1877.

doi: 10.1007/s10876-016-1049-0     URL    
[144]
Dang X M, Zhang X F, Lu Z Y, Yang Z Z, Dong X L, Zhang X X, Ma C, Ma H C, Xue M, Shi F. J. Nanoparticle Res., 2014, 16(2):1.
[145]
Ghasemi S, Hashemian S J, Alamolhoda A A, Gocheva I, Rahman Setayesh S. Mater. Res. Bull., 2017, 87:40.

doi: 10.1016/j.materresbull.2016.11.020     URL    
[146]
Lang Q Q, Chen Y H, Huang T L, Yang L N, Zhong S X, Wu L J, Chen J R, Bai S. Appl. Catal. B: Environ., 2018, 220:182.

doi: 10.1016/j.apcatb.2017.08.045     URL    
[147]
Li Y H, Qi M Y, Li J Y, Tang Z R, Xu Y J. Appl. Catal. B: Environ., 2019, 257:117934.

doi: 10.1016/j.apcatb.2019.117934     URL    
[148]
Gao D D, Liu W J, Xu Y, Wang P, Fan J J, Yu H G. Appl. Catal. B: Environ., 2020, 260:118190.

doi: 10.1016/j.apcatb.2019.118190     URL    
[149]
Subramanian V, Wolf E E, Kamat P V. J. Am. Chem. Soc., 2004, 126(15):4943.

doi: 10.1021/ja0315199     URL    
[150]
Schweinberger F F, Berr M J, Döblinger M, Wolff C, Sanwald K E, Crampton A S, Ridge C J, Jäckel F, Feldmann J, Tschurl M, Heiz U. J. Am. Chem. Soc., 2013, 135(36):13262.

doi: 10.1021/ja406070q     pmid: 23961721
[151]
Von Issendorff B, Cheshnovsky O. Annu. Rev. Phys. Chem., 2005, 56(1):549.

doi: 10.1146/annurev.physchem.54.011002.103845     URL    
[152]
Luo M H, Yao W F, Huang C P, Wu Q, Xu Q J. J. Mater. Chem. A, 2015, 3(26):13884.

doi: 10.1039/C5TA00218D     URL    
[153]
Chen X B, Shen S H, Guo L J, Mao S S. Chem. Rev., 2010, 110(11):6503.

doi: 10.1021/cr1001645     URL    
[154]
Vamvasakis I, Liu B, Armatas G S. Adv. Funct. Mater., 2016, 26(44):8062.

doi: 10.1002/adfm.v26.44     URL    
[155]
Ben-Shahar Y, Scotognella F, Kriegel I, Moretti L, Cerullo G, Rabani E, Banin U. Nat. Commun., 2016, 7(1):1.
[156]
Karakus M, Sung Y, Wang H I, Mics Z, Char K, Bonn M, Cánovas E. J. Phys. Chem. C, 2017, 121(24):13070.

doi: 10.1021/acs.jpcc.7b03639     URL    
[157]
Nakibli Y, Mazal Y, Dubi Y, Wächtler M, Amirav L. Nano Lett., 2018, 18(1):357.

doi: 10.1021/acs.nanolett.7b04210     pmid: 29236508
[158]
Zhuang P, Yue H Y, Dong H, Zhou X. New J. Chem., 2020, 44(14):5428.

doi: 10.1039/C9NJ06398F     URL    
[159]
Li Y H, Xing J, Yang X H, Yang H G. Chem. Eur. J., 2014, 20(39):12377.

doi: 10.1002/chem.v20.39     URL    
[160]
Park H, Choi W, Hoffmann M R. J. Mater. Chem., 2008, 18(20):2379.

doi: 10.1039/b718759a     URL    
[161]
Qi M Y, Li Y H, Zhang F, Tang Z R, Xiong Y J, Xu Y J. ACS Catal., 2020, 10(5):3194.

doi: 10.1021/acscatal.9b05420     URL    
[162]
Xiao J D. Doctoral Dissertation of University of Science and Technology of China, 2017.
( 肖娟定. 中国科学技术博士论文, 2017.)
[163]
Xiao J D, Shang Q C, Xiong Y J, Zhang Q, Luo Y, Yu S H, Jiang H L. Angew. Chem. Int. Ed., 2016, 55(32):9389.

doi: 10.1002/anie.v55.32     URL    
[164]
She P, Rao H, Guan B Y, Qin J S, Yu J H. ACS Appl. Mater. Interfaces, 2020, 12(20):23356.

doi: 10.1021/acsami.0c04905     URL    
[165]
Sun X H, Du H. ACS Sustainable Chem. Eng., 2019, 7(19):16320.

doi: 10.1021/acssuschemeng.9b03361     URL    
[166]
Ma B J, Zhang J W, Lin K Y, Li D K, Liu Y H, Yang X. ACS Sustainable. Chem. Eng., 2019, 7:13569.

