English
新闻公告
More
化学进展 2021, Vol. 33 Issue (8): 1270-1279 DOI: 10.7536/PC200770 前一篇   后一篇

• 综述 •

二硫化钼析氢电催化剂

任艳梅, 王家骏, 王平*()   

  1. 华南理工大学材料科学与工程学院 广东省先进储能材料重点实验室 广州 510641
  • 收稿日期:2020-07-31 修回日期:2020-09-29 出版日期:2021-08-20 发布日期:2020-12-28
  • 通讯作者: 王平
  • 基金资助:
    国家重点研发计划课题(2018YFB1502104); 国家自然科学基金创新研究群体科学基金项目(51621001); 广东省自然科学基金研究团队项目(2016A030312011)

Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction

Yanmei Ren, Jiajun Wang, Ping Wang()   

  1. School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641, China
  • Received:2020-07-31 Revised:2020-09-29 Online:2021-08-20 Published:2020-12-28
  • Contact: Ping Wang
  • Supported by:
    National Key R&D Program of China(2018YFB1502104); Foundation for Innovative Research Groups of the National Natural Science Foundation of China(51621001); Natural Science Foundation of Guangdong Province(2016A030312011)

电解水与一次可再生能源耦合,可同时提供洁净制氢方式与先进的能源转化技术,有望在未来清洁能源经济中扮演重要角色,而实现这一美好愿景的关键在于研发高活性、低成本的析氢/析氧电催化材料。二硫化钼(MoS2)是颇具代表性的非贵金属析氢电催化材料,纵观其研究历程,先导性理论预测与材料设计、先进制备与表征技术的应用均在改性研究中发挥了至关重要的作用,这也从一个侧面折射出当代电催化剂的研究模式与发展趋势。本文按照重要发现与进展的时间顺序,梳理了MoS2析氢电催化剂的发展历程,重点论述了增多边缘活性位、提高导电性、构筑基面活性位等改性策略的实施方法、效果与机理,最后从全领域总结了MoS2析氢电催化剂的研究启示并展望其未来发展趋势。

Water splitting using the electricity from renewable energy sources offers a clean and sustainable way to produce H2 and meanwhile an advanced energy conversion technology. Thus it is expected to play a vital role in the future clean energy economy. Crucial to enabling this ideal vision is the development of high-performance and cost-effective electrocatalysts for the hydrogen evolution reaction(HER) and oxygen evolution reaction(OER). Molybdenum disulfide(MoS2) is a representative non-precious HER catalyst. A panoramic view of its researches and developments clearly shows that leading theoretical perspectives, logical material design, novel synthesis methods and advanced characterization technologies are the key components of a successful electrocatalyst implementation. At the same time, it also reflects the current research mode and points out the development directions of the electrocatalysts. This review covers a sequence of key discoveries and achievements that mark the development of MoS2 as a HER electrocatalyst, with special focuses on the implementation, effect and mechanism of the modification strategies including increasing the number of active edge sites, improvement of electrical conductivity and activation of inert basal planes. Finally, we briefly discuss the enlightenment from the studies of MoS2 electrocatalyst and look forward to the future trends of this appealing electrocatalytic material.

Contents

1 Introduction

2 Structure and properties of MoS2

3 The study of MoS2 electrocatalyst for HER

3.1 Theoretical discovery and experimental verification of MoS2 electrocatalysis for HER

3.2 The modification strategy to engineering active edge sites

3.3 The modification strategy to improving electrical conductivity

3.4 The modification strategy to activating basal planes

4 Several enlightenments from the studies of MoS2 electrocatalyst

5 Conclusion and outlook

()
图1 2H、3R及1T型MoS2晶体结构[27]
Fig. 1 Crystal structures of 2H, 3R and 1T polytypes of MoS2[27]. Copyright 2014, ACS Catalysis
图2 (a)Au(111)上MoS2纳米颗粒的STM图,交换电流密度随MoS2的(b)覆盖面积和(c)边缘长度的变化[38]
Fig. 2 (a) STM image of MoS2 nanoparticles on Au(111). Exchange current density versus(b) MoS2 area coverage and(c) MoS2 edge length[38]. Copyright 2007, Science
表1 二硫化钼基析氢电催化剂性能对比
Table 1 A comparison of electrocatalytic performances of various MoS2-based catalysts towards the hydrogen evolution reaction
图3 高边缘/基面比MoS2纳米片的(a)SEM图,(b)HER极化曲线,(c)Tafel曲线[39]; 高温氢气热处理后单层MoS2的(d)SEM图,(e)HER极化曲线,(f)Tafel曲线[55]; 片层阵列垂直取向MoS2的(g)TEM图,(h)HER极化曲线,(i)Tafel曲线[54]
Fig. 3 (a) SEM image of MoS2 nanosheets with high edge/base ratio,(b) corresponding HER polarization curves and(c) Tafel plots[39]. Copyright 2013, ACS Catalysis; (d) SEM image of monolayer MoS2 with hydrogen treatment at high temperature,(e) corresponding HER polarization curves and(f) Tafel plots[55]. Copyright 2016, Nano Letters; (g) TEM image of edge-terminated MoS2 films with the layers aligned perpendicular to the substrate,(h) corresponding HER polarization curves and(i) Tafel plots[54]. Copyright 2013, Nano Letters
图4 MoS2/RGO的(a)合成示意图,(b)HER极化曲线,(c)Tafel曲线[44]; MoO2@MoS2的(d)合成示意图,(e)HER极化曲线,(f)Tafel曲线[45]; (g)电子在MoS2层间垂直跃迁模型及MoS2薄膜的交换电流密度与层数的函数关系[64]; (h)2H-MoS2与1T-MoS2的HER极化曲线,(i)Tafel曲线[65]
Fig. 4 (a) Schematic illustration for the preparation process of MoS2/RGO,(b) corresponding HER polarization curves and(c) Tafel plots[44]. Copyright 2011, Journal of the American Chemical Society; (d) Schematic illustration for the preparation process of MoO2@MoS2,(e) corresponding HER polarization curves and(c) Tafel plots[45]. Copyright 2016, Journal of Materials Chemistry B; (g) Model for the hopping process of electrons in the vertical direction of MoS2 layers and the exchange current density of the MoS2 film as a function of the layer number[64]. Copyright 2014, Nano Letters; (h) HER polarization curves of 1T and 2H MoS2 nanosheets,(i) corresponding Tafel plots[65]. Copyright 2013, Nano Letters
图5 (a)化学刻蚀法引入单原子S空位示意图[52]; 高晶界密度MoS2薄膜的(b)HRTEM图及对应的FFTs和IFFTs图,(c)HER极化曲线,(d)Tafel曲线[71]; 多层次畴界/相界MoS2的(e)AFM图,(f)HER极化曲线,(g)Tafel曲线[53]
Fig. 5 (a) Schematic illustration for the chemical etching process to introduce single S-vacancies[52]. Copyright 2020, Journal of the American Chemical Society; (b) HRTEM image and corresponding FFTs and false-colored IFFTs image of MoS2 films with an ultra-high-density of grain boundaries,(c) corresponding HER polarization curves and(d) Tafel plots[71]. Copyright 2020, Nature Communications; (e) AFM image of multi-hierarchy MoS2 with boundaries,(f) corresponding HER polarization curves and(g) Tafel plots[53]. Copyright 2019, Nature Communications
[1]
West J J, Smith S J, Silva R A, Naik V, Zhang Y Q, Adelman Z, Fry M M, Anenberg S, Horowitz L W, Lamarque J F. Nat. Clim. Change, 2013, 3(10): 885.

doi: 10.1038/nclimate2009     URL    
[2]
Nicoletti G, Arcuri N, Nicoletti G, Bruno R. Energy Convers. Manag., 2015, 89: 205.

doi: 10.1016/j.enconman.2014.09.057     URL    
[3]
Mazloomi K, Gomes C. Renew. Sustain. Energy Rev., 2012, 16(5): 3024.

doi: 10.1016/j.rser.2012.02.028     URL    
[4]
Navarro R M, Peña M A, Fierro J L G. Chem. Rev., 2007, 107(10): 3952.

pmid: 17715983
[5]
Turner J A. Science, 2004, 305(5686): 972.

doi: 10.1126/science.1103197     URL    
[6]
Kibsgaard J, Chen Z B, Reinecke B N, Jaramillo T F. Nat. Mater., 2012, 11(11): 963.

doi: 10.1038/nmat3439     pmid: 23042413
[7]
Cheng L, Huang W J, Gong Q F, Liu C H, Liu Z, Li Y G, Dai H J. Angew. Chem. Int. Ed., 2014, 53(30): 7860.

doi: 10.1002/anie.201402315     URL    
[8]
Wu X L, Yang B, Li Z J, Lei L C, Zhang X W. RSC Adv., 2015, 5(42): 32976.
[9]
Liu P, Rodriguez J A. J. Am. Chem. Soc., 2005, 127(42): 14871.
[10]
Callejas J F, Read C G, Popczun E J, McEnaney J M, Schaak R E. Chem. Mater., 2015, 27(10): 3769.

doi: 10.1021/acs.chemmater.5b01284     URL    
[11]
Shi Y M, Zhang B. Chem. Soc. Rev., 2016, 45(6): 1529.

doi: 10.1039/C5CS00434A     URL    
[12]
Xie J F, Li S, Zhang X D, Zhang J J, Wang R X, Zhang H, Pan B C, Xie Y. Chem. Sci., 2014, 5(12): 4615.

doi: 10.1039/C4SC02019G     URL    
[13]
Gao D Q, Zhang J Y, Wang T T, Xiao W, Tao K, Xue D S, Ding J. J. Mater. Chem. A, 2016, 4(44): 17363.
[14]
Peng X, Pi C R, Zhang X M, Li S, Huo K F, Chu P K. Sustain. Energy Fuels, 2019, 3(2): 366.

doi: 10.1039/C8SE00525G     URL    
[15]
Wan C, Regmi Y N, Leonard B M. Angew. Chem. Int. Ed., 2014, 53(25): 6407.

doi: 10.1002/anie.v53.25     URL    
[16]
Michalsky R, Zhang Y J, Peterson A A. ACS Catal., 2014, 4(5): 1274.

doi: 10.1021/cs500056u     URL    
[17]
Gao Q S, Zhang W B, Shi Z P, Yang L C, Tang Y. Adv. Mater., 2019, 31(2): 1970009.
[18]
Gupta S, Patel N, Miotello A, Kothari D C. J. Power Sources, 2015, 279: 620.

doi: 10.1016/j.jpowsour.2015.01.009     URL    
[19]
Park H, Encinas A, Scheifers J P, Zhang Y M, Fokwa B P T. Angew. Chem. Int. Ed., 2017, 56(20): 5575.

doi: 10.1002/anie.v56.20     URL    
[20]
Zhang P L, Wang M, Yang Y, Yao T Y, Han H X, Sun L C. Nano Energy, 2016, 19: 98.

doi: 10.1016/j.nanoen.2015.11.020     URL    
[21]
Gong M, Zhou W, Tsai M C, Zhou J G, Guan M Y, Lin M C, Zhang B, Hu Y F, Wang D Y, Yang J, Pennycook S J, Hwang B J, Dai H J. Nat. Commun., 2014, 5: 4695.

doi: 10.1038/ncomms5695     URL    
[22]
Luo Z, Miao R, Huan T D, Mosa I M, Poyraz A S, Zhong W, Cloud J E, Kriz D A, Thanneeru S, He J K, Zhang Y S, Ramprasad R, Suib S L. Adv. Energy Mater., 2016, 6(16): 1600528.
[23]
Zang M J, Xu N, Cao G X, Chen Z J, Cui J, Gan L Y, Dai H B, Yang X F, Wang P. ACS Catal., 2018, 8(6): 5062.

doi: 10.1021/acscatal.8b00949     URL    
[24]
Deng J, Ren P J, Deng D H, Bao X H. Angew. Chem. Int. Ed., 2015, 54(7): 2100.

doi: 10.1002/anie.201409524     URL    
[25]
Zhang Q, Li P S, Zhou D J, Chang Z, Kuang Y, Sun X M. Small, 2017, 13(41): 1701648.
[26]
Kim M, Anjum M A R, Lee M, Lee B J, Lee J S. Adv. Funct. Mater., 2019, 29(10): 1809151.
[27]
Benck J D, Hellstern T R, Kibsgaard J, Chakthranont P, Jaramillo T F. ACS Catal., 2014, 4(11): 3957.

doi: 10.1021/cs500923c     URL    
[28]
Wilson J A, Yoffe A D. Adv. Phys., 1969, 18(73): 193.

doi: 10.1080/00018736900101307     URL    
[29]
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A. Nat. Rev. Mater., 2017, 2: 17033.
[30]
Lukowski M A, Daniel A S, Meng F, Forticaux A, Li L S, Jin S. J. Am. Chem. Soc., 2013, 135(28): 10274.
[31]
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S. Nat. Nanotechnol., 2012, 7(11): 699.

doi: 10.1038/nnano.2012.193     URL    
[32]
Wypych F, Schöllhorn R. J. Chem. Soc., Chem. Commun., 1992(19): 1386.
[33]
Mattheiss L F. Phys. Rev. B, 1973, 8(8): 3719.

doi: 10.1103/PhysRevB.8.3719     URL    
[34]
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. Nat. Chem., 2013, 5(4): 263.

doi: 10.1038/nchem.1589     pmid: 23511414
[35]
Lin Y C, Dumcenco D O, Huang Y S, Suenaga K. Nat. Nanotechnol., 2014, 9(5): 391.

doi: 10.1038/nnano.2014.64     URL    
[36]
Tributsch H, Bennett J C. J. Electroanal. Chem., 1977, 81(1): 97.

doi: 10.1016/S0022-0728(77)80363-X     URL    
[37]
Hinnemann B, Moses P G, Bonde J, Jørgensen K P, Nielsen J H, Horch S, Chorkendorff I, Nørskov J K. J. Am. Chem. Soc., 2005, 127(15): 5308.

pmid: 15826154
[38]
Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I. Science, 2007, 317(5834): 100.

pmid: 17615351
[39]
Wu Z Z, Fang B Z, Wang Z P, Wang C L, Liu Z H, Liu F Y, Wang W, Alfantazi A, Wang D Z, Wilkinson D P. ACS Catal., 2013, 3(9): 2101.

doi: 10.1021/cs400384h     URL    
[40]
Yang L, Hong H, Fu Q, Huang Y F, Zhang J Y, Cui X D, Fan Z Y, Liu K H, Xiang B. ACS Nano, 2015, 9(6): 6478.

doi: 10.1021/acsnano.5b02188     pmid: 26030397
[41]
Gopalakrishnan D, Damien D, Shaijumon M M. ACS Nano, 2014, 8(5): 5297.

doi: 10.1021/nn501479e     pmid: 24773177
[42]
Xu S J, Li D, Wu P Y. Adv. Funct. Mater., 2015, 25(7): 1127.

doi: 10.1002/adfm.v25.7     URL    
[43]
Kong D S, Wang H T, Cha J J, Pasta M, Koski K J, Yao J, Cui Y. Nano Lett., 2013, 13(3): 1341.

doi: 10.1021/nl400258t     URL    
[44]
Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J. J. Am. Chem. Soc., 2011, 133(19): 7296.

doi: 10.1021/ja201269b     URL    
[45]
Revannath D N, Ang-Yu L, Poonam A S, Kumar R, Yadav K, Li L J, Chen Y T. ACS Appl. Mater. Interfaces, 2015, 7(41): 23328.
[46]
Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. J. Am. