English
新闻公告
More
化学进展 2020, Vol. 32 Issue (5): 505-518 DOI: 10.7536/PC190938   后一篇

所属专题: 电化学有机合成

• 综述 •

石墨烯基单原子催化剂的合成、表征及分析

祁建磊, 徐琴琴, 孙剑飞, 周丹, 银建中**   

  • 修回日期:2020-01-10 出版日期:2020-05-15 发布日期:2020-02-20
  • 通讯作者: 银建中
  • 基金资助:
    国家自然科学基金项目(U1662130); 国家自然科学基金项目(21978043)

Synthesis, Characterization and Analysis of Graphene-Supported Single-Atom Catalysts

Jianlei Qi, Qinqin Xu, Jianfei Sun, Dan Zhou, Jianzhong Yin**   

  • Revised:2020-01-10 Online:2020-05-15 Published:2020-02-20
  • Contact: Jianzhong Yin
  • About author:
  • Supported by:
    National Natural Science Foundation of China(U1662130); National Natural Science Foundation of China(21978043)

单原子催化剂具有配位数低、配位环境特殊、原子利用率极高和催化位点高度均一等优点,是沟通均相和异相催化剂之间的桥梁,有助于更好地认识催化反应的本质。本文综述了近年来国内外石墨烯基单原子催化剂的多种合成方法,包括原子层沉积法、浸渍-煅烧法、缺陷捕获法、配位锚定法和其他新颖方法的制备过程、合成原理和表征。在此基础上,本文对石墨烯基金属单原子催化剂在催化方面的性能进行阐述和分析,以期为单原子催化剂制备提供指导和参考。

Single-atom catalyst has the advantages of low coordination number, special coordination environment, high atomic utilization, and high uniformity of catalytic sites. It is the bridge between homogeneous and heterogeneous catalysts, which helps to better understand the nature of catalytic reaction. In this paper, the synthetic methods of graphene-based single-atom catalysts in recent years are reviewed, including atomic layer deposition, impregnation-calcination, defect trapping, coordination anchoring and some other novel methods, with a focus on the preparation process, principle and characterization results of these methods. Based on this, the performance of graphene-based metal single-atom catalysts in catalysis is illustrated and analyzed, and the purpose is to provide guidance and reference for the preparation of single-atom catalysts.

