English
新闻公告
More
化学进展 2021, Vol. 33 Issue (4): 670-677 DOI: 10.7536/PC200459 前一篇   后一篇

• 综述 •

氧化石墨烯分离膜机械性能调控

朱彬彬1,2, 郑晓慧2,*(), 杨光2, 曾旭1,2(), 邱伟1,2, 徐斌1,*   

  1. 1 北京化工大学有机-无机复合材料国家重点实验室 材料电化学过程与技术北京市重点实验室 北京 100029
    2 军事科学院防化研究院 国民核生化灾害防护国家重点实验室 北京 100191
  • 收稿日期:2020-04-29 修回日期:2020-08-31 出版日期:2021-04-20 发布日期:2020-10-15
  • 通讯作者: 郑晓慧, 徐斌
  • 基金资助:
    国家自然科学基金项目(51572011)

Mechanical Property Regulation of Graphene Oxide Separation Membranes

Binbin Zhu1,2, Xiaohui Zheng2(), Guang Yang2, Xu Zeng1,2(), Wei Qiu1,2, Bin Xu1   

  1. 1 State Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology,Beijing 100029, China
    2 State Key Laboratory of NBC Protection for Civilian, Research Institute of Chemical Defense, Academy of Military Sciences, Beijing 100191, China
  • Received:2020-04-29 Revised:2020-08-31 Online:2021-04-20 Published:2020-10-15
  • Contact: Xiaohui Zheng, Bin Xu
  • Supported by:
    the National Natural Science Foundation of China(51572011)

氧化石墨烯(Graphene oxide, GO)片层组装制备的分离膜,具有可调控的纳米通道和独特的分离性能,是一种很有前景的分离材料,但较差的机械性能制约了其实际应用。将活性分子、阳离子等粒子引入到GO膜的片层间,利用其与GO形成的稳定键合可提高GO膜的机械性能。本文综述了国内外在GO膜机械性能调控方面的研究进展。依据引入的粒子与GO成键的类型可分为共价键法和非共价键法,其中共价键法又分为大分子共价键法和小分子共价键法,非共价键法分为氢键法、π-π键法和离子键法。无论共价键法还是非共价键法都能显著提升GO膜的机械性能,其中共价键法对GO复合膜的增强效果优于非共价键法,大分子共价键法优于小分子共价键法。最后,阐述了现有方法存在的问题,并对未来的发展前景做出了展望。

Due to the controllable nanoscale channels and unique separation performance, the separation films assembled from graphene oxide(GO) nanosheets are promising separation materials, but the unsatisfactory mechanical properties restrict their practical application. Introducing particles such as active molecules and cations between the GO nanosheets can improve the mechanical properties of the GO membranes due to the formation of the stable bonding. In this review, the recent progress on the methods for improving the mechanical properties of GO membranes is summarized. According to the bonding mode between GO and the introduced particles, these methods can be divided into two types, covalent bonding and non-covalent bonding. Furthermore, covalent bonding methods can be divided into macromolecular covalent bonding and small molecule covalent bonding, while noncovalent bonding methods include hydrogen bonding, π-π bonding and ionic bonding. Both covalent bonding and noncovalent bonding can significantly improve the mechanical properties of the GO films, while the covalent bonding methods are more effective. Among the covalent bonding methods, the macromolecule covalent bonding is superior to the small molecule covalent bonding. Finally, the major problems of the current methods for enhancing the mechanical property of GO are discussed, and the future prospects is proposed.

Content:

1 Introduction

2 Covalent bonding method

2.1 Small molecule covalent bonding method

2.2 Macromolecular covalent bonding method

3 Noncovalent bonding method

3.1 Ionic bonding method

3.2 Hydrogen bonding method

3.3 π-π bonding method

4 Conclusion and prospect

()
图1 (a)大分子共价键法的交联反应图;(b)小分子共价键法的交联反应图;(c)离子键法的交联反应图;(d)氢键法的交联反应图;(e)π-π键法的交联反应图
Fig.1 (a) Cross-linking reaction diagram of macromolecular covalent bonding method;(b) Cross-linking reaction diagram of small molecule covalent bonding method;(c) Cross-linking reaction diagram of ion bonding method;(d) Cross-linking reaction diagram of hydrogen bonding method;(e) Cross-linking reaction diagram of π-π bonding method
图2 纯GO膜与小分子改性GO膜的力学性能:(a)典型的拉伸应力应变曲线;(b)试件的模量和强度总结;(c)典型的蠕变恢复曲线[19]
Fig.2 Mechanical properties of raw material GO and modified GO:(a) typical tensile stress-strain curve;(b) summary of modulus and strength of the specimen;(c) typical creep recovery curve[19]
图3 硼酸盐交联的复合膜的表征测试:(a)未改性(绿色)与硼酸盐改性(蓝色)GO薄膜的应力应变曲线;(b) 未改性GO薄膜(黑色)、硼酸盐改性GO膜(红色,0.08 wt% B)及无序硼酸盐改性GO膜(绿色,6.32 wt% B)的XRD表征结果[11]
Fig.3 Characterization tests of borate crosslinked composite films :(a) stress-strain curves of unmodified(green) and borate modified(blue) GO films;(b) XRD characterization results of unmodified GO film(black), borate modified GO film(red, 0.08 wt% B) and disordered borate modified GO film(green, 6.32 wt% B)[11]
图4 循环加载实验中得到的GO膜的应力应变曲线:(a)未改性GO膜循环加载实验中应力应变曲线原图;(b) 漂洗Ca2+改性GO复合膜循环加载实验中应力应变曲线原图;(c)未改性GO膜循环加载实验中放大的初始区域;(d)改性后循环加载实验中放大的初始区域[43]
Fig.4 Stress-strain curve of GO membrane obtained in cyclic loading experiment:(a) original diagram of stress and strain curve in cyclic loading experiment of unmodified GO film;(b) the original stress-strain curve of the rinsing Ca2+ modified GO composite membrane under cyclic loading;(c) the enlarged initial region in the cyclic loading experiment of unmodified GO film;(d) the enlarged initial area in the cyclic loading experiment after modification[43]
图5 (a) 水含量对GO层间距的影响(C10O1(OH)1(红色)和C10O2(OH)2(绿色));(b) 氢氧键能随键间距的变化[51]
Fig.5 (a) influence of water content on GO layer spacing(C10O1(OH)1(red) and C10O2(OH)2(green));(b) Hydrogen and oxygen bond energies vary with bond spacing[51]
图6 (a)以水为溶剂制备的PVA-GO复合膜的杨氏模量和拉伸强度;(b)以DMF为溶剂制备的PMMA-GO复合膜的杨氏模量和拉伸强度[52]
Fig.6 (a) Young’s modulus and tensile strength of GO composite membrane based on PVA prepared in water;(b) Young’s modulus and tensile strength of GO composite membrane based on PMMA prepared in DMF[52]
表1 GO复合膜机械性能改性情况汇总表
Table 1 Summary of mechanical properties modification of GO composite membrane
[1]
Huang H B, Mao Y Y, Ying Y L, Liu Y, Sun L W, Peng X S. Chem. Commun., 2013, 49(53): 5963.
[2]
Zhao Y, Yuan S L, Zhang Q M. Appl. Math. Comput., 2015, 260: 385.
[3]
Ouyang G, Hussain A, Li J B, Li D X. RSC Adv., 2015, 5(86): 70448.
[4]
Dikin D A, Stankovich S, Zimney E J, Piner R D, Dommett G H B, Evmenenko G, Nguyen S T, Ruoff R S. Nature, 2007, 448(7152): 457.
[5]
Zhang Y Y, Gong S S, Zhang Q, Ming P, Wan S J, Peng J S, Jiang L, Cheng Q F. Chem. Soc. Rev., 2016, 45(9): 2378.

URL     pmid: 27039951
[6]
Koros W J, Fleming G K. J. Membr. Sci., 1993, 83(1): 1.
[7]
van der Bruggen B, Vandecasteele C. Environ. Pollut., 2003, 122(3): 435.

doi: 10.1016/s0269-7491(02)00308-1     URL     pmid: 12547533
[8]
Peng X S, Jin J, Nakamura Y, Ohno T, Ichinose I. Nat. Nanotechnol., 2009, 4(6): 353.
[9]
Mikoushkin V M, Shnitov V V, Nikonov S Y, Dideykin A T, Vul’ S P, Vul’ A Y, Sakseev D A, Vyalikh D V, Vilkov O Y. Tech. Phys. Lett., 2011, 37(10): 942.
[10]
Nair R R, Wu H A, Jayaram P N, Grigorieva I V, Geim A K. Science, 2012, 335(6067): 442.

doi: 10.1126/science.1211694     URL     pmid: 22282806
[11]
An Z, Compton O C, Putz K W, Brinson L C, Nguyen S T. Adv. Mater., 2011, 23(33): 3842.

URL     pmid: 21793051
[12]
Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. Science, 2014, 343(6172): 752.

URL     pmid: 24531966
[13]
Georgakilas V, Tiwari J N, Kemp K C, Perman J A, Bourlinos A B, Kim K S, Zboril R. Chem. Rev., 2016, 116(9): 5464.

URL     pmid: 27033639
[14]
Radha B, Esfandiar A, Wang F C, Rooney A P, Gopinadhan K, Keerthi A, Mishchenko A, Janardanan A, Blake P, Fumagalli L, Lozada-Hidalgo M, Garaj S, Haigh S J, Grigorieva I V, Wu H A, Geim A K. Nature, 2016, 538(7624): 222.

URL     pmid: 27602512
[15]
Esfandiar A, Radha B, Wang F C, Yang Q, Hu S, Garaj S, Nair R R, Geim A K, Gopinadhan K. Science, 2017, 358(6362): 511.

URL     pmid: 29074772
[16]
Gopinadhan K, Hu S, Esfandiar A, Lozada-Hidalgo M, Wang F C, Yang Q, Tyurnina A V, Keerthi A, Radha B, Geim A K. Science, 2019, 363(6423): 145.

URL     pmid: 30630924
[17]
Mouterde T, Keerthi A, Poggioli A R, Dar S A, Siria A, Geim A K, Bocquet L, Radha B. Nature, 2019, 567(7746): 87.

URL     pmid: 30842639
[18]
Yang Q, Su Y, Chi C, Cherian C T, Huang K, Kravets V G, Wang F C, Zhang J C, Pratt A, Grigorenko A N, Guinea F, Geim A K, Nair R R. Nat. Mater., 2017, 16(12): 1198.

URL     pmid: 29170556
[19]
Gao Y, Liu L Q, Zu S Z, Peng K, Zhou D, Han B H, Zhang Z. ACS Nano, 2011, 5(3): 2134.

doi: 10.1021/nn103331x     URL     pmid: 21341706
[20]
Park S, Ruoff R S. Nat. Nanotechnol., 2009, 4(4): 217.

URL     pmid: 19350030
[21]
Wan S J, Li Y C, Peng J S, Hu H, Cheng Q F, Jiang L. ACS Nano, 2015, 9(1): 708.
[22]
Sun P Z, Chen Q, Li X D, Liu H, Wang K L, Zhong M L, Wei J Q, Wu D H, Ma R Z, Sasaki T, Zhu H W. NPG Asia Mater., 2015, 7(2): e162.
[23]
Sun P Z, Zhu M, Wang K L, Zhong M L, Wei J Q, Wu D H, Xu Z P, Zhu H W. ACS Nano, 2013, 7(1): 428.

URL     pmid: 23214493
[24]
Hung W S, Tsou C H, de Guzman M, An Q F, Liu Y L, Zhang Y M, Hu C C, Lee K R, Lai J Y. Chem. Mater., 2014, 26(9): 2983.
[25]
Hu M, Mi B X. Environ. Sci. Technol., 2013, 47(8): 3715.

URL     pmid: 23488812
[26]
Gong S S, Jiang L, Cheng Q F. J. Mater. Chem. A, 2016, 4(43): 17073.
[27]
Cheng Q F, Wu M X, Li M Z, Jiang L, Tang Z Y. Angew. Chem. Int. Ed., 2013, 52(13): 3750.
[28]
Chen J T, Fu Y J, An Q F, Lo S C, Huang S H, Hung W S, Hu C C, Lee K R, Lai J Y. Nanoscale, 2013, 5(19): 9081.

URL     pmid: 23900571
[29]
Sham A Y W, Notley S M. Langmuir, 2014, 30(9): 2410.

doi: 10.1021/la404745b     URL     pmid: 24528297
[30]
Yu L, Lim Y S, Han J H, Kim K, Kim J Y, Choi S Y, Shin K. Synth. Met., 2012, 162(7/8): 710.
[31]
Sun S P, Hatton T A, Chung T S. Environ. Sci. Technol., 2011, 45(9): 4003.

URL     pmid: 21456576
[32]
Zhang M, Huang L, Chen J, Li C, Shi G Q. Adv. Mater., 2014, 26(45): 7588.

URL     pmid: 25250891
[33]
Wan S J, Peng J S, Li Y C, Hu H, Jiang L, Cheng Q F. ACS Nano, 2015, 9(10): 9830.

URL     pmid: 26352293
[34]
Yan N, Capezzuto F, Buonocore G G, Lavorgna M, Xia H S, Ambrosio L. ACS Appl. Mater. Interfaces, 2015, 7(40): 22678.

URL     pmid: 26406566
[35]
Chen D, Wang X Y, Liu T X, Wang X D, Li J. ACS Appl. Mater. Interfaces, 2010, 2(7): 2005.
[36]
Park S, Dikin D A, Nguyen S T, Ruoff R S. J. Phys. Chem. C, 2009, 113(36): 15801.
[37]
Cui W, Li M Z, Liu J Y, Wang B, Zhang C, Jiang L, Cheng Q F. ACS Nano, 2014, 8(9): 9511.

doi: 10.1021/nn503755c     URL     pmid: 25106494
[38]
Qi X D, Yao X L, Deng S, Zhou T N, Fu Q. J. Mater. Chem. A, 2014, 2(7): 2240.
[39]
Compton O C, Cranford S W, Putz K W, An Z, Brinson L C, Buehler M J, Nguyen S T. ACS Nano, 2012, 6(3): 2008.

URL     pmid: 22188595
[40]
Shin M K, Lee B, Kim S H, Lee J A, Spinks G M, Gambhir S, Wallace G G, Kozlov M E, Baughman R H, Kim S J. Nat. Commun., 2012, 3: 650.

doi: 10.1038/ncomms1661     URL     pmid: 22337128
[41]
Li Y Q, Yu T, Yang T Y, Zheng L X, Liao K. Adv. Mater., 2012, 24(25): 3426.

URL     pmid: 22730223
[42]
Priolo M A, Holder K M, Gamboa D, Grunlan J C. Langmuir, 2011, 27(19): 12106.

URL     pmid: 21859104
[43]
Park S, Lee K S, Bozoklu G, Cai W W, Nguyen S T, Ruoff R S. ACS Nano, 2008, 2(3): 572.

URL     pmid: 19206584
[44]
Xu Y, Bai H, Lu G, Li C, Shi G. J. Am. Chem. Soc., 2008, 130(18): 5856.

URL     pmid: 18399634
[45]
Lam D V, Gong T, Won S, Kim J H, Lee H J, Lee C, Lee S M. Chem. Commun., 2015, 51(13): 2671.
[46]
Hwang J, Yoon T, Jin S H, Lee J, Kim T S, Hong S H, Jeon S. Adv. Mater., 2013, 25(46): 6724.

URL     pmid: 23983045
[47]
Zhang Q, Wan S J, Jiang L, Cheng Q F. Sci. China Technol. Sci., 2017, 60(5): 758.
[48]
Jiang X, Ma Y W, Li J J, Fan Q L, Huang W. J. Phys. Chem. C, 2010, 114(51): 22462.
[49]
Zheng W G, Tan R, Zhao L L, Chen Y J, Xiong C W, Yin D H. RSC Adv., 2014, 4(23): 11732.
[50]
Liu Y L, Xie B, Xu Z P. J. Mater. Chem., 2011, 21(18): 6707.
[51]
Medhekar N V, Ramasubramaniam A, Ruoff R S, Shenoy V B. ACS Nano, 2010, 4(4): 2300.

URL     pmid: 20380417
[52]
Putz K W, Compton O C, Palmeri M J, Nguyen S T, Brinson L C. Adv. Funct. Mater., 2010, 20(19): 3322.
[53]
Zhang J Z, Xu Y H, Cui L, Fu A P, Yang W R, Barrow C, Liu J Q. Compos. Part A: Appl. Sci. Manuf., 2015, 71: 1.
[54]
Zhou T, Wu C, Wang Y, Tomsia A P, Li M, Saiz E, Fang S, Baughman R H, Jiang L, Cheng Q. Nat. Commun., 2020, 11(1): 2077.

URL     pmid: 32350273
[55]
Tian Y, Cao Y W, Wang Y, Yang W L, Feng J C. Adv. Mater., 2013, 25(21): 2980.

URL     pmid: 23636928
[56]
Satti A, Larpent P, Gun’ko Y. Carbon, 2010, 48(12): 3376.
[57]
Xiong R, Hu K S, Grant A M, Ma R L, Xu W N, Lu C H, Zhang X X, Tsukruk V V. Adv. Mater., 2016, 28(7): 1501.

doi: 10.1002/adma.201504438     URL     pmid: 26643976
[58]
Yeh C N, Raidongia K, Shao J, Yang Q H, Huang J. Nat. Chem., 2014, 7(2): 166.

URL     pmid: 25615671
[59]
Zhao H, Yue Y, Zhang Y, Li L, Guo L. Adv. Mater., 2016, 28(10): 2037.

URL     pmid: 26780718
[60]
Wang J R, Qiao J L, Wang J F, Zhu Y, Jiang L. ACS Appl. Mater. Interfaces, 2015, 7(17): 9281.

URL     pmid: 25867752
[61]
He G W, Xu M Z, Zhao J, Jiang S T, Wang S F, Li Z, He X Y, Huang T, Cao M Y, Wu H, Guiver M D, Jiang Z Y. Adv. Mater., 2017, 29(28): 1605898.
[62]
Liu L Q, Gao Y, Liu Q, Kuang J, Zhou D, Ju S T, Han B H, Zhang Z. Small, 2013, 9(14): 2466.

URL     pmid: 23853125
[1] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[2] 陈香李, 刘凯强, 房喻. 分子凝胶:从结构调控到功能应用[J]. 化学进展, 2020, 32(7): 861-872.
[3] 张丹维, 王辉, 黎占亭. 芳香大分子和超分子螺旋管构筑及其功能[J]. 化学进展, 2020, 32(11): 1665-1679.
[4] 高玉霞, 梁云, 胡君, 巨勇. 基于天然小分子化合物的超分子手性自组装[J]. 化学进展, 2018, 30(6): 737-752.
[5] 闫博, 周宏伟*, 解璞, 金洗郎, 马爱洁*, 陈卫星. 化学振荡反应调控的动态可逆智能体系[J]. 化学进展, 2017, 29(7): 740-749.
[6] 李俊同, 霍延平, 刘梦娟, 曾华强. 可用于溢油处理的相选择性有机胶凝剂[J]. 化学进展, 2017, 29(6): 617-627.
[7] 黄国保, 蒋伟. 有机模板协助构建的动态共价大环[J]. 化学进展, 2015, 27(6): 744-754.
[8] 田志美, 刘汪丹, 程龙玖. 硫醇保护金团簇的实验和理论研究现状[J]. 化学进展, 2015, 27(12): 1743-1753.
[9] 王茜, 郭晓燕, 邵怀启, 周启星, 胡万里, 宋晓静. 石墨烯及氧化石墨烯对分离膜改性的方法、效能和作用机理[J]. 化学进展, 2015, 27(10): 1470-1480.
[10] 张勇杰, 李化毅, 董金勇, 胡友良. 聚烯烃共价键接枝纳米材料及其聚烯烃纳米复合材料[J]. 化学进展, 2015, 27(1): 47-58.
[11] 熊雨婷, 李闵闵, 熊鹏, 杨梦, 卿光焱, 孙涛垒. 水相中糖识别人工受体[J]. 化学进展, 2014, 26(01): 48-60.
[12] 蒋邦平, 郭东升, 刘育*. 苝酰亚胺和大环化合物的超分子组装[J]. 化学进展, 2013, 25(06): 869-880.
[13] 王艳 陶占良 陈军. 具有18电子结构的镁基过渡金属氢化物* [J]. 化学进展, 2010, 22(01): 234-240.
[14] 门薇薇,鲁在君. 高性能聚苯并噁嗪树脂[J]. 化学进展, 2007, 19(05): 779-786.
[15] 柴立和,彭晓峰. 来自化学前沿的挑战:动态自组装*[J]. 化学进展, 2004, 16(02): 169-.
阅读次数
全文


摘要

氧化石墨烯分离膜机械性能调控