English
新闻公告
More
化学进展 2019, Vol. 31 Issue (5): 667-680 DOI: 10.7536/PC180905 前一篇   后一篇

• •

三维石墨烯基材料的制备、结构与性能

刘杰, 曾渊, 张俊, 张海军, 刘江昊**()   

  1. 武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081
  • 收稿日期:2018-09-05 出版日期:2019-05-15 发布日期:2019-03-21
  • 通讯作者: 刘江昊
  • 基金资助:
    国家自然科学基金面上项目(51672194); 国家自然科学基金面上项目(51872210); 国家自然科学基金青年基金项目(51502212); 湖北省自然科学基金面上项目(2018CFB760); 湖北省教育厅高等优秀中青年科技创新团队计划(T201602); 湖北省自然科学基金创新群体项目(2017CFA004)

Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials

Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu**()   

  1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
  • Received:2018-09-05 Online:2019-05-15 Published:2019-03-21
  • Contact: Jianghao Liu
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51672194); National Natural Science Foundation of China(51872210); National Natural Science Foundation of China Youth Fund Project(51502212); Hubei Provincial Natural Science Foundation Project(2018CFB760); Program for Innovative Teams of Outstanding Young and Middle-Aged Researchers in the Higher Education Institutions of Hubei Province(T201602); Key Program of Natural Science Foundation of Hubei Province, China(2017CFA004)

石墨烯具有单层碳原子组成的六方晶系晶体结构及独特的电学、化学、力学和热学性质。然而,由于石墨烯片层之间较强的π-π键和范德华力,导致易团聚或堆积,使其比表面积大幅减小,严重损害其性能。解决上述问题的最有效方法之一是构建具有多孔结构的三维石墨烯基材料,不仅保留了石墨烯优秀的导电性能和力学性能等本征特性,而且获得密度低、比表面积大、孔隙率高等结构优点,进而满足吸附剂、催化剂载体、生物传感器及电池与超级电容器电极材料等先进功能材料领域的应用需要。因此,开发三维石墨烯基材料的先进制备方法成为本领域研究的热点方向。本文综述了三维石墨烯基材料的现有制备方法,包括自组装法(水热还原法、化学还原法及冷冻干燥法)、模板法(胶体模板法、模板辅助化学气相沉积法及模板辅助水热还原法)和3D打印法(直写成型法、喷墨打印法、熔融沉积成型法、光固化成型法、选区激光烧结法及选区激光熔融法),总结了上述方法的优点及当前存在的主要问题,并且对三维石墨烯基材料制备技术的发展方向进行了展望。

As a novel two-dimensional carbon nano-material, graphene has the structure of hexagonally-packed single-layer carbon atoms as well as outstanding electrical, chemical, mechanical and thermal properties. However, due to the existence of strong π-π bond and van der Waals force between adjacent graphene sheets, graphene are easily agglomerated or re-stacked, therefore greatly reducing their specific surface area and seriously degrading corresponding properties. To date, one of the most effective strategies to address the above problems is to build three-dimensional porous graphene-based materials, thereby not only retaining the intrinsic properties of graphene such as excellent electrical and mechanical properties but also acquiring the advantages of low density, high porosity and large specific surface area. As a result, three-dimensional graphene-based materials have been widely used in versatile functional application fields such as adsorbent, catalyst carrier, biosensor, battery as well as supercapacitor electrode materials. Therefore, the development of the preparation technology of three-dimensional graphene-based materials has attracted great attention. The existing preparation methodologies of three-dimensional graphene-based materials, including self-assembling(hydrothermal reduction, chemical reduction and freeze-drying), templating(colloid template, template-assisted chemical vapor deposition and template-assisted hydrothermal reduction), and 3D printing(direct inking writing, inkjet printing, fused deposition modeling, stereolithography, selective laser sintering/melting)are reviewed.Their advantages as well as disadvantages and forcasts the promising development direction of the preparation technology for three-dimensional graphene-based materials are also summarized.

