English
新闻公告
More
化学进展 2015, Vol. 27 Issue (10): 1481-1499 DOI: 10.7536/PC150436 前一篇   后一篇

• 综述与评论 •

两步热化学分解水制氢用氧交换材料

翟康1,3, 李孔斋1,2, 祝星1,2*, 魏永刚1,2   

  1. 1. 昆明理工大学省部共建复杂有色金属资源清洁利用国家重点实验室 昆明 650093;
    2. 昆明理工大学冶金与能源工程学院 昆明 65009;
    3. 昆明理工大学化学工程学院 昆明 650500
  • 收稿日期:2015-04-01 修回日期:2015-06-01 出版日期:2015-10-15 发布日期:2015-09-10
  • 通讯作者: 祝星 E-mail:zhuxing2010@hotmail.com
  • 基金资助:
    国家自然科学基金项目(No.51204083,51174105,51374004,51206071),云南省应用基础研究项目(No.2012FD016,2014FB123),云南省中青年学术和技术带头人后备人才(No.2012HB009,2014HB006)

Oxygen Exchange Materials Used in Two-Steps Thermochemical Water Splitting for Hydrogen Production

Zhai Kang1,3, Li Kongzhai1,2, Zhu Xing1,2*, Wei Yonggang1,2   

  1. 1. State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, China;
    2. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 65009;
    3. Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • Received:2015-04-01 Revised:2015-06-01 Online:2015-10-15 Published:2015-09-10
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51204083, 51174105, 51374004, 51206071), the Applied Basic Research Program of Yunnan Province (No. 2012FD016, 2014FB123), the Young and Middle-Aged Academic and the Candidate Talents Training Fund of Yunnan Province (No. 2012HB009, 2014HB006).
氧交换材料是一种能够在惰性或还原气氛中快速释氧,而在弱氧化气氛下(如水蒸气)恢复氧的储氧材料。基于氧交换材料的太阳能热化学分解水制氢技术可实现太阳能向氢能的高效转化。该技术利用太阳能提供热量使氧交换材料高温释氧或被还原性气体还原,而后与水发生氧化反应生成纯氢。将氧交换材料制成透氧膜,在膜的两侧发生材料的释氧和氧恢复,同时实现纯氢的连续制备。本文详细论述了铁基氧化物、钙钛矿氧化物、镍基氧化物、铈基氧化物、无机透氧膜等氧交换材料的研究成果,重点介绍了基于不同反应体系氧交换材料的应用情况,并就提高铁基氧化物、钙钛矿氧化物等典型氧交换材料反应活性与循环稳定性的可能路径,构建高效透氧膜反应器的难点与发展方向等主要问题进行了探讨与展望。
Oxygen exchange material is a kind of oxygen storage material which can release oxygen in a inert atmosphere and restore oxygen in a weak oxidation atmosphere. Thermochemical water splitting (TWS) technology is a promising process for the conversion of solar energy to hydrogen, which strongly replies on the development of the oxygen exchange materials (OEM). In a TWS process, the OEM could release its lattice oxygen via thermal decomposition or by reducing gas heated by solar energy, and then it would be reoxidized with water vapor to produce pure hydrogen. Some suitable OEMs can also be prepared to oxygen transport membranes (OTM), which enable the simultaneous occurence of the oxygen releasing and oxgyen restoring on each side of the materials, producing hydrogen successively. This review mainly introduce the recent developments on the OEMs, including Fe-based oxides, perovskite oxides, Ni-based oxides, Ce-based oxides, OTM. The main challenges in OEM, such as the provement of activity and cyclic stability of Fe-based oxides and perovskite oxides for water splitting, and realization of highly-efficient OTM reactor are discussed. Finally, future development trends in this area are prospected based on our researches.

