English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 236-244 DOI: 10.7536/PC180445 前一篇   后一篇

• •

石墨烯材料与蛋白质的相互作用

王晓娟**(), 刘真真, 陈奇, 王小强, 黄方**()   

  1. 1. 中国石油大学(华东)化学工程学院 青岛 266580
  • 收稿日期:2018-04-27 出版日期:2019-02-15 发布日期:2018-12-20
  • 通讯作者: 王晓娟, 黄方
  • 基金资助:
    山东省自然科学基金面上项目(ZR2017MB039); 山东省重点研发计划项目(2018GGX102025); 青岛市民生科技计划项目(17-3-3-76-nsh)

Interactions between Graphene Materials and Proteins

Xiaojuan Wang**(), Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang**()   

  1. 1. College of Chemical Engineering, China University of Petroleum(East China), Qingdao 266580, China
  • Received:2018-04-27 Online:2019-02-15 Published:2018-12-20
  • Contact: Xiaojuan Wang, Fang Huang
  • About author:
    ** E-mail: (Xiaojuan Wang);
    (Fang Huang)
  • Supported by:
    Natural Science Foundation of Shandong Province(ZR2017MB039); Key Technologies R&D Program of Shandong Province(2018GGX102025); Qingdao People’s Livelihood Science and Technology Project(17-3-3-76-nsh)

石墨烯材料凭借其优异的物理化学性质在生物化学以及生物医学领域备受关注,展现出了广阔的应用前景。值得注意的是,石墨烯材料在应用于载药、医学检测与诊断及生物成像等诸多领域时,会不可避免地与生物体内的各种蛋白质分子产生相互作用,进而改变石墨烯材料自身的理化性质并影响蛋白质的构象及生物学功能。因此研究石墨烯材料与蛋白质分子之间的相互作用,对于理解和评估其生物学效应,开发新型生物化学技术,具有至关重要的意义。本文综述了近年来针对石墨烯材料与蛋白质分子相互作用开展的代表性的科学研究,分类介绍了石墨烯家族中的各种材料与蛋白质相互作用的分子机制与规律,并介绍了基于蛋白质分子与石墨烯材料相互作用开发的新型应用技术,最后对这一领域未来的热点研究方向进行了分析和展望。

Relying on the excellent physical and chemical properties, graphene materials have attracted great attention in the biomedical field and shown broad application prospects. It needs to be noted that when graphene materials are used for bio-applications, such as drug delivery, medical sensing and bioimaging, they will interact inevitably with various proteins and result in the changing of their own properties as well as the variation of proteins’ conformation and functions. Therefore, a lot of studies have been carried out to investigate the interactions between graphene materials and protein molecules, which is of vital importance for understanding and evaluating the biological effects of graphene materials. In this content, the representative scientific researches on this topic are reviewed. The molecular mechanisms of the interactions between various materials of the graphene family and proteins are summarized, and the newly developed biotechnologies based on the graphene material / protein interactions are introduced. Finally, some personal perspectives of the further research directions in this field are presented.

()
图1 石墨烯材料与蛋白质相互作用的示意图[30]
Fig. 1 Schematic illustration of the interaction between graphene and protein[30]. Copyright 2011, ACS
图2 单层石墨烯与刀豆球蛋白A相互作用的研究示意图[37]
Fig. 2 Schematic depiction of the strategies used to interface Concanavalin A to single-layer graphene and evaluate its carbohydrate-binding function[37]. Copyright 2013, ACS
图3 使用聚-L-赖氨酸及聚乙二醇-二甘醇酸等生物相容性聚合物将胰蛋白酶固定到GO上的示意图[52]
Fig. 3 Schematic illustration of trypsin immobilization onto GO with multiple biocompatible polymers including poly-L-lysine(PL) and PEG-diglycolic acid[52]. Copyright 2012, RSC
图4 天然状态(A~D)以及葡糖氧化酶-氧化石墨烯(GOx-GO)生物缀合物状态(A’~D’)下,GOx中α-螺旋(A, A’)、β-折叠(B, B’)、β-转角(C, C’)、无规卷曲(D, D’)的相对占比。其中,磷酸盐缓冲液浓度0.1 M,GOx浓度300 mg/mL,GO浓度25 mg/mL[55]
Fig. 4 Relative amounts α-helix(A, A’), β-sheet(B, B’), β-turn(C, C’), and random coil(D, D’) of Glucose Oxidase(GOx) in the native state(A~D, 300 mg/mL) and in the GOx-GO bioconjugate system(A’~D’) with GOx concentration of 300 mg/mL and GO concentration of 25 mg/mL[55]. Copyright 2012, RSC
图5 共价连接辣根过氧化物酶和还原氧化石墨烯[66]
Fig. 5 Covalent attachment between HRP and RGO[66]. Copyright 2018, Elsevier
图6 具有核壳结构的蛋白-石墨烯-蛋白(PGP)胶囊包封阿霉素的示意图[74]
Fig. 6 Schematic illustration of core-shell protein-graphene-protein(PGP) capsules encapsulating hydrophilic doxorubicin[74]. Copyright 2014, John Wiley and Sons
[1]
Mahmoudi M, Lynch I, Ejtehadi M R, Monopoli M P, Bombelli F B, Laurent S . Chemical Reviews, 2011,111:5610. 0068652d-eb4b-47a4-ba76-12b5e73bd46ehttps://www.ncbi.nlm.nih.gov/pubmed/21688848