Contents

1 Introduction

2 Synthetic method

2.1 Atomic layer deposition method

2.2 Impregnation-calcination method

2.3 Defect trapping method

2.4 Coordination anchoring method

2.5 Other methods

3 Performance evaluation and characterization

3.1 Hydrogen evolution reaction

3.2 Carbon dioxide reduction reaction

3.3 Oxidation reaction

3.4 Hydrogenation reaction

4 Conclusion and outlook

()
表1 不同循环次数对应Pt负载的相关参数
Table 1 The related parameters of Pt loading with different cycle times
图1 (a) Pt单原子团簇的HAADF-STEM图[42];(b) Pd单原子的HAADF-STEM图[49];(c) Pt双原子的HAADF-STEM图[51];(d) 原子层沉积法制备单原子示意图[52]
Fig. 1 (a) HAADF-STEM images of Pt atom clusters[42];(b) HAADF-STEM images of Pd atom[49];(c) HAADF-STEM images of Pt diatomics[51];(d) schematic diagram of single atom prepared by atomic layer deposition[52]
图2 (a) Co-NG的HAADF-STEM图[24];(b) Fe/NG 的合成过程示意图[62];(c) Ni-NG/CdS复合材料[26];(d) EDX扫描Ni-NG选定区域内的元素映射[26]
Fig. 2 (a) HAADF-STEM images of Co-NG[24];(b) schematic of the synthesis process of the Fe/NG catalyst[62];(c) the Ni-NG/CdS composite materials[26];(d) EDX elemental mapping of Ni-NG within the selected area[26]
图3 (a) 催化剂的大规模生产[65];(b) Co-NG-MW的制备路线示意图[66]
Fig. 3 (a) The mass production of catalyst[65];(b) Schematic illustration of preparation route to Co-NG-MW[66]
图4 (a) 掺杂镍的纳米多孔石墨烯的制备工艺示意图[76];(b)掺杂镍石墨烯的HAADF-STEM图[76];(c) 单原子催化剂FeN4和FeN5的合成路线[79]
Fig. 4 (a) Schematic illustration of the fabrication process of Ni-doped np-G[76];(b) HAADF-STEM image of Ni-doped graphene[76];(c) synthetic route towards single-atom FeN4 and FeN5 catalysts[79]
图5 (a) 2 mV·s-1扫描速率时NG, Co-G、Co-NG和Pt/C在0.5 M H2SO4中的LSV曲线[24];(b) 不同材料在平衡电势下HER的吉布斯自由能[76];(c) 氮掺杂石墨烯Pt原子构型[45];(d) 不同溶解时间下的材料的XPS图谱[76]
Fig. 5 (a) LSV of NG, Co-G, Co-NG and Pt/C in 0.5 M H2SO4 at scan rate of 2 mV·s-1[24];(b) Gibbs free energy of HER at equilibrium potential for different materials[76];(c) illustration of Pt atoms configurations on N-doped graphene[45];(d) XPS spectra of materials at different dissolution times[76]
表2 不同催化剂析氢反应的过电势
Table 2 Overpotential of hydrogen evolution reaction with different catalysts
图6 (a) 可见光照射下Ni-NG/ CdS、Pt/ CdS、NG/ CdS和纯CdS的光催化产氢率[26];(b) 各类催化剂在氨硼烷水解中的催化活性[51]
Fig. 6 (a) Photocatalytic hydrogen production rate over Ni-NG/CdS, Pt/CdS, NG/CdS and bare CdS under visible light irradiation[26];(b) catalytic activities of various Pt catalysts in AB hydrolysis[51]
图7 (a) Ni-N-MEGO、NiPc, N-MEGO 和MEGO在CO2饱和的0.5 M KHCO3中的LSV曲线[63];(b) 氮配位铁的催化位点的理论计算与提出的机理[62]
Fig. 7 (a) LSV of Ni-N-MEGO, NiPc, N-MEGO and MEGO in CO2 saturated 0.5 M KHCO3 solution[63];(b) theoretical calculations and proposed mechanism on the nitrogen-coordinated Fe catalytic site[62]
图8 每个电势下甲酸的法拉第效率和催化剂的TOF值[65]
Fig. 8 Faradaic efficiencies for formate at each applied potentials and TOF of the catalyst[65]
图9 (a) Pt foil、Pt/C、ALD150Pt/GNS、Pt/GNS、ALD100Pt/GNS、ALD50Pt/GNS在Pt L3边的XANES谱图[42];(b) 单原子Pd1/graphene催化剂丁烯选择性提高的示意图[49];(c) 125 ℃条件下Pd1/N-graphene催化剂24 h耐久性测试实验[67]
Fig. 9 (a) The XANES spectra at Pt L3 edge of Pt foil, Pt/C, ALD150Pt/GNS, Pt/GNS, ALD100Pt/GNS, ALD50Pt/GNS[42];(b) schematic illustration of improvement of butenes selectivity on single atom Pd1/graphene catalyst[49];(c) durability test for the Pd1/N-graphene catalyst for over 24 h at 125 ℃[67]
[1]
Yang X, Wang A, Qiao B, Li J, Liu J, Zhang T. Accounts Chem. Res., 2013,46(8):1740. https://pubs.acs.org/doi/10.1021/ar300361m

doi: 10.1021/ar300361m     URL    
[2]
Liu L, Corma A. Chem. Rev., 2018,118(10):4981. https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00776

doi: 10.1021/acs.chemrev.7b00776     URL    
[3]
Sahoo S, Suib S L, Alpay S P. ChemCatChem, 2018,10(15):3229. http://doi.wiley.com/10.1002/cctc.201800465

doi: 10.1002/cctc.201800465     URL    
[4]
Zhu C, Fu S, Song J, Shi Q, Su D, Engelhard M H, Li X, Xiao D, Li D, Estevez L, Du D, Lin Y. Small, 2017,13(15):1603407. http://doi.wiley.com/10.1002/smll.v13.15

doi: 10.1002/smll.v13.15     URL    
[5]
Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nat. Chem., 2011,3(8):634. https://doi.org/10.1038/nchem.1095

doi: 10.1038/nchem.1095     URL    
[6]
Yin P, Yao T, Wu Y, Zheng L, Lin Y, Liu W, Ju H, Zhu J, Hong X, Deng Z, Zhou G, Wei S, Li Y. Angew. Chem. Int. Ed., 2016,55(36):10800. http://doi.wiley.com/10.1002/anie.201604802

doi: 10.1002/anie.201604802     URL    
[7]
Yang S, Kim J, Tak Y J, Soon A, Lee H. Angew. Chem. Int. Ed., 2016,55(6):2058. http://doi.wiley.com/10.1002/anie.201509241

doi: 10.1002/anie.201509241     URL    
[8]
Jones J, Xiong H, Delariva A T, Peterson E J, Pham H, Challa S R, Qi G, Oh S, Wiebenga M H, Pereira Hernandez X I, Wang Y, Datye A K. Science, 2016,353(6295):150. https://www.sciencemag.org/lookup/doi/10.1126/science.aaf8800