Contents
1 Introduction
2 Redox oxygen exchange materials (Redox-OEM)
2.1 Thermochemical reduction system
2.2 CH4 reduction system
2.3 Syngas/CO reduction system
2.4 H2 reduction system
3 Oxygen Transport Membranes (OTM-OEM)
3.1 CO/H2 reduction system
3.2 CH4 reduction system
3.3 Other systems
4 Conclusion and outlook

中图分类号: 

()
[1] Xiao R, Zhang S, Peng S, Shen D, Liu K. Int. J. Hydrogen Energy, 2014, 39 (35): 19955.
[2] Roeb M, Sattler C. Science, 2013, 341 (6145): 470.
[3] Muhich C L, Evanko B W, Weston K C, Lichty P, Liang X, Martinek J, Musgrave C B, Weimer A W. Science, 2013, 341 (6145): 540.
[4] Hajjaji N, Baccar I, Pons M N. Renew. Energ., 2014, 71: 368.
[5] Cipriani G, Di Dio V, Genduso F, La Cascia D, Liga R, Miceli R, Ricco Galluzzo G. Int. J. Hydrogen Energy, 2014, 39 (16): 8482.
[6] 吴川(Wu C), 张华民(Zhang H M), 衣宝廉(Yi B L). 化学进展(Progress in Chemistry), 2005, 17 (3): 423.
[7] Holladay J D, Hu J, King D L, Wang Y. Catal. Today, 2009, 139 (4): 244.
[8] Satyapal S, Petrovic J, Read C, Thomas G, Ordaz G. Catal. Today, 2007, 120 (3/4): 246.
[9] Fuel Cells Bulletin, 2009, 5: 7.
[10] Fuel Cells Bulletin, 2007, 6: 2.
[11] Haraldsson K, Folkesson A, Alvfors P. J. Power Sources, 2005, 145 (2): 620.
[12] Saxe M, Folkesson A, Alvfors P. Int. J. Hydrogen Energy, 2007, 32 (17): 4295.
[13] Sun K, Pan X, Li Z, Ma J. Int. J. Hydrogen Energy, 2014, 39 (35): 20411.
[14] Demirci U B, Miele P. J. Clean. Prod., 2013, 52: 1.
[15] Acar C, Dincer I. Int. J. Hydrogen Energy, 2014, 39 (1): 1.
[16] Dincer I. Int. J. Hydrogen Energy, 2012, 37 (2): 1954.
[17] Chueh W C, Falter C, Abbott M, Scipio D, Furler P, Haile S M, Steinfeld A. Science, 2010, 330 (6012): 1797.
[18] Bi D? áková O, Straka P. Int. J. Hydrogen Energy, 2012, 37 (16): 11563.
[19] Wang Z, Roberts R R, Naterer G F, Gabriel K S. Int. J. Hydrogen Energy, 2012, 37 (21): 16287.
[20] Funk J E, Reinstrom R M. Ind. Eng. Chem. Process Design and Development, 1966, 5 (3): 336.
[21] 张平(Zhang P). 化学进展(Progress in Chemistry), 2005, 17 (4): 643.
[22] Scheffe J R, Steinfeld A. Mater. Today, 2014, 17 (7): 341.
[23] Gupta S, Mahapatra M K, Singh P. Mater. Sci. Eng. R, 2015, 90: 1.
[24] Kodama T, Gokon N. Chem. Rev., 2007, 107 (10): 4048.
[25] Agrafiotis C, von Storch H, Roeb M, Sattler C. Renew. Sust. Energ. Rev., 2014, 29: 656.
[26] LeValley T L, Richard A R, Fan M. Int. J. Hydrogen Energy, 2014, 39 (30): 16983.
[27] Takenaka S, Yamada C, Kaburagi T, Otsuka K. Storage and Supply of Hydrogen Mediated by Iron Oxide: Modification of Iron Oxides. Amsterdam: Elsevier, 2000. 795.
[28] Steinfeld A. Sol. Energy, 2005, 78 (5): 603.
[29] 代小平(Dai X P), 余长春(Yu C C). 化学进展(Progress in Chemistry), 2009, (Z2): 1626.
[30] 祝星(Zhu X), 王华(Wang H), 魏永刚(Wei Y G), 李孔斋(Li K Z), 晏冬霞. 化学进展(Progress in Chemistry), 2010, 22 (5): 1010.