doi: 10.1021/cr100440g     URL     pmid: 21688848
[2]
Singh C, Ali M A, Reddy V, Singh D, Kim C G, Sumana G, Malhotra B D . Sensors and Actuators B: Chemical, 2018,255:2495. https://linkinghub.elsevier.com/retrieve/pii/S0925400517317197

doi: 10.1016/j.snb.2017.09.054     URL    
[3]
Rauf S, Mishra G K, Azhar J, Mishra R K, Goud K Y, Nawaz M A H, Marty J L, Hayat A . Analytical Biochemistry, 2018,545:13. https://www.ncbi.nlm.nih.gov/pubmed/29339058

doi: 10.1016/j.ab.2018.01.007     URL     pmid: 29339058
[4]
Zheng X T, Ananthanarayanan A, Luo K Q, Chen P . Small, 2015,11:1620. https://www.ncbi.nlm.nih.gov/pubmed/25521301

doi: 10.1002/smll.201402648     URL     pmid: 25521301
[5]
Tang J, Kong B, Wu H, Xu M, Wang Y, Wang Y, Zhao D, Zheng G . Advanced Materials, 2013,25:6569. https://www.ncbi.nlm.nih.gov/pubmed/23996326

doi: 10.1002/adma.201303124     URL     pmid: 23996326
[6]
Dong H, Dai W, Ju H, Lu H, Wang S, Xu L, Zhou S F, Zhang Y, Zhang X . ACS Applied Materials & Interfaces, 2015,7:11015. https://www.ncbi.nlm.nih.gov/pubmed/25942410

doi: 10.1021/acsami.5b02803     URL     pmid: 25942410
[7]
Bianco A, Cheng H M, Enoki T, Gogotsi Y, Hurt R H, Koratkar N, Kyotani T, Monthioux M, Park C R, Tascon J M D, Zhang J . Carbon, 2013,65:1. f3f94285-5585-470d-a0a0-57a4a3f9236ehttp://dx.doi.org/10.1016/j.carbon.2013.08.038

doi: 10.1016/j.carbon.2013.08.038     URL    
[8]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A . Science, 2004,306:666. https://www.ncbi.nlm.nih.gov/pubmed/15499015

doi: 10.1126/science.1102896     URL     pmid: 15499015
[9]
Ma S, Si Y, Wang F, Su L, Xia C, Yao J, Chen H, Liu X . Scientific Reports, 2017,7:2588. https://www.ncbi.nlm.nih.gov/pubmed/28566735

doi: 10.1038/s41598-017-02620-4     URL     pmid: 28566735
[10]
Wang X, Wang Y, He H, Chen X, Sun X, Sun Y, Zhou G, Xu H, Huang F . Journal of Materials Chemistry B, 2016,4:779. https://www.ncbi.nlm.nih.gov/pubmed/32262959

doi: 10.1039/c5tb02474a     URL     pmid: 32262959
[11]
Dowaidrar M, Abdelhamind H N, Hällbrink M, Zou X, Langel Ü . Biochimica et Biophysica Acta, 2017,1861:2334. https://www.ncbi.nlm.nih.gov/pubmed/28689990