doi: 10.1126/science.aaf8800     URL    
[9]
Gao G, Jiao Y, Waclawik E R, Du A. J. Am. Chem. Soc., 2016,138(19):6292. https://pubs.acs.org/doi/10.1021/jacs.6b02692

doi: 10.1021/jacs.6b02692     URL    
[10]
Wang Y, Mao J, Meng X, Yu L, Deng D, Bao X. Chem. Rev., 2019,119(3):1806. https://pubs.acs.org/doi/10.1021/acs.chemrev.8b00501

doi: 10.1021/acs.chemrev.8b00501     URL    
[11]
Chen Z W, Chen L X, Yang C C, Jiang Q. J. Mater. Chem. A, 2019,7(8):3492. http://xlink.rsc.org/?DOI=C8TA11416A

doi: 10.1039/C8TA11416A     URL    
[12]
Chen Y, Ji S, Wang Y, Dong J, Chen W, Li Z, Shen R, Zheng L, Zhuang Z, Wang D, Li Y. Angew. Chem. Int. Ed., 2017,56(24):6937. http://doi.wiley.com/10.1002/anie.201702473

doi: 10.1002/anie.201702473     URL    
[13]
Liu J. ACS Catal., 2016,7(1):34. https://pubs.acs.org/doi/10.1021/acscatal.6b01534

doi: 10.1021/acscatal.6b01534     URL    
[14]
Zhang L, Liu H, Huang X, Sun X, Jiang Z, Schlögl R, Su D. Angew. Chem. Int. Ed., 2015,54(52):15823. http://doi.wiley.com/10.1002/anie.201507821

doi: 10.1002/anie.201507821     URL    
[15]
Domínguez-Domínguez S, Berenguer-Murcia Á, Pradhan B K, Linares-Solano Á, Cazorla-Amorós D. J. Phys. Chem. C, 2008,112(10):3827. https://pubs.acs.org/doi/10.1021/jp710693u

doi: 10.1021/jp710693u     URL    
[16]
Ji G, Duan Y, Zhang S, Fei B, Chen X, Yang Y. ChemSusChem, 2017,10(17):3427. http://doi.wiley.com/10.1002/cssc.201701127

doi: 10.1002/cssc.201701127     URL    
[17]
Ji G, Duan Y, Zhang S, Yang Y. Catal. Today, 2019,330(SI):101. https://linkinghub.elsevier.com/retrieve/pii/S0920586118304814

doi: 10.1016/j.cattod.2018.04.036     URL    
[18]
Toumi N, Bonnamour I, Joly J P, Finqueneisel G, Retailleau L, Kalfat R, Lamartine R. Mater. Sci. Eng. C-Mater. Biol. Appl., 2006,26(2/3):490. https://linkinghub.elsevier.com/retrieve/pii/S0928493105003851

doi: 10.1016/j.msec.2005.10.020     URL    
[19]
Dantas S, Struckhoff K C, Thommes M, Neimark A V. Langmuir, 2019,35(35):11291. https://pubs.acs.org/doi/10.1021/acs.langmuir.9b01748

doi: 10.1021/acs.langmuir.9b01748     URL    
[20]
Funk M. J. Build Phys., 2014,39(3):207. http://journals.sagepub.com/doi/10.1177/1744259114527809

doi: 10.1177/1744259114527809     URL    
[21]
Matsuoka T, Hatori H, Kodama M, Yamashita J, Miyajima N. Carbon, 2004,42(11):2346. http://www.sciencedirect.com/science/article/pii/S0008622304002994

doi: 10.1016/j.carbon.2004.04.031     URL    
[22]
Llewellyn P L, Grillet Y, Schüth F, Reichert H, Unger K K. Microporous Materials, 1994,3(3):345. https://linkinghub.elsevier.com/retrieve/pii/0927651394000425

doi: 10.1016/0927-6513(94)00042-5     URL    
[23]
Cong H, Chen J, Yu S. Chem. Soc. Rev., 2014,43(21):7295. http://xlink.rsc.org/?DOI=C4CS00181H

doi: 10.1039/C4CS00181H     URL    
[24]
Fei H, Dong J, Arellano-Jiménez M J, Ye G, Dong Kim N, Samuel E L G, Peng Z, Zhu Z, Qin F, Bao J, Yacaman M J, Ajayan P M, Chen D, Tour J M. Nat. Commun., 2015,6(1):8668. https://doi.org/10.1038/ncomms9668

doi: 10.1038/ncomms9668     URL    
[25]
Peng Y, Lu B, Chen S. Adv. Mater., 2018,30(48):e1801995.
[26]
Zhao Q, Sun J, Li S, Huang C, Yao W, Chen W, Zeng T, Wu Q, Xu Q J. ACS Catal., 2018,8(12):11863. https://pubs.acs.org/doi/10.1021/acscatal.8b03737