[31] Steinfeld A, Palumbo R. Solar Thermochemical Process Technology (Eds. Meyers R A). New York: Academic Press, 2003. 237.
[32] Hirsch D, Steinfeld A. Chem. Eng. Sci., 2004, 59 (24): 5771.
[33] Wegner K, Ly H C, Weiss R J, Pratsinis S E, Steinfeld A. Int. J. Hydrogen Energy, 2006, 31 (1): 55.
[34] 张磊(Zhang L), 张平(Zhang P), 王建晨(Wang J C). 太阳能学报(Acta Energiae Solaris Sinica ), 2006, 27 (12): 1263.
[35] 张文强(Zhang W Q), 于波(Yu B), 张平(Zhang P), 陈靖(Chen J), 徐景明(Xu J M). 化学进展(Progress in Chemistry), 2006, 18 (6): 832.
[36] Gokon N, Kondo K, Hatamachi T, Sato M, Kodama T. Int. J. Hydrogen Energy, 2013, 38 (12): 4935.
[37] Kaneko H, Hosokawa Y, Kojima N, Gokon N, Hasegawa N, Kitamura M, Tamaura Y. Energy, 2001, 26 (10): 919.
[38] Kaneko H, Hosokawa Y, Gokon N, Kojima N, Hasegawa N, Kitamura M, Tamaura Y. J. Phys. Chem. Solids, 2001, 62 (7): 1341.
[39] Alvani C, Ennas G, La Barbera A, Marongiu G, Padella F, Varsano F. Int. J. Hydrogen Energy, 2005, 30 (13/14): 1407.
[40] Seralessandri L, Bellusci M, Padella F, Santini A, Varsano F. Int. J. Hydrogen Energy, 2009, 34 (10): 4546.
[41] Koepf E, Advani S G, Steinfeld A, Prasad A K, Int. J. Hydrogen Energy, 2012, 37 (22): 16871.
[42] Steinfeld A. Int. J. Hydrogen Energy, 2002, 27 (6): 611.
[43] Perkins C, Lichty P R, Weimer A W. Int. J. Hydrogen Energy, 2008, 33 (2): 499.
[44] Loutzenhiser P G, Meier A, Steinfeld A. Materials, 2010, 3 (11): 4922.
[45] Abanades S, Charvin P, Lemont F, Flamant G. Int. J. Hydrogen Energy, 2008, 33 (21): 6021.
[46] Nakamura T. Sol. Energy, 1977, 19 (5): 467.
[47] Coker E N, Ambrosini A, Rodriguez M A, Miller J E. J. Mater. Chem., 2011, 21 (29): 10767.
[48] Charvin P, Abanades S, Flamant G, Lemort F. Energy, 2007, 32 (7): 1124.
[49] Kodama T, Nakamuro Y, Mizuno T. J. Sol. Energy Engineering, 2004, 128 (1): 3.
[50] Gokon N, Murayama H, Umeda J, Hatamachi T, Kodama T. Int. J. Hydrogen Energy, 2009, 34 (3): 1208.
[51] Kodama T, Kondoh Y, Yamamoto R, Andou H, Satou N. Sol. Energy, 2005, 78 (5): 623.
[52] Scheffe J R, McDaniel A H, Allendorf M D, Weimer A W. Energ. Environ. Sci., 2013, 6 (3): 963.
[53] Scheffe J R, Li J, Weimer A W. Int. J. Hydrogen Energy, 2010, 35 (8): 3333.
[54] Arifin D, Aston V J, Liang X, McDaniel A H, Weimer A W. Energ. Environ. Sci., 2012, 5 (11): 9438.
[55] Chueh W C, Haile S M. Philos. Trans. A Math. Phys. Eng. Sci., 2010, 368 (1923): 3269.
[56] Furler P, Scheffe J, Gorbar M, Moes L, Vogt U, Steinfeld A. Solar thermochemical CO2 splitting utilizing a reticulated porous ceria redox system. New Orleans, LA: Am. Chem. Soc., 2013. 245.