doi: 10.1016/j.bbagen.2017.07.002     URL     pmid: 28689990
[12]
Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C . ACS Nano, 2010,4.
[13]
Ruiz O N, Fernando K A S, Wang B, Brown N A, Luo P G, McNamara N D, Vangsness M, Sun Y P, Bunker C E . ACS Nano, 2011,5.
[14]
Yang K, Li Y, Tan X, Peng R, Liu Z . Small, 2013,9:1492. https://www.ncbi.nlm.nih.gov/pubmed/22987582

doi: 10.1002/smll.201201417     URL     pmid: 22987582
[15]
Volkov Y, McIntyre J, Prina-Mello A . 2D Materials, 2017,4:022001.
[16]
Sasidharan A, Panchakarla L S, Chandran P, Menon D, Nair S, Rao C N R, Koyakutty M . Nanoscale, 2011,3:2461. https://www.ncbi.nlm.nih.gov/pubmed/21562671

doi: 10.1039/c1nr10172b     URL     pmid: 21562671
[17]
Jiao G, He X, Li X, Qiu J, Xu H, Zhang N, Liu S . RSC Advances, 2015,5:53240.
[18]
Jarosz A, Skoda M, Dudek I, Szukiewicz D . Oxidative Medicine and Cellular Longevity, 2016,2016:5851035. https://www.ncbi.nlm.nih.gov/pubmed/26649139

doi: 10.1155/2016/5851035     URL     pmid: 26649139
[19]
Chang Y, Yang S T, Liu J H, Dong E, Wang Y, Cao A, Liu Y, Wang H . Toxicology Letters, 2011,200:201. https://www.ncbi.nlm.nih.gov/pubmed/21130147

doi: 10.1016/j.toxlet.2010.11.016     URL     pmid: 21130147
[20]
Akhavan O, Ghaderi E . ACS Nano, 2010,4:5731. https://www.ncbi.nlm.nih.gov/pubmed/20925398

doi: 10.1021/nn101390x     URL     pmid: 20925398
[21]
Nurunnabi M, Khatun Z, Huh K M, Park S Y, Lee D Y, Cho K J, Lee Y K . ACS Nano, 2013,7:6858. https://www.ncbi.nlm.nih.gov/pubmed/23829293

doi: 10.1021/nn402043c     URL     pmid: 23829293
[22]
Nafiujjaman M, Kim J, Park H K, Lee Y K . Journal of Industrial and Engineering Chemistry, 2018,57:171.
[23]
Pan D, Guo L, Zhang J, Xi C, Xue Q, Huang H, Li J, Zhang Z, Yu W, Chen Z, Li Z, Wu M . Journal of Materials Chemistry, 2012,22:3314.
[24]
Peng J, Gao W, Gupta B K, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany L B, Zhan X, Gao G, Vithayathil S A, Kaipparettu B A, Marti A A, Hayashi T, Zhu J J, Ajayan P M . Nano Letter, 2012,12:844. https://www.ncbi.nlm.nih.gov/pubmed/22216895

doi: 10.1021/nl2038979     URL     pmid: 22216895
[25]
Moyano D F, Rotello V M . Langmuir, 2011,27:10376. https://www.ncbi.nlm.nih.gov/pubmed/21476507

doi: 10.1021/la2004535     URL     pmid: 21476507
[26]
Wolfram J, Yang Y, Shen J, Moten A, Chen C, Shen H, Ferrari M, Zhao Y . Colloids and Surfaces B: Biointerfaces, 2014,124:17. https://www.ncbi.nlm.nih.gov/pubmed/24656615

doi: 10.1016/j.colsurfb.2014.02.035     URL     pmid: 24656615
[27]
Sanchez V C, Jachak A, Hurt R H, Kane A B . Chemical Research in Toxicology, 2012,25:15. https://www.ncbi.nlm.nih.gov/pubmed/21954945

doi: 10.1021/tx200339h     URL     pmid: 21954945
[28]
Gan S, Zhong L, Han D, Niu L, Chi Q . Small, 2015,11:5814. https://www.ncbi.nlm.nih.gov/pubmed/26413807

doi: 10.1002/smll.201501819     URL     pmid: 26413807
[29]
Zukiene R, Snitka V . Colloids and Surfaces B: Biointerfaces, 2015,135:316. https://www.ncbi.nlm.nih.gov/pubmed/26275837