doi: 10.1021/acscatal.8b03737     URL    
[27]
Tzadikov J, Auinat M, Barrio J, Volokh M, Peng G, Gervais C, Ein-Eli Y, Shalom M. ChemSusChem, 2018,11(17):2912. http://doi.wiley.com/10.1002/cssc.201801438

doi: 10.1002/cssc.201801438     URL    
[28]
Jiang K T, Siahrostami S, Zheng T, Hu Y, Hwang S, Stavitski E, Peng Y, Dynes J, Gangisetty M, Su D, Attenkofer K, Wang H T. Energy Environ. Sci., 2018,11(4):893. http://xlink.rsc.org/?DOI=C7EE03245E

doi: 10.1039/C7EE03245E     URL    
[29]
Lü F, Zhao S, Guo R, He J, Peng X, Bao H, Fu J, Han L, Qi G, Luo J, Tang X, Liu X. Nano Energy, 2019,61:420. https://linkinghub.elsevier.com/retrieve/pii/S2211285519303933

doi: 10.1016/j.nanoen.2019.04.092     URL    
[30]
Wang Y, Zhang W, Deng D, Bao X. Chinese J. Catal., 2017,38(9):1443. https://linkinghub.elsevier.com/retrieve/pii/S1872206717628390

doi: 10.1016/S1872-2067(17)62839-0     URL    
[31]
Dubray F, Moldovan S, Kouvatas C, Grand J, Aquino C, Barrier N, Gilson J P, Nesterenko N, Minoux D, Mintova S. J. Am. Chem. Soc., 2019,141(22):8689. https://pubs.acs.org/doi/10.1021/jacs.9b02589

doi: 10.1021/jacs.9b02589     URL    
[32]
Zhang L, Jia Y, Gao G, Yan X, Chen J, Chen N, Soo M T, Wood B, Yang D, Du A, Yao X D. Chem-Us, 2018,4(2):285.
[33]
Scheidegger A M, Lamble G M, Sparks D L. Environ. Sci. Technol., 1996,30(2):548. https://pubs.acs.org/doi/10.1021/es950293%2B

doi: 10.1021/es950293+     URL    
[34]
Pei G X, Liu X Y, Wang A, Lee A F, Isaacs M A, Li L, Pan X, Yang X, Wang X, Tai Z, Wilson K, Zhang T. ACS Catal., 2015,5(6):3717. https://pubs.acs.org/doi/10.1021/acscatal.5b00700

doi: 10.1021/acscatal.5b00700     URL    
[35]
Rehr J J, Mustre De Leon J, Zabinsky S I, Albers R C. J. Am. Chem. Soc., 1991,113(14):5135. https://pubs.acs.org/doi/abs/10.1021/ja00014a001

doi: 10.1021/ja00014a001     URL    
[36]
Tuomo Suntola J A. US4058430, 1977
[37]
Xie S, Choi S I, Lu N, Roling L T, Herron J A, Zhang L, Park J, Wang J, Kim M J, Xie Z, Mavrikakis M, Xia Y. Nano Lett., 2014,14(6):3570. https://pubs.acs.org/doi/10.1021/nl501205j

doi: 10.1021/nl501205j     URL    
[38]
Zhang J, Yu Z, Gao Z, Ge H, Zhao S, Chen C, Chen S, Tong X, Wang M, Zheng Z, Qin Y. Angew. Chem. Int. Ed., 2017,56(3):816. http://doi.wiley.com/10.1002/anie.201611137

doi: 10.1002/anie.201611137     URL    
[39]
Lin Y, Xu Y, Mayer M T, Simpson Z I, Mcmahon G, Zhou S, Wang D. J. Am. Chem. Soc., 2012,134(12):5508. http://dx.doi.org/10.1021/ja300319g

doi: 10.1021/ja300319g     URL    
[40]
Lu J. ECS Transactions, 2016,75(6):85.
[41]
Lu J, Elam J W, Stair P C. Surf. Sci. Rep., 2016,71(2):410. https://linkinghub.elsevier.com/retrieve/pii/S0167572916300024

doi: 10.1016/j.surfrep.2016.03.003     URL    
[42]
Sun S, Zhang G, Gauquelin N, Chen N, Zhou J, Yang S, Chen W, Meng X, Geng D, Banis M N, Li R, Ye S, Knights S, Botton G A, Sham T, Sun X L. Sci. Rep., 2013,3(1):1775. https://doi.org/10.1038/srep01775

doi: 10.1038/srep01775     URL    
[43]
Hummers W S, Offeman R E. J. Am. Chem. Soc., 1958,80(6):1339. https://pubs.acs.org/doi/abs/10.1021/ja01539a017

