English
新闻公告
More
化学进展 2015, Vol. 27 Issue (10): 1470-1480 DOI: 10.7536/PC150321 前一篇   后一篇

• 综述与评论 •

石墨烯及氧化石墨烯对分离膜改性的方法、效能和作用机理

王茜1, 郭晓燕1*, 邵怀启2, 周启星1, 胡万里1, 宋晓静1   

  1. 1. 南开大学环境科学与工程学院 环境污染过程与基准教育部重点实验室 天津市城市生态环境修复与污染防治重点实验室 天津 300071;
    2. 天津科技大学材料科学与化学工程学院 天津 300457
  • 收稿日期:2015-03-01 修回日期:2015-05-01 出版日期:2015-10-15 发布日期:2015-09-10
  • 通讯作者: 郭晓燕 E-mail:guoxyan@nankai.edu.cn
  • 基金资助:
    天津市应用基础与前沿技术研究计划一般项目(No.14JCYBJC23100)资助

Methods, Performances and Mechanisms of Separation Membrane Modified by Graphene and Graphene Oxide

Wang Xi1, Guo Xiaoyan1*, Shao Huaiqi2, Zhou Qixing1, Hu Wanli1, Song Xiaojing1   

  1. 1. College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071, China;
    2. College of Material Science and Chemical Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
  • Received:2015-03-01 Revised:2015-05-01 Online:2015-10-15 Published:2015-09-10
  • Supported by:
    The work was supported by the Tianjin Research Program of Application Foundation and Advanced Technology (No. 14JCYBJC23100).
石墨烯及氧化石墨烯由于其独有的性质在分离膜领域引起广泛关注。本文综合分析了石墨烯及氧化石墨烯在分离膜改性方面的几种典型应用,即共混膜、多孔石墨烯膜和层状排列氧化石墨烯膜,并结合其制备方法、效能和作用机理进行阐述。结果表明,相转化法制备的共混膜可以提高膜通量和截留率、增加膜的亲水性并有效抑制膜污染,但是其并不能充分发挥氧化石墨烯独有的结构和性能优势,具有一定的局限性;层薄和机械性能强的完美结合使石墨烯可以通过打孔形成分离性能较好的多孔石墨烯膜,但是制备大片石墨烯的难度和不成熟的打孔技术限制了其进一步发展;而层状排列的氧化石墨烯膜可充分发挥氧化石墨烯材料的特性,以层间间距作为主要运输通道有利于充分发挥氧化石墨烯高输运速率的优点和高选择性的特性,为开创下一代高通量、高选择性、强抗污染性的高性能分离膜提供了重要思路。
Graphene and graphene oxide (GO) have attracted much attention on separation membrane due to their unique properties. In this paper, we review the membrane modification methods by graphene and GO, including membrane blending with GO, nanoporous graphene membrane and layered GO membrane, and comprehensively analyze the performances and mechanisms of these modified membranes. The results show that the blending membrane prepared via the phase inversion method exhibits high water flux, proper solute rejection, excellent hydrophilicity and low fouling propensity, but the unique structure and property of GO does not play effectively in the blending membrane with GO and modified GO; nanoporous graphene membrane has good separation performances because of graphene's high mechanical strength, atomic thickness and ability to support subnanometre pores, but it is challenging to manufacture large graphene with maintaining the structural integrity and control the pore size and pore distribution; the particular properties of GO get the full play in layered GO membranes, which achieve high water flux mainly because the non-oxidized region of GO with nearly frictionless surface promotes the extremely fast flow of water molecules, and obtains high rejection because of rejecting unwanted solutes. Accordingly, layered GO membrane will be thought as a promising membrane separation technology to obtain fine performances of high permeability, selectivity and anti-fouling ability.