doi: 10.1021/acssuschemeng.9b03334     URL    
[167]
Li J, Zhang L, Li J W, An P, Hou Y D, Zhang J S. ACS Sustainable Chem. Eng., 2019, 7(16):14023.

doi: 10.1021/acssuschemeng.9b02529     URL    
[168]
Narayanan R, El-Sayed M A. J. Am. Chem. Soc., 2004, 126(23):7194.

pmid: 15186154
[169]
Wang W C, Zhu S, Cao Y N, Tao Y, Li X, Pan D L, Phillips D L, Zhang D Q, Chen M, Li G S, Li H X. Adv. Funct. Mater., 2019, 29(36):1901958.

doi: 10.1002/adfm.v29.36     URL    
[170]
Cao S W, Li H, Li Y, Zhu B C, Yu J G. ACS Sustainable Chem. Eng., 2018, 6(5):6478.

doi: 10.1021/acssuschemeng.8b00259     URL    
[171]
Yao J, Zheng Y R, Jia X, Duan L X, Wu Q, Huang C P, An W, Xu Q J, Yao W F. ACS Appl. Mater. Interfaces, 2019, 11(29):25844.

doi: 10.1021/acsami.9b05572     URL    
[172]
Berr M J, Vaneski A, Mauser C, Fischbach S, Susha A S, Rogach A L, Jäckel F, Feldmann J. Small, 2012, 8(2):291.

doi: 10.1002/smll.201101317     URL    
[173]
Luo M H, Lu P, Yao W F, Huang C P, Xu Q J, Wu Q, Kuwahara Y, Yamashita H. ACS Appl. Mater. Interfaces, 2016, 8(32):20667.

doi: 10.1021/acsami.6b04388     URL    
[174]
Jiang W Y, Bai S, Wang L M, Wang X J, Yang L, Li Y R, Liu D, Wang X N, Li Z Q, Jiang J, Xiong Y J. Small, 2016, 12(12):1640.

doi: 10.1002/smll.201503552     URL    
[175]
Yi L H, Lan F J, Li J G, Zhao C X. ACS Sustainable Chem. Eng., 2018, 6:12766.

doi: 10.1021/acssuschemeng.8b02001     URL    
[176]
Simon T, Carlson M T, Stolarczyk J K, Feldmann J. ACS Energy Lett., 2016, 1(6):1137.

doi: 10.1021/acsenergylett.6b00468     URL    
[177]
Wu K F, Zhu H M, Lian T Q. Acc. Chem. Res., 2015, 48(3):851.

doi: 10.1021/ar500398g     URL    
[178]
Zhang L, Fu X L, Meng S G, Jiang X L, Wang J H, Chen S F. J. Mater. Chem. A, 2015, 3(47):23732.

doi: 10.1039/C5TA07459B     URL    
[179]
Murdoch M, Waterhouse G I N, Nadeem M A, Metson J B, Keane M A, Howe R F, Llorca J, Idriss H. Nat. Chem., 2011, 3(6):489.

doi: 10.1038/nchem.1048     pmid: 21602866
[180]
Li N, Ding Y X, Wu J J, Zhao Z J, Li X T, Zheng Y Z, Huang M L, Tao X. ACS Appl. Mater. Interfaces, 2019, 11(25):22297.

doi: 10.1021/acsami.9b03965     URL    
[181]
Liu J N, Jia Q H, Long J L, Wang X X, Gao Z W, Gu Q. Appl. Catal. B: Environ., 2018, 222:35.

doi: 10.1016/j.apcatb.2017.09.073     URL    
[182]
Mak K F, Lee C G, Home J, Shan J, Heinz T F. Phys. Rev. Lett., 2010, 105:136805.

doi: 10.1103/PhysRevLett.105.136805     URL    
[183]
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Nat. Nanotechnol., 2012, 7(11):699.

doi: 10.1038/nnano.2012.193     URL    
[184]
Chang K, Li M, Wang T, Ouyang S X, Li P, Liu L Q, Ye J H. Adv. Energy Mater., 2015, 5(10):1402279.

doi: 10.1002/aenm.201402279     URL    
[185]
Chen J Z, Wu X J, Yin L S, Li B, Hong X, Fan Z X, Chen B, Xue C, Zhang H. Angew. Chem. Int. Ed., 2015, 54(4):1210.

doi: 10.1002/anie.201410172     URL    
[186]
Liu M J, Xia P F, Zhang L Y, Cheng B, Yu J G. ACS Sustainable Chem. Eng., 2018, 6(8):10472.

doi: 10.1021/acssuschemeng.8b01835     URL    
[187]
Xue J W, Fujitsuka M, Majima T. ACS Appl. Mater. Interfaces, 2020, 12(5):5920.

doi: 10.1021/acsami.9b20247     URL    
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[9] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[10] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[11] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[12] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[13] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[14] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[15] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
阅读次数
全文


摘要

光催化制氢的助催化剂