[57] Hao Y, Yang C K, Haile S M. Phys. Chem. Chem. Phys., 2013, 15 (40): 17084.
[58] Abanades S, Legal A, Cordier A, Peraudeau G, Flamant G, Julbe A. J. Mater. Sci., 2010, 45 (15): 4163.
[59] Le Gal A, Abanades S, Bion N, Le Mercier T, Harlé V. Energ. Fuel., 2013, 27 (10): 6068.
[60] Meng Q L, Lee C, Ishihara T, Kaneko H, Tamaura Y. Int. J. Hydrogen Energy, 2011, 36 (21): 13435.
[61] McDaniel A H, Miller E C, Arifin D, Ambrosini A, Coker E N, O'Hayre R, Chueh W C, Tong J. Energ. Environ. Sci., 2013, 6 (8): 2424.
[62] Scheffe J R, Weibel D, Steinfeld A. Energ. Fuel., 2013, 27 (8): 4250.
[63] El Naggar A M A, Gobara H M, Nassar I M. Renew. Sust. Energ. Rev., 2015, 41: 1205.
[64] Demont A, Abanades S, Beche E. J. Phys. Chem. C, 2014, 118 (24): 12682.
[65] McDaniel A H, Ambrosini A, Coker E N, Miller J E, Chueh W C, O'Hayre R, Tong J. Nonstoichiometric Perovskite Oxides for Solar Thermochemical H2 and CO Production. Amsterdam: Elsevier, 2014. 2009.
[66] Miller J E, Ambrosini A, Coker E N, Allendorf M D, McDaniel A H. Advancing Oxide Materials for Thermochemical Production of Solar Fuels. Amsterdam: Elsevier, 2014.2019.
[67] Wei B, Fakhrai R, Saadatfar B. Int. J. Hydrogen Energy, 2014, 39 (23): 12353.
[68] 李孔斋(Li K Z), 王华(Wang H), 魏永刚(Wei Y G), 敖先权(Ao X Q), 刘明春(Liu M C). 化学进展(Progress in Chemistry), 2008, 20 (9): 1306.
[69] Li K, Wang H, Wei Y, Liu M. J. Rare Earth., 2008, 26 (5): 705.
[70] 李然家(Li R J), 余长春(Yu C C), 代小平(Dai X P), 沈师孔(Shen S K). 催化学报(Chinese J. Catal.), 2002, 23 (4): 381.
[71] 孙小燕(Sun X Y), 向文国(Xiang W G), 田文栋(Tian W D), 徐祥(Xu X) 徐燕骥(Xu Y J), 肖云汉(Xiao Y H). 燃烧科学与技术(Journal of Combustion Science and Technology), 2011, 17 (6): 534.
[72] Steinfeld A, Spiewak I. Energ. Convers. Manage., 1998, 39 (15): 1513.
[73] Werder M, Steinfeld A. Energy, 2000, 25 (5): 395.
[74] Otsuka K, Wang Y, Sunada E, Yamanaka I. J. Catal., 1998, 175 (2): 152.
[75] Otsuka K, Wang Y, Nakamura M. Appl. Catal. A. Gen., 1999, 183 (2): 317.
[76] Cha K S, Kim H S, Yoo B K, Lee Y S, Kang K S, Park C S, Kim Y H. Int. J. Hydrogen Energy, 2009, 34 (4): 1801.
[77] Solunke R D, Veser G t. Ind. Eng. Chem. Res., 2010, 49 (21): 11037.
[78] Dueso C, Ortiz M, Abad A, García Labiano F, de Diego L F, Gayán P, Adánez J. Chem. Eng. J., 2012, 188: 142.
[79] Zhang X, Jin H. Appl. Energ., 2013, 112: 800.
[80] Zhang X, Li S, Hong H, Jin H. Energ. Convers. Manage., 2014, 85: 701.