doi: 10.1016/j.colsurfb.2015.07.054     URL     pmid: 26275837
[30]
Zuo G, Zhou X, Huang Q, Fang H, Zhou R . Journal of Physical Chemistry C, 2011,115:23323. 0d808729-262b-45c5-833f-0286190bc130http://dx.doi.org/10.1021/jp208967t

doi: 10.1021/jp208967t     URL    
[31]
Nel A E, Mädler L, Velegol D, Xia T, Hoek E M V, Somasundaran P, Klaessig F, Castranova V, Thompson M . Nature Materals, 2009,8:543. https://www.ncbi.nlm.nih.gov/pubmed/19525947

doi: 10.1038/nmat2442     URL     pmid: 19525947
[32]
Cheng C, Li S, Thomas A, Kotov N A, Haag R . Chemical Reviews, 2017,117:1826. https://www.ncbi.nlm.nih.gov/pubmed/28075573

doi: 10.1021/acs.chemrev.6b00520     URL     pmid: 28075573
[33]
Chen X, Hai X, Wang J . Analytica Chimica Acta, 2016,922:1. https://www.ncbi.nlm.nih.gov/pubmed/27154826

doi: 10.1016/j.aca.2016.03.050     URL     pmid: 27154826
[34]
Geim A K, Novoselov K S . Nature Materials, 2007,6:183. a9fd4cc9-802d-4a77-b3b4-78448a92f870https://www.ncbi.nlm.nih.gov/pubmed/17330084

doi: 10.1038/nmat1849     URL     pmid: 17330084
[35]
Ahadian S, Estili M, Surya V J, Ramón-Azcón J, Liang X, Shiku H, Ramalingam M, Matsue T, Sakka Y, Bae H, Nakajima K, Kawazoec Y, Khademhosseini A . Nanoscale, 2015,7:6436. https://www.ncbi.nlm.nih.gov/pubmed/25779762

doi: 10.1039/c4nr07569b     URL     pmid: 25779762
[36]
Kuila T, Bose S, Mishra A K, Khanra P, Kim N H, Lee J H . Progress in Materials Science, 2012,57:1061.
[37]
Alava T, Mann J A, Théodore C C, Benitez J J, Dichtel W R, Parpia J M, Craighead H G . Analytical Chemistry, 2013,85:2754. https://www.ncbi.nlm.nih.gov/pubmed/23363062

doi: 10.1021/ac303268z     URL     pmid: 23363062
[38]
Luan B, Huynh T, Zhao L, Zhou R . ACS Nano, 2015,9:663. https://www.ncbi.nlm.nih.gov/pubmed/25494677

doi: 10.1021/nn506011j     URL     pmid: 25494677
[39]
Dong H, Zhu Z, Ju H, Yan F . Biosensors and Bioelectronics, 2012,33:228. https://www.ncbi.nlm.nih.gov/pubmed/22305443

doi: 10.1016/j.bios.2012.01.006     URL     pmid: 22305443
[40]
Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L . Langmuir, 2010,26:12030.
[41]
Liu Z, Jiang L, Galli F, Nederlof I, Olsthoorn R C L, Lamers G E M, Oosterkamp T H, Abrahams J P . Advanced Functional Materials, 2010,20:2857. http://doi.wiley.com/10.1002/adfm.201000761

doi: 10.1002/adfm.201000761     URL    
[42]
Lu F, Zhang S, Gao H, Jia H, Zheng L . ACS Applied Materials & Interfaces, 2012,4:3278. https://www.ncbi.nlm.nih.gov/pubmed/22692825

doi: 10.1021/am300634n     URL     pmid: 22692825
[43]
Huang C, Bai H, Li C, Shi G . Chemical Communications, 2011,47:4962. https://www.ncbi.nlm.nih.gov/pubmed/21431118

doi: 10.1039/c1cc10412h     URL     pmid: 21431118
[44]
Kiew S F, Kiew L V, Lee H, Imae T, Chung L Y . Journal of Controlled Release, 2016,226:217. https://www.ncbi.nlm.nih.gov/pubmed/26873333

doi: 10.1016/j.jconrel.2016.02.015     URL     pmid: 26873333
[45]
Zhang Y, Wu C, Guo S, Zhang J . Nanotechnology Reviews, 2013,2:27.
[46]
Kuchlyan J, Kundu N, Banik D, Roy A, Sarkar N . Langmuir, 2015,31:13793. https://www.ncbi.nlm.nih.gov/pubmed/26646418