()
图1 3D rGO/S-PANI的制备过程示意图[13]
Fig. 1 Scheme of the prepration process of 3D rGO/S-PANI[13]
图2 采用化学还原自组装法,以NaHSO3为还原剂,GO为原料经过不同还原时间所得的三维石墨烯水凝胶的照片[15]
Fig. 2 Photograph of a three-dimensional graphene hydrogel obtained by chemical reduction self-assembly method using NaHSO3 as a reducing agent and GO as a raw material through different reduction time[15]
图3 (a)铂-碳/三维石墨烯(b)铂/三维石墨烯的SEM照片[23]
Fig. 3 SEM image of (a)Pt-C/3D graphene and(b)Pt/3D graphene[23]
图4 三维石墨烯/聚苯胺空心球的制备过程示意图[28]
Fig. 4 The illlustration of fabrication procedure of 3D graphene/PANI hollow spheres[28]
图5 除去镍泡沫模板所得三维石墨烯泡沫的SEM照片[30]
Fig. 5 SEM image of three-dimensional graphene foams obtained by removing nickel foam template[30]
图6 Gr-GNP复合气凝胶的制备过程示意图[55]
Fig. 6 Schematic illustration of fabrication process of Gr-GNP composite aerogel[55]
图7 GHC与GHC/PDMS的制备过程示意图[61]
Fig. 7 Schematic illustration of fabrication of GHC and GHC/PDMS[61]
图8 固态超级电容器的制备过程示意图[66]
Fig. 8 Schematic of solid-state supercapacitor fabrication[66]
图9 选区激光烧结法制备三维石墨烯泡沫的过程示意图[69]
Fig. 9 Schematic diagram of preparing three-dimensional graphene foam by selectively laser sintering[69]
表1 三维石墨烯基材料的制备方法、性能和应用领域
Table 1 3D graphene-based materials with the preparation methods, properties and applications
Structure Preparation Property Application ref
Graphene Hydrogel GO as precursor,
Hydrothermal reduction self-assembly method
Pore size:up to several micrometers
Electrical conductivity: 5×10-3 S·cm-1
Specific capacitance: 175 F·g-1
(constant current density of 1.2 A·g-1)
Elastic modulus: 0.29 MPa
Yield stress: 24 kPa
Storage modulus: 450~490 kPa
Supercapacitor electrodes 11
GO as precursor, chemical reduction self-
assembly method
Pore size: 1~2 μm.
Electrical conductivity: 1 S·m-1
Specific capacitance: 240 F·g-1
(constant current density of 1.2 A·g-1)
Storage modulus: 275 kPa
Supercapacitor electrodes 14
Graphene Aerogel Graphene suspension as
precursor, freeze-drying self-assembly method
Specific Surface area: 504 m2·g-1
Density: 6.5 mg·cm-3
Pore size: several nanometers to tens of micrometers
Electrical conductivity: 509 S·m-1
Specific capacitance: 325 F·g-1(constant current density of 1 A·g-1)
Supercapacitor electrodes 17
GO/SiO2 ink, 3D printing-direct ink writing Density: 123 mg·cm-3
Electrical conductivity: 287 S·m-1
Supercapacitor 54
Graphene Sponge GO as precursor,
hydrothermal reduction and freeze-drying self-
assembly method
Pore size: 570~620 μm
Specific Surface area: 423 m2·g-1
Density:(12 ± 5) mg·cm- 3
Absorbent 20
Graphene Foams Ethyl alcohol as carbon
source/Ni foam as template,
template assisted
CVD methed
Specific Surface area: 670 m2·g-1
Pore size: 100~200 μm
detection of dopamine sensitivity:
619.6 μA·mM-1·cm-2
lower detection limit: 25 nM
linear response up to 25 μM
Biosensor electrodes 31
Nickel salt as precursor of catalyst and template,
template assisted
CVD methed
Specific Surface area: 560 m2·g-1
Density: 22 mg·cm-3
Electrical conductivity: 12 S·cm-1
Adsorption capacities: Cd2+: 434 mg·g-1,
Pb2+: 882 mg·g-1, Ni2+: 1683 mg·g-1,
Cu2+: 3820 mg·g-1
Absorbent 39
GO as precursor/Ni foam as template, template assisted hydrothermal reduction methed Specific Surface area: 463 m2·g-1
Electrical conductivity: 71.4 S·m-1
Specific capacitance: 336 F·g-1
(constant current density of 2 A·g-1)
Supercapacitor electrodes 50
Glucose as carbon source/Ni foam as template, 3D
printing-selective laser sintering
Density: 0.015 mg·cm-3
Porosity: 99.3%
Electrical conductivity: 8.7 S·cm-1
Storage modulus: 11 kPa
Damping Capacity: 0.06
Damping materials,
Energy storage devices
69
Graphene Honeycomb Sandwich ABS ink/GO precursor/L-ascorbic acid reductant, 3D printing-inject printing,
chemistry reduction,
freeze-drying, template
assisted CVD methed
Density: 3.25 mg·cm-3
Pore size: 10~ 20 μm
Electrical conductivity: 72 S·m-1
Flexible electric circuit 61
Graphene Composite Printable graphen-based conductive filament as raw material, 3D printing-fused deposition modeling Specific capacitance: 98.37 F·g-1
(constant current density of 0.5 A·g-1)
Resistent: 1.3 Ω
Photocurrent: 724.1 μA
Cu2+ detection range: 0.01~80 μM and low detection limit: 0.05 μM
3DE/Au/CdS composite as
photoelectrochemistry sensor electrodes, solid-state
supercapacitor
66
Graphene
oxide Nanocomposite
GO/Formlabs photosensitive rein as pecuror, 3D
printing-stereolithography
tensile strength: 60 MPa for the 1 wt% GO 68
Graphene-aluminum Nanocomposites Graphene/aluminum powder as raw material, 3D printing-selective laser melting Vickers hardness: 66.6 HV
Nano-indentation hardness: 1.77 GPa(2.5 wt% graphene)
Highly Performence nanocomposite 70
[1]
Geim A K, Novoselov K S . Nature Materials, 2007,6(3):183. https://www.ncbi.nlm.nih.gov/pubmed/17330084