[81] Benrabaa R, Boukhlouf H, Löfberg A, Rubbens A, Vannier R N, Bordes Richard E, Barama A. J. Nat.Gas Chem., 2012, 21 (5): 595.
[82] Benrabaa R, Löfberg A, Rubbens A, Bordes Richard E, Vannier R N, Barama A. Catal. Today, 2013, 203: 188.
[83] Xiang W, Wang S, Di T. Energ, Fuel., 2008, 22 (2): 961.
[84] Chen S, Shi Q, Xue Z, Sun X, Xiang W. Int. J. Hydrogen Energy, 2011, 36 (15): 8915.
[85] Dufour J, Serrano D P, Gálvez J L, González A, Soria E, Fierro J L G. Int. J. Hydrogen Energy, 2012, 37 (2): 1173.
[86] Susmozas A, Iribarren D, Dufour J. Int. J. Hydrogen Energy, 2013, 38 (24): 9961.
[87] Malonzo C D, De Smith R M, Rudisill S G, Petkovich N D, Davidson J H, Stein A. J. Phys. Chem. C, 2014, 118 (45): 26172.
[88] Jeong H H, Kwak J H, Han G Y, Yoon K J. Int. J. Hydrogen Energy, 2011, 36 (23): 15221.
[89] Sim A, Cant N W, Trimm D L. Int. J. Hydrogen Energy, 2010, 35 (17): 8953.
[90] Zhu X, Wang H, Wei Y, Li K, Cheng X. Mendeleev Commun., 2011, 21 (4): 221.
[91] Zheng Y, Wei Y, Li K, Zhu X, Wang H, Wang Y. Int. J. Hydrogen Energy, 2014, 39 (25): 13361.
[92] Zheng Y, Zhu X, Wang H, Li K, Wang Y, Wei Y. J. Rare Earth., 2014, 32 (9): 842.
[93] Zhu X, Wang H, Wei Y, Li K, Cheng X. J. Rare Earth., 2010, 28 (6): 907.
[94] Zhu X, Wei Y, Wang H, Li K. Int. J. Hydrogen Energy, 2013, 38 (11): 4492.
[95] Zhu X, Du Y, Wang H, Wei Y, Li K, Sun L. J. Rare Earth., 2014, 32 (9): 824.
[96] Zhu X, Li K, Wei Y, Wang H, Sun L. Energ. Fuel., 2014, 28 (2): 754.
[97] Galvita V V, Poelman H, Bliznuk V, Detavernier C, Marin G B. Ind. Eng. Chem. Res., 2013, 52 (25): 8416.
[98] Yamaguchi D, Tang L, Wong L, Burke N, Trimm D, Nguyen K, Chiang K. Int. J. Hydrogen Energy, 2011, 36 (11): 6646.
[99] 李孔斋(Li K Z),王华(Wang H),魏永刚(Wei Y G),刘明春(Liu M C).燃料化学学报(Journal of Fuel Chemistry and Technology ), 2008, 36 (1): 83.
[100] Wei Y, Wang H, Li K, Zhu X, Du Y. J. Rare Earth., 2010, 28, Supplement 1: 357.
[101] Li K, Wang H, Wei Y, Yan D. Appl. Catal. B. Environ., 2010, 97 (3/4): 361.
[102] Li K, Wang H, Wei Y, Yan D. Chem. Eng. J., 2011, 173 (2): 574.
[103] Cheng X, Wang H, Wei Y, Li K, Zhu X. J. Rare Earth., 2010, 28, S1: 316.
[104] Evdou A, Zaspalis V, Nalbandian L. Int. J. Hydrogen Energy, 2008, 33 (20): 5554.
[105] Nalbandian L, Evdou A, Zaspalis V. Int. J. Hydrogen Energy, 2009, 34 (17): 7162.
[106] Nalbandian L, Evdou A, Zaspalis V. Int. J. Hydrogen Energy, 2011, 36 (11): 6657.
[107] 李然家(Li R J),余长春(Yu C C), 代小平(Dai X P), 沈师孔(Shen S K). 催化学报(Chinese J. Catal.), 2002, 23 (6): 549.