doi: 10.1021/acs.langmuir.5b03648     URL     pmid: 26646418
[47]
Hu W, Peng C, Lv M, Li X, Zhang Y, Chen N, Fan C, Huang Q . ACS Nano, 2011,5:3693. https://www.ncbi.nlm.nih.gov/pubmed/21500856

doi: 10.1021/nn200021j     URL     pmid: 21500856
[48]
Ding Z, Ma H, Chen Y . RSC Advances, 2014,4:55290. c6a3cbe7-fcf8-468a-bc51-dd02403380f3http://dx.doi.org/10.1039/c4ra09613d

doi: 10.1039/c4ra09613d     URL    
[49]
Li H, Fierens K, Zhang Z, Vanparijs N, Schuijs M J, Steendam K V, Gracia N l F, Rycke R D, Beer T D, Beuckelaer A D, Koker S D, Deforce D, Albertazzi L, Grooten J, Lambrecht B N, Geest B G D . ACS Applied Materials & Interfaces, 2016,8:1147. https://www.ncbi.nlm.nih.gov/pubmed/26694764

doi: 10.1021/acsami.5b08963     URL     pmid: 26694764
[50]
Novak M J, Pattammattel A, Koshmerl B, Puglia M, Williams C, Kumar C V . ACS Catalysis, 2015,6:339.
[51]
Zhang J, Zhang F, Yang H, Huang X, Liu H, Zhang J, Guo S . Langmuir, 2010,26:6083. https://www.ncbi.nlm.nih.gov/pubmed/20297789

doi: 10.1021/la904014z     URL     pmid: 20297789
[52]
Xu G, Chen X, Hu J, Yang P, Yang D, Wei L . Analyst, 2012,137:2757. fc99eeaf-2ed0-4770-b226-372b19aec64dhttp://dx.doi.org/10.1039/c2an35093a

doi: 10.1039/c2an35093a     URL    
[53]
Shen J, Shi M, Yan B, Ma H, Li N, Hu Y, Ye M . Colloids and Surfaces B: Biointerfaces, 2010,81:434. https://www.ncbi.nlm.nih.gov/pubmed/20728319

doi: 10.1016/j.colsurfb.2010.07.035     URL     pmid: 20728319
[54]
Su R, Shi P, Zhu M, Hong F, Li D . Bioresource Technology, 2012,115:136. https://www.ncbi.nlm.nih.gov/pubmed/22244904

doi: 10.1016/j.biortech.2011.12.085     URL     pmid: 22244904
[55]
Shao Q, Wu P, Xu X, Zhang H, Cai C . Physical Chemistry Chemical Physics, 2012,14:9076. https://www.ncbi.nlm.nih.gov/pubmed/22641400

doi: 10.1039/c2cp40654c     URL     pmid: 22641400
[56]
Jin L, Yang K, Yao K, Zhang S, Tao H, Lee S T, Liu Z, Peng R . ACS Nano, 2012,6:4864. https://www.ncbi.nlm.nih.gov/pubmed/22574614

doi: 10.1021/nn300217z     URL     pmid: 22574614
[57]
Yao K, Tan P, Luo Y, Feng L, Xu L, Liu Z, Li Y, Peng R . ACS Applied Materials & Interfaces, 2015,7:12270. https://www.ncbi.nlm.nih.gov/pubmed/25985836

doi: 10.1021/acsami.5b03118     URL     pmid: 25985836
[58]
Sun X, Feng Z, Hou T, Li Y . ACS Applied Materials & Interfaces, 2014,6:7153. https://www.ncbi.nlm.nih.gov/pubmed/24801143

doi: 10.1021/am500167c     URL     pmid: 24801143
[59]
Li S, Mulloor J J, Wang L, Ji Y, Mulloor C J, Micic M, Orbulescu J, Leblanc R M . ACS Applied Materials & Interfaces, 2014,6:5704. https://www.ncbi.nlm.nih.gov/pubmed/24684375

doi: 10.1021/am500254e     URL     pmid: 24684375
[60]
Pattammattel A, Puglia M, Chakraborty S, Deshapriya I K, Dutta P K, Kumar C V . Langmuir, 2013,29:15643. https://www.ncbi.nlm.nih.gov/pubmed/24274382

doi: 10.1021/la404051c     URL     pmid: 24274382
[61]
De M, Chou S S, Dravid V P . Journal of the American Chemical Society, 2011,133:17524. https://www.ncbi.nlm.nih.gov/pubmed/21954932