Contents
1 Introduction
2 Membrane blending with GO
2.1 Membrane blending with GO directly
2.2 Membrane blending with chemical modified GO
2.3 Membrane blending with GO and other nanomaterials
3 Nanoporous graphene membrane
4 Layered GO membrane
4.1 Fabrication methods of layered GO membrane
4.2 Mechanism of layered GO membrane
5 Conclusion and outlook

中图分类号: 

()
[1] Pendergast M M, Hoek E M V. Energy & Environmental Science, 2011, 4: 1946.
[2] Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Nature, 2008, 452: 301.
[3] Yan L, Li Y S, Xiang C B. Polymer, 2005, 46: 7701.
[4] Bae T H, Kim I C, Tak T M. Journal of Membrane Science, 2006, 275: 1.
[5] Ebert K, Fritsch D, Koll J, Tjahjawiguna C. Journal of Membrane Science, 2004, 233: 71.
[6] Choi J H, Jegal J, Kim W-N. Journal of Membrane Science, 2006, 284: 406.
[7] Zhao X, Ma J, Wang Z, Wen G, Jiang J, Shi F, Sheng L. Desalination, 2012, 303: 29.
[8] Shah P, Murthy C N. Journal of Membrane Science, 2013, 437: 90.
[9] Brady-Estevez A S, Kang S, Elimelech M. Small, 2008, 4: 481.
[10] Hinds B J, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas L G. Science, 2004, 303: 62.
[11] Majumder M, Chopra N, Andrews R, Hinds B J. Nature, 2005, 438: 44.
[12] Ohba T, Kanoh H, Kaneko K. Nano Letters, 2005, 5: 227.
[13] Allen M J, Tung V C, Kaner R B. Chemical Reviews, 2010, 110: 132.
[14] Zhang L L, Zhou R, Zhao X S. Journal of Materials Chemistry, 2010, 20: 5983.
[15] Liu C, Yu Z, Neff D, Zhamu A, Jang B Z. Nano Letters, 2010, 10: 4863.
[16] Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y. Journal of Physical Chemistry C, 2009, 113: 13103.
[17] 肖蓝(Xiao L),王祎龙(Wang W L),于水利(Yu Sh L),唐玉霖,(Tang Y L).化学进展(Progress in Chemistry), 2013, 25(2/3): 419.
[18] Liu Y, Dong X, Chen P. Chemical Society Reviews, 2012, 41: 2283.
[19] Liu Z, Robinson J T, Sun X, Dai H. Journal of the American Chemical Society, 2008, 130: 10876.
[20] Robinson J T, Tabakman S M, Liang Y, Wang H, Casalongue H S, Daniel V, Dai H. Journal of the American Chemical Society, 2011, 133: 6825.
[21] Shen J, Zhu Y, Yang X, Li C. Chemical Communications, 2012, 48: 3686.
[22] Guo C X, Yang H B, Sheng Z M, Lu Z S, Song Q L, Li C M. Angewandte Chemie-International Edition, 2010, 49: 3014.
[23] Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W, Chen Y. Advanced Materials, 2008, 20: 3924.
[24] Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z. Nano Letters, 2011, 11: 4438.
[25] Yin L, Wang J, Lin F, Yang J, Nuli Y. Energy & Environmental Science, 2012, 5: 6966.
[26] Wang D, Kou R, Choi D, Yang Z, Nie Z, Li J, Saraf L V, Hu D, Zhang J, Graff G L, Liu J, Pope M A, Aksay I A. ACS Nano, 2010, 4: 1587.
[27] Chang H, Wang G, Yang A, Tao X, Liu X, Shen Y, Zheng Z. Advanced Functional Materials, 2010, 20: 2893.
[28] 张力(zhang L),吴俊涛(Wu J T),江雷(Jiang L). 化学进展(Progress in Chemistry), 2014, 26(04): 560
[29] Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C. ACS Nano, 2010, 4: 4317.
[30] Liu J, Tang J, Gooding J J. Journal of Materials Chemistry, 2012, 22: 12435.
[31] Perreault F, Tousley M E, Elimelech M. Environmental Science & Technology Letters, 2013, 1: 71.
[32] Dreyer D R, Park S, Bielawski C W, Ruoff R S. Chemical Society Reviews, 2010, 39: 228.
[33] Georgakilas V, Otyepka M, Bourlinos A B, Chandra V, Kim N, Kemp K C, Hobza P, Zboril R, Kim K S. Chemical Reviews, 2012, 112: 6156.
[34] Dreyer D R, Todd A D, Bielawski C W. Chemical Society Reviews, 2014, 15: 5288.
[35] Zhang J, Xu Z, Mai W, Min C, Zhou B, Shan M, Li Y, Yang C, Wang Z, Qian X. Journal of Materials Chemistry A, 2013, 1: 3101.