[108] 代小平(Dai X P), 余长春(Yu C C), 吴琼(Wu Q). 催化学报(Chinese J. Catal.), 2008, 29 (10): 954.
[109] Dai X, Yu C, Li R, Wu Q, Hao Z. J. Rare Earth., 2008, 26 (1): 76.
[110] Dai X, Yu C, Wu Q. Chinese J. Catal., 2008, 29 (10): 954.
[111] Dai X, Yu C, Li R, Wu Q, Shi K, Hao Z. J. Rare Earth., 2008, 26 (3): 341.
[112] Dai X, Yu C, Wu Q. J. Nat. Gas Chem., 2008, 17 (4): 415.
[113] 代小平(Dai X P), 余长春(Yu C C). 催化学报(Chinese J. Catal.), 2011, 32 (8): 1411.
[114] He F, Li X, Zhao K, Huang Z, Wei G, Li H. Fuel, 2013, 108: 465.
[115] Zhao K, He F, Huang Z, Zheng A, Li H, Zhao Z. Chinese J. Catal., 2014, 35 (7): 1196.
[116] He F, Zhao K, Huang Z, Li X, Wei G, Li H. Chinese J. Catal., 2013, 34 (6): 1242.
[117] Zhao K, He F, Huang Z, Zheng A, Li H, Zhao Z. Int. J. Hydrogen Energy, 2014, 39 (7): 3243.
[118] Galvita V, Sundmacher K. Chem. Eng. J., 2007, 134 (1/3): 168.
[119] Galvita V, Schröder T, Munder B, Sundmacher K. Int. J. Hydrogen Energy, 2008, 33 (4): 1354.
[120] Heidebrecht P, Sundmacher K. Chem. Eng. Sci., 2009, 64 (23): 5057.
[121] Bohn C D, Cleeton J P, Müller C R, Chuang S Y, Scott S A, Dennis J S. Energ. Fuel., 2010, 24 (7): 4025.
[122] Cormos C C. Int. J. Hydrogen Energy, 2010, 35 (6): 2278.
[123] Scheffe J R, Allendorf M D, Coker E N, Jacobs B W, McDaniel A H, Weimer A W. Chem. Mater., 2011, 23 (8): 2030.
[124] Xiang W, Chen S, Xue Z, Sun X. Int. J. Hydrogen Energy, 2010, 35 (16): 8580.
[125] Aston V J, Evanko B W, Weimer A W. Int. J. Hydrogen Energy, 2013, 38 (22): 9085.
[126] Otsuka K, Yamada C, Kaburagi T, Takenaka S. Int. J. Hydrogen Energy, 2003, 28 (3): 335.
[127] Otsuka K, Kaburagi T, Yamada C, Takenaka S. J. Power Sources, 2003, 122 (2): 111.
[128] Hui W, Takenaka S, Otsuka K. Int. J. Hydrogen Energy, 2006, 31 (12): 1732.
[129] Lee D, Cha K, Lee Y, Kang K, Park C, Kim Y. Int. J. Hydrogen Energy, 2009, 34 (3): 1417.
[130] Kim H S, Cha K S, Yoo B K, Ryu T G, Lee Y S, Park C S, Kim Y H. J. Ind. Eng. Chem., 2010, 16 (1): 81.
[131] Zhu X, Sun L, Zheng Y, Wang H, Wei Y, Li K. Int. J. Hydrogen Energy, 2014, 39 (25): 13381.
[132] Liu X, Wang H. J. Solid State Chem., 2010, 183 (5): 1075.
[133] Wen F, Wang H, Tang Z. Thermochim. Acta, 2011, 520 (1/2): 55.
[134] Balachandran U, Lee T H, Wang S, Dorris S E. Int. J. Hydrogen Energy, 2004, 29 (3): 291.
[135] Lee T H, Park C Y, Dorris S E, Balachandran U. ECS Transactions, 2008, 13: 379.