doi: 10.1021/ja01539a017     URL    
[44]
Zhang H, Wei J, Dong J, Liu G, Shi L, An P, Zhao G, Kong J, Wang X, Meng X, Zhang J, Ye J. Angew. Chem. Int. Ed., 2016,55(46):14310. http://doi.wiley.com/10.1002/anie.v55.46

doi: 10.1002/anie.v55.46     URL    
[45]
Cheng N, Stambula S, Wang D, Banis M N, Liu J, Riese A, Xiao B, Li R, Sham T, Liu L, Botton G A, Sun X L. Nat. Commun., 2016,7(1):13638. https://doi.org/10.1038/ncomms13638

doi: 10.1038/ncomms13638     URL    
[46]
Zhang L, Banis M N, Sun X L. Natl. Sci. Rev., 2018,5(5):628. https://academic.oup.com/nsr/article/5/5/628/5001433

doi: 10.1093/nsr/nwy054     URL    
[47]
Stambula S, Gauquelin N, Bugnet M, Gorantla S, Turner S, Sun S, Liu J, Zhang G, Sun X, Botton G A. J. Phys. Chem. C, 2014,118(8):3890. https://pubs.acs.org/doi/10.1021/jp408979h

doi: 10.1021/jp408979h     URL    
[48]
Lu J L, Elam J W, Stair P C. Accounts Chem. Res., 2013,46(8):1806. https://pubs.acs.org/doi/10.1021/ar300229c

doi: 10.1021/ar300229c     URL    
[49]
Yan H, Cheng H, Yi H, Lin Y, Yao T, Wang C, Li J, Wei S, Lu J L. J. Am. Chem. Soc., 2015,137(33):10484. https://pubs.acs.org/doi/10.1021/jacs.5b06485

doi: 10.1021/jacs.5b06485     URL    
[50]
Grillo F, Van Bui H, La Zara D, Aarnink A A I, Kovalgin A Y, Kooyman P, Kreutzer M T, van Ommen J R. Small, 2018,14(23):1800765. http://doi.wiley.com/10.1002/smll.v14.23

doi: 10.1002/smll.v14.23     URL    
[51]
Yan H, Lin Y, Wu H, Zhang W, Sun Z, Cheng H, Liu W, Wang C, Li J, Huang X, Yao T, Yang J, Wei S, Lu J. Nat. Commun., 2017,8(1):1070. http://www.nature.com/articles/s41467-017-01259-z

doi: 10.1038/s41467-017-01259-z     URL    
[52]
Yan H, Zhao X, Guo N, Lyu Z, Du Y, Xi S, Guo R, Chen C, Chen Z, Liu W, Yao C, Li J, Pennycook S J, Chen W, Su C L, Zhang C, Lv J. Nat. Commun., 2018,9:3197. https://doi.org/10.1038/s41467-018-05754-9

doi: 10.1038/s41467-018-05754-9     URL    
[53]
Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, Bao X. Energy Environ. Sci., 2015,8(5):1594. http://xlink.rsc.org/?DOI=C5EE00751H

doi: 10.1039/C5EE00751H     URL    
[54]
Chu Z, Kang Y, Jiang Z, Li G, Hu T, Wang J, Zhou Z, Li Y, Wang X. RSC Adv., 2014,4(51):26855. http://xlink.rsc.org/?DOI=C4RA02775B

doi: 10.1039/C4RA02775B     URL    
[55]
Kang Y, Chu Z, Ma T, Li W, Zhang D, Tang X. Optoelectronics Letters, 2016,12(1):1. http://link.springer.com/10.1007/s11801-016-5227-y

doi: 10.1007/s11801-016-5227-y     URL    
[56]
He T, Zhang C, Du A. Chem. Eng. Sci., 2019,194(SI):58. https://linkinghub.elsevier.com/retrieve/pii/S0009250918301623

doi: 10.1016/j.ces.2018.03.028     URL    
[57]
Dai G, Dai G, Chen L, Chen L, Zhao X, Zhao X. J. Mater. Sci., 2019,54(2):1395. https://doi.org/10.1007/s10853-018-2896-x

doi: 10.1007/s10853-018-2896-x     URL    
[58]
Esrafili M D, Asadollahi S. Appl. Surf. Sci., 2019,463:526. https://linkinghub.elsevier.com/retrieve/pii/S0169433218323924

doi: 10.1016/j.apsusc.2018.08.249     URL    
[59]
Tang Y, Yang Z, Dai X. Phys. Chem. Chem. Phys., 2012,14(48):16566. http://xlink.rsc.org/?DOI=c2cp41441d