doi: 10.1021/ja208427j     URL     pmid: 21954932
[62]
Lee W C, Lim C H Y X, Shi H, Tang L A L, Yu Wang, Lim C T, Loh K P . ACS Nano, 2011,5:7334. https://www.ncbi.nlm.nih.gov/pubmed/21793541

doi: 10.1021/nn202190c     URL     pmid: 21793541
[63]
Zhang C, Chen S, Alvarez P J J, Chen W . Carbon, 2015,94:531.
[64]
Zhang Y, Zhang J, Huang X, Zhou X, Wu H, Guo S . Small, 2012,8:154. https://www.ncbi.nlm.nih.gov/pubmed/22038754

doi: 10.1002/smll.201101695     URL     pmid: 22038754
[65]
Patel S K S, Choi S H, Kang Y C, Lee J K . ACS Applied Materials & Interfaces, 2017,9:2213. https://www.ncbi.nlm.nih.gov/pubmed/28004579

doi: 10.1021/acsami.6b05165     URL     pmid: 28004579
[66]
Vineh M B, Saboury A A, Poostchi A A, Rashidi A M, Parivar K . International Journal of Biological Macromolecules, 2018,106:1314. https://www.ncbi.nlm.nih.gov/pubmed/28851646

doi: 10.1016/j.ijbiomac.2017.08.133     URL     pmid: 28851646
[67]
Kotchey G P, Allen B L, Vedala H, Yanamala N, Tyurina Y Y, Klein-Seetharaman J, Kagan V E, Kapralov A A, Star A . ACS Nano, 2011,5:2098. https://www.ncbi.nlm.nih.gov/pubmed/21344859

doi: 10.1021/nn103265h     URL     pmid: 21344859
[68]
Cheng C, Nie S, Li S, Peng H, Yang H, Ma L, Sun S, Zhao C . Journal of Materials Chemistry B, 2013,1:265. https://www.ncbi.nlm.nih.gov/pubmed/32260750

doi: 10.1039/c2tb00025c     URL     pmid: 32260750
[69]
Mu Q, Su G, Li L, Gilbertson B O, Yu L H, Zhang Q, Sun Y P, Yan B . ACS Applied Materials & Interfaces, 2012,4:2259. https://www.ncbi.nlm.nih.gov/pubmed/22409495

doi: 10.1021/am300253c     URL     pmid: 22409495
[70]
Yoon H H, Bhang S H, Kim T, Yu T, Hyeon T, Kim B S . Advanced Functional Materials, 2014,24:6455. 88c11d20-08b4-4cca-8312-de4c288b54aahttp://dx.doi.org/10.1002/adfm.201400793

doi: 10.1002/adfm.201400793     URL    
[71]
Bhattacharya K, Mukherjee S P, Gallud A, Burkert S C, Bistarelli S, Bellucci S, Bottini M, Star A, Fadeel B . Nanomedicine: Nanotechnology, Biology and Medicine, 2016,12:333.
[72]
Chen M L, He Y J, Chen X W, Wang J H . Bioconjugate Chemistry, 2013,24:387. https://www.ncbi.nlm.nih.gov/pubmed/23425155

doi: 10.1021/bc3004809     URL     pmid: 23425155
[73]
Zheng X T, Than A, Ananthanaraya A, Kim D H, Chen P . ACS Nano, 2013,7:6278. https://www.ncbi.nlm.nih.gov/pubmed/23799995

doi: 10.1021/nn4023137     URL     pmid: 23799995
[74]
Hu S H, Fang R H, Chen Y W, Liao B J, Chen I W, Chen S Y . Advanced Functional Materials, 2014,24:4144. https://www.ncbi.nlm.nih.gov/pubmed/22544807

doi: 10.1002/adma.201200197     URL     pmid: 22544807
[75]
Singh D P, Herrera C E, Singh B, Singh S, Singh R K, Kumar R . Materials Science and Engineering: C, 2018,86:173. https://www.ncbi.nlm.nih.gov/pubmed/29525091

doi: 10.1016/j.msec.2018.01.004     URL     pmid: 29525091
[76]
Liu Y, Yu D, Zeng C, Miao Z, Dai L . Langmuir, 2010,26:6158. https://www.ncbi.nlm.nih.gov/pubmed/20349968