[136] 程云飞(Cheng Y F), 赵海雷(Zhao H L), 王治峰(Wang Z F), 滕德强(Teng D Q). 稀有金属材料与工程(Rare Metal Materials and Engineering ), 2008, 37: 2069.
[137] Waller D, Lane J A, Kilner J A, Steele B C H. Solid State Ionics, 1996, 86/88, Part 2: 767.
[138] Shao Z, Haile S M. Nature, 2004, 431 (7005): 170.
[139] Li W, Zhu X, Cao Z, Wang W, Yang W. Int. J. Hydrogen Energy, 2015, 40 (8): 3452.
[140] Park C Y, Lee T H, Dorris S E, Balachandran U. Int. J. Hydrogen Energy, 2010, 35 (9): 4103.
[141] Park C Y, Lee T H, Dorris S E, Lu Y, Balachandran U. Int. J. Hydrogen Energy, 2011, 36 (15): 9345.
[142] Park C Y, Lee T H, Dorris S E, Balachandran U. Int. J. Hydrogen Energy, 2013, 38 (15): 6450.
[143] Jeon S Y, Im H N, Singh B, Hwang J H, Song S J. Ceram. Int., 2013, 39 (4): 3893.
[144] Park C Y, Lee T H, Dorris S E, Balachandran U. ECS Transactions, 2008, 13: 393.
[145] Wang H, Gopalan S, Pal U B. Electrochim. Acta, 2011, 56 (20): 6989.
[146] Kilgus M, Wang H, Werth S, Caro J, Schiestel T. Desalination, 2006, 199 (1/3): 355.
[147] Caro J, Schiestel T, Werth S, Wang H, Kleinert A, Kölsch P. Desalination, 2006, 199 (1/3): 415.
[148] Jiang H, Wang H, Werth S, Schiestel T, Caro J. Angew. Chem. Int. Edit., 2008, 47 (48): 9341.
[149] Wei Y, Tang J, Zhou L, Li Z, Wang H. Chem. Eng. J., 2012, 183: 473.
[150] Evdou A, Zaspalis V, Nalbandian L. Fuel,2010, 89 (6): 1265.
[151] Franca R V, Thursfield A, Metcalfe I S. J. Membrane Sci., 2012, 389: 173.
[152] Liu J, Cheng H, Jiang B, Lu X, Ding W. Int. J. Hydrogen Energy, 2013, 38 (25): 11090.
[153] Jiang B, Cheng H, Luo L, Lu X, Zhang N, Liu J. J. Energ. Chem., 2014, 23 (2): 164.
[154] Cheng H, Yao W, Lu X, Zhou Z, Li C, Liu J. Fuel Process. Technol., 2015, 131: 36.
[155] Cao Z, Jiang H, Luo H, Baumann S, Meulenberg W A, Voss H, Caro J. Catal. Today, 2012, 193 (1): 2.
[156] Jiang H, Cao Z, Schirrmeister S, Schiestel T, Caro J. Angew. Chem. Int. Edit., 2010, 49 (33): 5656.
[157] Zhu N, Dong X, Liu Z, Zhang G, Jin W, Xu N. Chem. Commun., 2012, 48 (57): 7137.
[158] Thursfield A, Murugan A, Franca R, Metcalfe I S. Energ. Environ. Sci., 2012, 5 (6): 7421.
[159] 王振(Wang Z), 于波(Yu B), 张文强(Zhang W Q), 陈靖(Chen J), 徐景明(Xu J M). 化学进展(Progress in Chemistry), 2013, (07): 1229.
[160] Yun K S, Yoo C Y, Yoon S G, Yu J H, Joo J H. J. Membrane Sci., 2015, 486: 222.
[161] Suntivich J, May K J, Gasteiger H A, Goodenough J B, Shao-Horn Y. Science, 2011, 334 (6061): 1383.
[1] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[2] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[3] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[4] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[5] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[6] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[7] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[8] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[9] 胡泽浩, 陈婷, 徐彦乔, 江伟辉, 谢志翔. 表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 33(9): 1614-1626.
[10] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[11] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[12] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[13] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[14] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[15] 曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.