doi: 10.1038/nmat1849     URL     pmid: 17330084
[2]
Allen M J, Tung V C, Kaner R B . Chemical Reviews, 2010,110(1):132. https://www.ncbi.nlm.nih.gov/pubmed/19610631

doi: 10.1021/cr900070d     URL     pmid: 19610631
[3]
Su Q, Liang Y, Feng X, Muellen K . Chemical Communications, 2010,46(43):8279. https://www.ncbi.nlm.nih.gov/pubmed/20882251

doi: 10.1039/c0cc02659j     URL     pmid: 20882251
[4]
Yoo J J, Balakrishnan K, Huang J, Meunier V, Sumpter B G, Srivastava A, Conway M, Reddy A L, Yu J, Vajtai R, Ajayan P M . Nano Letters, 2011,11(4):1423. https://www.ncbi.nlm.nih.gov/pubmed/21381713

doi: 10.1021/nl200225j     URL     pmid: 21381713
[5]
Stoller M D, Park S J, Zhu Y W, An J H, Ruoff R S . Nano Letters, 2008,8(10):3498. https://www.ncbi.nlm.nih.gov/pubmed/18788793

doi: 10.1021/nl802558y     URL     pmid: 18788793
[6]
Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S . Carbon, 2007,45(7):1558. https://www.ncbi.nlm.nih.gov/pubmed/7189441

doi: 10.1002/1097-0142(19800401)45:7【-逻*辑*与-】amp;amp;lt;1558::aid-cncr2820450708【-逻*辑*与-】amp;amp;gt;3.0.co;2-2     URL     pmid: 7189441
[7]
Lee C, Wei X D, Kysar J W, Hone J . Science, 2008,321(5887):385. https://www.ncbi.nlm.nih.gov/pubmed/18635798