doi: 10.1039/c2cp41441d     URL    
[60]
Cheng Y, Zhao S, Johannessen B, Veder J, Saunders M, Rowles M R, Cheng M, Liu C, Chisholm M F, De Marco R, Cheng H, Yang S, Jiang S P. Adv. Mater., 2018,30(13):1706287. https://onlinelibrary.wiley.com/toc/15214095/30/13

doi: 10.1002/adma.v30.13     URL    
[61]
Li X, Bi W, Zhang L, Tao S, Chu W, Zhang Q, Luo Y, Wu C, Xie Y. Adv. Mater., 2016,28(12):2427. http://doi.wiley.com/10.1002/adma.201505281

doi: 10.1002/adma.201505281     URL    
[62]
Zhang C, Yang S, Wu J, Liu M, Yazdi S, Ren M, Sha J, Zhong J, Nie K, Jalilov A S, Li Z, Li H, Yakobson B I, Wu Q, Ringe E, Xu H, Ajayan P M, Tour J M. Adv. Energy Mater., 2018,8(19):1703487. http://doi.wiley.com/10.1002/aenm.201703487

doi: 10.1002/aenm.201703487     URL    
[63]
Cheng Y, Zhao S, Li H, He S, Veder J, Johannessen B, Xiao J, Lu S, Pan J, Chisholm M F, Yang S, Liu C, Chen J G, Jiang S P. Appl. Catal. B-Environ., 2019,243:294. https://linkinghub.elsevier.com/retrieve/pii/S0926337318310026

doi: 10.1016/j.apcatb.2018.10.046     URL    
[64]
Fei H L, Dong J, Feng Y, Allen C S, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, Kirkland A I, Duan X, Huang Y. Nat. Catal., 2018,1(1):63. http://www.nature.com/articles/s41929-017-0008-y

doi: 10.1038/s41929-017-0008-y     URL    
[65]
Zu X, Li X, Liu W, Sun Y F, Xu J, Yao T, Yan W, Gao S, Wang C, Wei S, Xie Y. Adv. Mater., 2019,31(15):1808135. https://onlinelibrary.wiley.com/toc/15214095/31/15

doi: 10.1002/adma.v31.15     URL    
[66]
Fei H, Dong J, Wan C, Zhao Z, Xu X, Lin Z, Wang Y, Liu H, Zang K, Luo J, Zhao S, Hu W, Yan W, Shakir I, Huang Y, Duan X F. Adv. Mater., 2018,30(35):e1802146.
[67]
Zhou S, Shang L, Zhao Y, Shi R, Waterhouse G I N, Huang Y C, Zheng L, Zhang T R. Adv. Mater., 2019,31(18):1900509. https://onlinelibrary.wiley.com/toc/15214095/31/18

doi: 10.1002/adma.v31.18     URL    
[68]
Zhang J, Wu X, Cheong W, Chen W, Lin R, Li J, Zheng L, Yan W, Gu L, Chen C, Peng Q, Wang D, Li Y. Nat. Commun., 2018,9:1002. https://doi.org/10.1038/s41467-018-03380-z

doi: 10.1038/s41467-018-03380-z     URL    
[69]
Wan J, Chen W, Jia C, Zheng L, Dong J, Zheng X, Wang Y, Yan W, Chen C, Peng Q, Wang D, Li Y. Adv. Mater., 2018,30(11):1705369. http://doi.wiley.com/10.1002/adma.201705369

doi: 10.1002/adma.201705369     URL    
[70]
Tang N, Cong Y, Shang Q, Wu C, Xu G, Wang X. ACS Catal., 2017,7(9):5987. https://pubs.acs.org/doi/10.1021/acscatal.7b01816

doi: 10.1021/acscatal.7b01816     URL    
[71]
Liu P, Zhao Y, Qin R, Gu L, Zhang P, Fu G, Zheng N. Sci. Bull., 2018,63(11):675. https://linkinghub.elsevier.com/retrieve/pii/S2095927318301130

doi: 10.1016/j.scib.2018.03.002     URL    
[72]
Liu J, Wang Y, Li J. J. Am. Chem. Soc., 2017,139(17):6190. https://pubs.acs.org/doi/10.1021/jacs.7b01602

doi: 10.1021/jacs.7b01602     URL    
[73]
Jia Y, Zhang L, Gao G, Chen H, Wang B, Zhou J, Soo M T, Hong M, Yan X D, Qian G, Zou J, Du A, Yao X. Adv. Mater., 2017,29(17):1700017. http://doi.wiley.com/10.1002/adma.v29.17

doi: 10.1002/adma.v29.17     URL    
[74]
Yan X D, Jia Y, Chen J, Zhu Z, Yao X. Adv. Mater., 2016,28(39):8771. http://doi.wiley.com/10.1002/adma.201601651