doi: 10.1021/la100886x     URL     pmid: 20349968
[77]
Xu X, Huang J, Li J, Yan J, Qin J, Li Z . Chemical Communications, 2011,47:12385. https://www.ncbi.nlm.nih.gov/pubmed/22011887

doi: 10.1039/c1cc15735c     URL     pmid: 22011887
[78]
Guo C X, Ng S R, Khoo S Y, Zheng X, Chen P, Li C M . ACS Nano, 2012,6:6944. https://www.ncbi.nlm.nih.gov/pubmed/22793649

doi: 10.1021/nn301974u     URL     pmid: 22793649
[79]
Gully B S, Zou J, Cadby G, Passon D M, Iyer K S, Bond C S . Nanoscale, 2012,4:5321. https://www.ncbi.nlm.nih.gov/pubmed/22833181

doi: 10.1039/c2nr31150j     URL     pmid: 22833181
[80]
Sun Y, Dai H, Chen S, Xu M, Wang X, Zhang Y . Nanotoxicology, 2018,12:117. https://www.ncbi.nlm.nih.gov/pubmed/29338479

doi: 10.1080/17435390.2018.1425498     URL     pmid: 29338479
[81]
Wang X, Sun X, He H, Yang H, Lao J, Song Y, Xia Y, Xu H, Zhang X, Huang F . Journal of Materials Chemistry B, 2015,3:3583. https://www.ncbi.nlm.nih.gov/pubmed/32262242

doi: 10.1039/c5tb00211g     URL     pmid: 32262242
[82]
Wu C, Wang C, Han T, Zhou X, Guo S, Zhang J . Advanced Healthcare Materials, 2013,2:1613. https://www.ncbi.nlm.nih.gov/pubmed/23703800

doi: 10.1002/adhm.201300066     URL     pmid: 23703800
[83]
Wang X, Sun X, Lao J, He H, Cheng T, Wang M, Wang S, Huang F . Colloids and Surfaces B: Biointerfaces, 2014,122:638. https://www.ncbi.nlm.nih.gov/pubmed/25129696

doi: 10.1016/j.colsurfb.2014.07.043     URL     pmid: 25129696
[84]
Shang W, Zhang X, Zhang M, Fan Z, Sun Y, Han M, Fan L . Nanoscale, 2014,6:5799. https://www.ncbi.nlm.nih.gov/pubmed/24740121

doi: 10.1039/c3nr06433f     URL     pmid: 24740121
[85]
Shang W, Nuffer J H, Dordick J S, Siegel R W . Nano Letter, 2007,7:1991.
[86]
Chong Y, Ma Y, Shen H, Tu X, Zhou X, Xu J, Dai J, Fan S, Zhang Z . Biomaterials, 2014,35:5041. https://www.ncbi.nlm.nih.gov/pubmed/24685264

doi: 10.1016/j.biomaterials.2014.03.021     URL     pmid: 24685264
[87]
Li L, Wu G, Yang G, Peng J, Zhao J, Zhu J J . Nanoscale, 2013,5:4015. https://www.ncbi.nlm.nih.gov/pubmed/23579482

doi: 10.1039/c3nr33849e     URL     pmid: 23579482
[88]
Huang S, Qiu H, Lu S, Zhu F, Xiao Q . Journal of Hazardous Materials, 2015,285:18. https://www.ncbi.nlm.nih.gov/pubmed/25462867

doi: 10.1016/j.jhazmat.2014.11.019     URL     pmid: 25462867
[1] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[2] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[3] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[4] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[5] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[6] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[7] 祁建磊, 徐琴琴, 孙剑飞, 周丹, 银建中. 石墨烯基单原子催化剂的合成、表征及分析[J]. 化学进展, 2020, 32(5): 505-518.
[8] 林子涵, 陈煌, 董嘉伟, 赵道辉, 李理波. 纳米孔生物分子检测研究[J]. 化学进展, 2020, 32(5): 562-580.
[9] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[10] 王慧娟, 刘育. 磺化冠醚的分子键合与组装[J]. 化学进展, 2020, 32(11): 1651-1664.
[11] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[12] 梁阿新, 汤波, 孙立权, 张鑫, 侯慧鹏, 罗爱芹. 用于N-糖肽/糖蛋白分离富集的新型材料[J]. 化学进展, 2019, 31(7): 996-1006.
[13] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[14] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[15] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
阅读次数
全文


摘要