doi: 10.1126/science.1157996     URL     pmid: 18635798
[8]
Yin S, Zhang Y, Kong J, Zou C, Li C M, Lu X, Ma J, Boey F Y C, Chen X . ACS Nano, 2011,5(5):3831. https://www.ncbi.nlm.nih.gov/pubmed/21510618

doi: 10.1021/nn2001728     URL     pmid: 21510618
[9]
Li T, Luo L, Hupalo M, Zhang J, Tringides M C, Schmalian J, Wang J . Physical Review Letters, 2012,108(16):167401. https://www.ncbi.nlm.nih.gov/pubmed/22680753

doi: 10.1103/PhysRevLett.108.167401     URL     pmid: 22680753
[10]
Cao X, Yin Z, Zhang H . Energy & Environmental Science, 2014,7(6):1850.
[11]
Xu Y X, Sheng K X, Li C, Shi G Q . ACS Nano, 2010,4(7):4324. https://www.ncbi.nlm.nih.gov/pubmed/20590149

doi: 10.1021/nn101187z     URL     pmid: 20590149
[12]
Zhang L, Shi G . The Journal of Physical Chemistry C, 2011,115(34):17206.
[13]
Gao Z, Yang J, Huang J, Xiong C, Yang Q . Nanoscale, 2017,9(45):17710. https://www.ncbi.nlm.nih.gov/pubmed/29130462

doi: 10.1039/c7nr06847f     URL     pmid: 29130462
[14]
Sheng K X, Xu Y X, Li C, Shi G Q . New Carbon Materials, 2011,26(1):9.
[15]
Chen W, Yan L . Nanoscale, 2011,3(8):3132. https://www.ncbi.nlm.nih.gov/pubmed/21698339

doi: 10.1039/c1nr10355e     URL     pmid: 21698339
[16]
Chen W, Li S, Chen C, Yan L . Advanced Materials, 2011,23(47):5679. https://www.ncbi.nlm.nih.gov/pubmed/22052602

doi: 10.1002/adma.201102838     URL     pmid: 22052602
[17]
Jung S M, Mafra D L, Lin C T, Jung H Y, Kong J . Nanoscale, 2015,7(10):4386. https://www.ncbi.nlm.nih.gov/pubmed/25682978

doi: 10.1039/c4nr07564a     URL     pmid: 25682978
[18]
Zhang X, Sui Z, Xu B, Yue S, Luo Y, Zhan W, Liu B . Journal of Materials Chemistry, 2011,21(18):6494.
[19]
Wang W, Wu Y, Jiang Z, Wang M, Wu Q, Zhou X, Ge X . Applied Surface Science, 2018,427:1144.
[20]
Bi H, Xie X, Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L, Ruoff R S . Advanced Functional Materials, 2012,22(21):4421.
[21]
Wang R, Guo W, Li X, Liu Z, Liu H, Ding S . Journal of Materials Science, 2017,52(24):13930.
[22]
Jiang T C, Bu F X, Feng X X, Shakir I, Hao G L, Xu Y X . ACS Nano, 2017,11(5):5140. https://www.ncbi.nlm.nih.gov/pubmed/28457124

doi: 10.1021/acsnano.7b02198     URL     pmid: 28457124
[23]
Xie Y, Li Z, Wang Y, Xu S, Lin S . Journal of Applied Electrochemistry, 2018,48(3):355.
[24]
Huang X, Qian K, Yang J, Zhang J, Li L, Yu C, Zhao D . Advanced Materials, 2012,24(32):4419. https://www.ncbi.nlm.nih.gov/pubmed/22786709

doi: 10.1002/adma.201201680     URL     pmid: 22786709
[25]
Kim F, Luo J, Cruz Silva R, Cote L J, Sohn K, Huang J . Advanced Functional Materials, 2010,20(17):2867.
[26]
Yu P, Zhao X, Li Y, Zhang Q . Applied Surface Science, 2017,393:37.
[27]
Choi B G, Yang M, Hong W H, Choi J W, Huh Y S . ACS Nano, 2012,6(5):4020. https://www.ncbi.nlm.nih.gov/pubmed/22524516