doi: 10.1002/adma.201601651     URL    
[75]
Yan X D, Jia Y, Zhang L, Teng Soo M, Yao X. Chem. Commun., 2017,53(89):12140. http://xlink.rsc.org/?DOI=C7CC07501D

doi: 10.1039/C7CC07501D     URL    
[76]
Qiu H J, Ito Y, Cong W, Tan Y, Liu P, Hirata A, Fujita T, Tang Z, Chen M W. Angew. Chem. Int. Ed., 2015,54(47):14031. http://doi.wiley.com/10.1002/anie.201507381

doi: 10.1002/anie.201507381     URL    
[77]
Ye S, Luo F, Zhang Q, Zhang P, Xu T, Wang Q, He D, Guo L, Zhang Y, He C, Ouyang X, Gu M, Liu J H, Sun X L. Energy Environ. Sci., 2019,12(3):1000. http://xlink.rsc.org/?DOI=C8EE02888E

doi: 10.1039/C8EE02888E     URL    
[78]
Jeong H Y, Balamurugan M, Choutipalli V S K, Jo J, Baik H, Subramanian V, Kim M, Sim U, Nam K T. Chem. Eur. J., 2018,24(69):18444. https://onlinelibrary.wiley.com/toc/15213765/24/69

doi: 10.1002/chem.v24.69     URL    
[79]
Zhang H, Li J, Xi S, Du Y, Hai X, Wang J, Xu H, Wu G, Zhang J, Lv J, Wang J. Angew. Chem. Int. Ed., 2019,58(42):14871. https://onlinelibrary.wiley.com/toc/15213773/58/42

doi: 10.1002/anie.v58.42     URL    
[80]
Qu Y, Li Z, Chen W, Lin Y, Yuan T, Yang Z, Zhao C, Wang J, Zhao C, Wang X, Zhou F, Zhuang Z, Wu Y, Li Y D. Nat. Catal., 2018,1(10):781. https://doi.org/10.1038/s41929-018-0146-x

doi: 10.1038/s41929-018-0146-x     URL    
[81]
Cui X, Li H, Wang Y, Hu Y, Hua L, Li H, Han X, Liu Q, Yang F, He L, Chen X, Li Q, Xiao J, Deng D H, Bao X H. Chem-Us, 2018,4(8):1902.
[82]
Wang K, Wu H, Yuan W, Xi W, Luo J. Nanoscale, 2019,11(16):7595. http://xlink.rsc.org/?DOI=C9NR01479A

doi: 10.1039/C9NR01479A     URL    
[83]
Bakandritsos A, Kadam R G, Kumar P, Zoppellaro G, Medved’ M, Tuček J, Montini T, Tomanec O, Andr$\check{y}$sková P, Drahoš B, Varma R S, Otyepka M, Gawande M B, Fornasiero P, Zbo$\check{r}$il R. Adv. Mater., 2019,31(17):1900323. https://onlinelibrary.wiley.com/toc/15214095/31/17

doi: 10.1002/adma.v31.17     URL    
[84]
Seh Z W, Kibsgaard J, Dickens C F, Chorkendorff I, Norskov J K, Jaramillo T F. Science, 2017,355(6321):d4998.
[85]
Jin H, Guo C, Liu X, Liu J, Vasileff A, Jiao Y, Zheng Y, Qiao S. Chem. Rev., 2018,118(13):6337. https://pubs.acs.org/doi/10.1021/acs.chemrev.7b00689

doi: 10.1021/acs.chemrev.7b00689     URL    
[86]
Wang H, Yuan X, Wu Y, Huang H, Peng X, Zeng G, Zhong H, Liang J, Ren M. Adv. Colloid Interfac., 2013,195/196:19. https://linkinghub.elsevier.com/retrieve/pii/S0001868613000341

doi: 10.1016/j.cis.2013.03.009     URL    
[87]
Conway B E, Tilak B V. Electrochim. Acta, 2002,47(22/23):3571.
[88]
Liao G, Gong Y, Zhang L, Gao H, Yang G, Fang B. Energy Environ. Sci., 2019,12(7):2080.
[89]
Zhang G, Ji Q, Wu Z, Wang G, Liu H, Qu J, Li J. Adv. Funct. Mater., 2018,28(14):1706462. http://doi.wiley.com/10.1002/adfm.v28.14

doi: 10.1002/adfm.v28.14     URL    
[90]
Han G, Jin Y, Burgess R A, Dickenson N E, Cao X, Sun Y. J. Am. Chem. Soc., 2017,139(44):15584. https://pubs.acs.org/doi/10.1021/jacs.7b08657