[36] Wang Z, Yu H, Xia J, Zhang F, Li F, Xia Y, Li Y. Desalination, 2012, 299: 50.
[37] Lee J, Chae H-R, Won Y J, Lee K, Lee C-H, Lee H H, Kim I-C, Lee J-M. Journal of Membrane Science, 2013, 448: 223.
[38] Zinadini S, Zinatizadeh A A, Rahimi M, Vatanpour V, Zangeneh H. Journal of Membrane Science, 2014, 453: 292.
[39] Xia S, Ni M. Journal of Membrane Science, 2015, 473: 54.
[40] Zhao C, Xu X, Chen J, Yang F. Journal of Environmental Chemical Engineering, 2013, 1: 349.
[41] Ganesh B M, Isloor A M, Ismail A F. Desalination, 2013, 313: 199.
[42] Xu Z, Zhang J, Shan M, Li Y, Li B, Niu J, Zhou B, Qian X. Journal of Membrane Science, 2014, 458: 1.
[43] Yu L, Zhang Y, Zhang B, Liu J, Zhang H, Song C. Journal of Membrane Science, 2013, 447: 452.
[44] Akin I, Zor E, Bingol H, Ersoz M. The Journal of Physical Chemistry B, 2014, 118: 5707.
[45] Wu H, Tang B, Wu P. Journal of Membrane Science, 2014, 451: 94.
[46] Zhang J, Xu Z, Shan M, Zhou B, Li Y, Li B, Niu J, Qian X. Journal of Membrane Science, 2013, 448: 81.
[47] Cohen-Tanugi D, Grossman J C. Nano Letters, 2012, 12: 3602.
[48] Sint K, Wang B, Král P. Journal of the American Chemical Society, 2008, 130: 16448.
[49] Du H, Li J, Zhang J, Su G, Li X, Zhao Y. The Journal of Physical Chemistry C, 2011, 115: 23261.
[50] Lee C, Wei X, Kysar J W, Hone J. Science, 2008, 321: 385.
[51] Bae S, Kim H, Lee Y, Xu X, Park J-S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y-J, Kim K S, Ozyilmaz B, Ahn J-H, Hong B H, Iijima S. Nature Nanotechnology, 2010, 5: 574.
[52] Fischbein M D, Drndic M. Applied Physics Letters, 2008, 93: 113107.
[53] Koenig S P, Wang L, Pellegrino J, Bunch J S. Nature Nanotechnology, 2012, 7: 728.
[54] Lu N, Wang J, Floresca H C, Kim M J. Carbon, 2012, 50: 2961.
[55] Bell D C, Lemme M C, Stern L A, Williams J R, Marcus C M. Nanotechnology, 2009, 20: 455301.
[56] Lemme M C, Bell D C, Williams J R, Stern L A, Baugher B W H, Jarillo-Herrero P, Marcus C M. ACS Nano, 2009, 3: 2674.
[57] Suk M E, Aluru N. The Journal of Physical Chemistry Letters, 2010, 1: 1590.
[58] Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X. Nature Communications, 2013, 4: 2979.
[59] Sun P, Zhu M, Wang K, Zhong M, Wei J, Wu D, Xu Z, Zhu H. ACS Nano, 2012, 7: 428.
[60] Huang H, Mao Y, Ying Y, Liu Y, Sun L, Peng X. Chemical Communications, 2013, 49: 5963.
[61] Hu M, Mi B. Environmental Science & Technology, 2013, 47: 3715.
[62] Hu M, Mi B. Journal of Membrane Science, 2014, 469: 80.
[63] Wei N, Peng X, Xu Z. ACS Applied Materials & Interfaces, 2014, 6: 5877.
[64] Boukhvalov D W, Katsnelson M I, Son Y-W. Nano Letters, 2013, 13: 3930.
[65] Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. Science, 2014, 343: 752.
[66] Mi B. Science, 2014, 343: 740.
[1] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[2] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[3] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[4] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[5] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[6] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[7] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[8] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[9] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[10] 祁建磊, 徐琴琴, 孙剑飞, 周丹, 银建中. 石墨烯基单原子催化剂的合成、表征及分析[J]. 化学进展, 2020, 32(5): 505-518.
[11] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[12] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[13] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[14] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[15] 鲍长远, 韩家军*, 程瑾宁, 张瑞涛. 石墨烯-聚苯胺类超级电容器复合电极材料[J]. 化学进展, 2018, 30(9): 1349-1363.