doi: 10.1021/nn3003345     URL     pmid: 22524516
[28]
Luo J, Ma Q, Gu H, Zheng Y, Liu X . Electrochimica Acta, 2015,173:184.
[29]
Choi S H, Lee J K, Kang Y C . Nano Research, 2015,8(5):1584.
[30]
Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H M . Nature Materials, 2011,10(6):424. https://www.ncbi.nlm.nih.gov/pubmed/21478883

doi: 10.1038/nmat3001     URL     pmid: 21478883
[31]
Dong X, Wang X, Wang L, Song H, Zhang H, Huang W, Chen P . ACS Applied Materials & Interfaces, 2012,4(6):3129. https://www.ncbi.nlm.nih.gov/pubmed/22574906

doi: 10.1021/am300459m     URL     pmid: 22574906
[32]
Cheng C K, Yeh T K, Tsai M C, Chou H Y, Wu H C, Hsieh C K . Surface and Coatings Technology, 2017,320:536.
[33]
Li N, Zhang Q, Gao S, Song Q, Huang R, Wang L, Liu L, Dai J, Tang M, Cheng G . Scientific Reports, 2013,3:1604. https://www.ncbi.nlm.nih.gov/pubmed/23549373

doi: 10.1038/srep01604     URL     pmid: 23549373
[34]
Beka L G, Li X, Liu W . Scientific Reports, 2017,7(1):2105. https://www.ncbi.nlm.nih.gov/pubmed/28522809

doi: 10.1038/s41598-017-02309-8     URL     pmid: 28522809
[35]
Deng X, Li J, Zhu S, He F, He C, Liu E, Shi C, Li Q, Zhao N . Journal of Alloys and Compounds, 2017,693:16.
[36]
Li T, Xu Y, Feng Y, Zhang C, Yang C, Sun Z, Zhang H, Yuan X, Ning T, Yang C . Applied Surface Science, 2017,423:1072.
[37]
Cao X, Shi Y, Shi W, Lu G, Huang X, Yan Q, Zhang Q, Zhang H . Small, 2011,7(22):3163. https://www.ncbi.nlm.nih.gov/pubmed/21932252

doi: 10.1002/smll.201100990     URL     pmid: 21932252
[38]
Liu Z, Tu Z, Li Y, Yang F, Han S, Yang W, Zhang L, Wang G, Xu C, Gao J . Materials Letters, 2014,122:285.
[39]
Li W, Gao S, Wu L, Qiu S, Guo Y, Geng X, Chen M, Liao S, Zhu C, Gong Y, Long M, Xu J, Wei X, Sun M, Liu L . Scientific Reports, 2013,3:2125. https://www.ncbi.nlm.nih.gov/pubmed/23821107

doi: 10.1038/srep02125     URL     pmid: 23821107
[40]
Wang Z, Wang G, Li M, Lin J, Ma Q, Zhang A, Zhong Z, Qi J, Feng J . Carbon, 2017,118:723.
[41]
Chin H T, Shih C H, Hsieh Y P, Ting C C, Aoh J N, Hofmann M . Physical Chemistry Chemical Physics, 2017,19(34):23357. https://www.ncbi.nlm.nih.gov/pubmed/28825734

doi: 10.1039/c7cp03207b     URL     pmid: 28825734
[42]
Yavari F, Chen Z, Thomas A V, Ren W, Cheng H M, Koratkar N . Scientific Reports, 2011,1:166. https://www.ncbi.nlm.nih.gov/pubmed/22355681

doi: 10.1038/srep00166     URL     pmid: 22355681
[43]
Li N, Chen Z, Ren W, Li F, Cheng H M . Proceedings of the National Academy of Sciences of the United States of America, 2012,109(43):17360.
[44]
Chen Z, Xu C, Ma C, Ren W, Cheng H M . Advanced Materials, 2013,25(9):1296. https://www.ncbi.nlm.nih.gov/pubmed/23300002