doi: 10.1021/jacs.7b08657     URL    
[91]
Zhang H, Zhang P, Qiu M, Dong J, Zhang Y, Lou X W D. Adv. Mater., 2018,31:1804883.
[92]
Xu J, Yang W, Huang S, Yin H, Zhang H, Radjenovic P, Yang Z, Tian Z, Li J. Nano Energy, 2018,49:363. https://linkinghub.elsevier.com/retrieve/pii/S2211285518302763

doi: 10.1016/j.nanoen.2018.04.048     URL    
[93]
Lum Y, Ager J W. Nat. Catal., 2019,2(1):86. https://doi.org/10.1038/s41929-018-0201-7

doi: 10.1038/s41929-018-0201-7     URL    
[94]
Kim C, Dionigi F, Beermann V, Wang X, Möller T, Strasser P. Adv. Mater., 2018,31(31):1805617. https://onlinelibrary.wiley.com/toc/15214095/31/31

doi: 10.1002/adma.v31.31     URL    
[95]
Jiang K, Chen G, Wang H. JoVE, 2018, ( 134):e57380.
[96]
Gao D, Arán-Ais R M, Jeon H S, Roldan Cuenya B. Nat. Catal., 2019,2(3):198. https://doi.org/10.1038/s41929-019-0235-5

doi: 10.1038/s41929-019-0235-5     URL    
[97]
Bai X, Chen W, Zhao C, Li S, Song Y, Ge R, Wei W, Sun Y. Angew. Chem. Int. Ed., 2017,56(40):12219. http://doi.wiley.com/10.1002/anie.201707098

doi: 10.1002/anie.201707098     URL    
[98]
Gu J, Hsu C S, Bai L, Chen H M, Hu X. Science, 2019,364(6445):1091. https://www.sciencemag.org/lookup/doi/10.1126/science.aaw7515

doi: 10.1126/science.aaw7515     URL    
[99]
Zheng X, Ji Y, Tang J, Wang J, Liu B, Steinrück H, Lim K, Li Y, Toney M F, Chan K, Cui Y. Nat. Catal., 2019,2(1):55. https://doi.org/10.1038/s41929-018-0200-8

doi: 10.1038/s41929-018-0200-8     URL    
[100]
Li X, Huang X, Xi S, Miao S, Ding J, Cai W, Liu S, Yang X, Yang H, Gao J, Wang J, Huang Y, Zhang T, Liu B. J. Am. Chem. Soc., 2018,140(39):12469. https://pubs.acs.org/doi/10.1021/jacs.8b05992

doi: 10.1021/jacs.8b05992     URL    
[101]
Deng D, Chen X, Yu L, Wu X, Liu Q, Liu Y, Yang H, Tian H, Hu Y, Du P, Si R, Wang J, Cui X, Li H, Xiao J, Xu T, Deng J, Yang F, Duchesne P N, Zhang P, Zhou J, Sun L, Li J, Pan X, Bao X. Sci. Adv., 2015,1(11):e1500462. https://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1500462

doi: 10.1126/sciadv.1500462     URL    
[102]
Yan H, Lv H, Yi H, Liu W, Xia Y, Huang X, Huang W, Wei S, Wu X, Lu J. J. Catal., 2018,366:70. https://linkinghub.elsevier.com/retrieve/pii/S0021951718302963

doi: 10.1016/j.jcat.2018.07.033     URL    
[103]
Zhang X, Guo J, Guan P, Liu C, Huang H, Xue F, Dong X, Pennycook S J, Chisholm M F. Nat. Commun., 2013,4(5):1924. https://doi.org/10.1038/ncomms2929

doi: 10.1038/ncomms2929     URL    
[104]
Borrome M, Gronert S. Angew. Chem. Int. Ed. Engl., 2019,58(42):14906. https://onlinelibrary.wiley.com/toc/15213773/58/42

doi: 10.1002/anie.v58.42     URL    
[105]
Li Y, Wen H, Yang J, Zhou Y, Cheng X. Carbon, 2019,142:1. https://linkinghub.elsevier.com/retrieve/pii/S0008622318309011

doi: 10.1016/j.carbon.2018.09.079     URL    
[106]
Yang Q, Yang C C, Lin C H, Jiang H L. Angew. Chem. Int. Ed. Engl., 2019,58(11):3511. http://doi.wiley.com/10.1002/anie.201813494

doi: 10.1002/anie.201813494     URL    
[107]
Liu W, Chen Y, Qi H, Zhang L, Yan W, Liu X, Yang X, Miao S, Wang W, Liu C, Wang A, Li J, Zhang T. Angew. Chem. Int. Ed., 2018,57(24):7071. http://doi.wiley.com/10.1002/anie.v57.24

doi: 10.1002/anie.v57.24     URL    
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[4] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[7] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[8] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[9] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[10] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[11] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[12] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[13] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[14] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[15] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.