doi: 10.1002/adma.201204196     URL     pmid: 23300002
[45]
Pettes M T, Ji H, Ruoff R S, Shi L . Nano Letterrs, 2012,12(6):2959. https://www.ncbi.nlm.nih.gov/pubmed/22612725

doi: 10.1021/nl300662q     URL     pmid: 22612725
[46]
Xue Y, Yu D, Dai L, Wang R, Li D, Roy A, Lu F, Chen H, Liu Y, Qu J . Physical Chemistry Chemical Physics, 2013,15(29):12220. https://www.ncbi.nlm.nih.gov/pubmed/23770584

doi: 10.1039/c3cp51942b     URL     pmid: 23770584
[47]
周国珺(Zhou G J), 叶志凯(Ye Z K), 石微微(Shi W W), 刘吉洋(Liu J Y), 奚凤娜(Xi F N) . 化学进展 (Progress in Chemistry), 2014,26(6):950.
[48]
Ito Y, Tanabe Y, Qiu H J, Sugawara K, Heguri S, Tu N H, Huynh K K, Fujita T, Takahashi T, Tanigaki K, Chen M . Angewandte Chemie, 2014,53(19):4822. https://www.ncbi.nlm.nih.gov/pubmed/24683165

doi: 10.1002/anie.201402662     URL     pmid: 24683165
[49]
Miao P, He J, Sang Z, Zhang F, Guo J, Su D, Yan X, Li X, Ji H . Journal of Alloys and Compounds, 2018,732(25):613.
[50]
Ye S, Feng J, Wu P . ACS Applied Materials & Interfaces, 2013,5(15):7122. https://www.ncbi.nlm.nih.gov/pubmed/23844989

doi: 10.1021/am401458x     URL     pmid: 23844989
[51]
Yin S, Wu Y L, Hu B, Wang Y, Cai P, Tan C K, Qi D, Zheng L, Leow W R, Tan N S, Wang S, Chen X . Advanced Materials Interfaces, 2014,1(1):1300043.
[52]
Lee J Y, An J, Chua C K . Applied Materials Today, 2017,7:120.
[53]
Worsley M A, Kucheyev S O, Mason H E, Merrill M D, Mayer B P, Lewicki J, Valdez C A, Suss M E, Stadermann M, Pauzauskie P J, Satcher J H, Biener J, Baumann T F . Chemical Communication, 2012,48(67):8428. https://www.ncbi.nlm.nih.gov/pubmed/22797515

doi: 10.1039/c2cc33979j     URL     pmid: 22797515
[54]
Zhu C, Han T Y, Duoss E B, Golobic A M, Kuntz J D, Spadaccini C M, Worsley M A . Nature Communications, 2015,6:6962. https://www.ncbi.nlm.nih.gov/pubmed/25902277

doi: 10.1038/ncomms7962     URL     pmid: 25902277
[55]
Zhu C, Liu T, Qian F, Han T Y, Duoss E B, Kuntz J D, Spadaccini C M, Worsley M A, Li Y . Nano Letters, 2016,16(6):3448. https://www.ncbi.nlm.nih.gov/pubmed/26789202

doi: 10.1021/acs.nanolett.5b04965     URL     pmid: 26789202
[56]
Zhong J, Zhou G X, He P G, Yang Z H, Jia D C . Carbon, 2017,117:421. https://linkinghub.elsevier.com/retrieve/pii/S0008622317302312

doi: 10.1016/j.carbon.2017.02.102     URL    
[57]
Cheng Z, Landish B, Chi Z, Nannan C, Jingyu D, Sen L, Xiang J L . Materials Science & Engineering C, 2018,82:244. https://www.ncbi.nlm.nih.gov/pubmed/29025654

doi: 10.1016/j.msec.2017.08.069     URL     pmid: 29025654
[58]
Wang W, Zhang Y, Zhang L, Shi Y, Jia L, Zhang Q, Xu X . Materials Letters, 2018,213:100.
[59]
Chi K, Zhang Z, Xi J, Huang Y, Xiao F, Wang S, Liu Y . ACS Applied Materials & Interfaces, 2014,6(18):16312. https://www.ncbi.nlm.nih.gov/pubmed/25180808

doi: 10.1021/am504539k     URL     pmid: 25180808
[60]
Zhang Q, Zhang F, Medarametla S P, Li H, Zhou C, Lin D . Small, 2016,12(13):1702. https://www.ncbi.nlm.nih.gov/pubmed/26861680

doi: 10.1002/smll.201503524     URL     pmid: 26861680
[61]
Wang Z, Liu X, Shen X, Han N M, Wu Y, Zheng Q, Jia J, Wang N, Kim J K . Advanced Functional Materials, 2018,28(19):1707043.
[62]
Vernardou D, Vasilopoulos K C, Kenanakis G . Applied Physics A, 2017,123(10):623.
[63]
Foster C W, Down M P, Zhang Y, Ji X, Rowley Neale S J, Smith G C, Kelly P J, Banks C E . Scientific Reports, 2017,7:42233. https://www.ncbi.nlm.nih.gov/pubmed/28256602

doi: 10.1038/srep42233     URL     pmid: 28256602
[64]
Zhou G, Wang K P, Liu H W, Wang L, Xiao X F, Dou D D, Fan Y B . International Journal of Biological Macromolecules, 2018,113:792. https://www.ncbi.nlm.nih.gov/pubmed/29529585

doi: 10.1016/j.ijbiomac.2018.02.017     URL     pmid: 29529585
[65]
孙怡然(Sun Y R), 杨明轩(Yang M X), 于飞(Yu F), 陈君红(Chen J H), 马杰(Ma J) . 化学进展 (Progress in Chemistry), 2015,27(8):1133.
[66]
Foo C Y, Lim H N, Mahdi M A, Wahid M H, Huang N M . Scientific Reports, 2018,8(1):7399. https://www.ncbi.nlm.nih.gov/pubmed/29743664

doi: 10.1038/s41598-018-25861-3     URL     pmid: 29743664
[67]
Melchels F P, Feijen J, Grijpma D W . Biomaterials, 2010,31(24):6121. 21871890-199c-4267-aa3d-0bb8d4259e8bhttp://www.sciencedirect.com/science/article/pii/S0142961210005661

doi: 10.1016/j.biomaterials.2010.04.050     URL    
[68]
Manapat J Z, Mangadlao J D, Tiu B D B, Tritchler G C, Advincula R C . ACS Applied Materials & Interfaces, 2017,9(11):10085. https://www.ncbi.nlm.nih.gov/pubmed/28230346

doi: 10.1021/acsami.6b16174     URL     pmid: 28230346
[69]
Sha J, Li Y, Villegas Salvatierra R, Wang T, Dong P, Ji Y, Lee S K, Zhang C, Zhang J, Smith R H, Ajayan P M, Lou J, Zhao N, Tour J M . ACS Nano, 2017,11(7):6860. https://www.ncbi.nlm.nih.gov/pubmed/28608675

doi: 10.1021/acsnano.7b01987     URL     pmid: 28608675
[70]
Hu Z, Chen F, Xu J, Nian Q, Lin D, Chen C, Zhu X, Chen Y, Zhang M . Journal of Alloys and Compounds, 2018,746:269.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[4] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[5] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[6] 王杰, 冯亚青, 张宝. MOF-COF框架杂化材料[J]. 化学进展, 2022, 34(6): 1308-1320.
[7] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[8] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[9] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[10] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[11] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[12] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[13] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[14] 陈立忠, 龚巧彬, 陈哲. 超薄二维MOF纳米材料的制备和应用[J]. 化学进展, 2021, 33(8): 1280-1292.
[15] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.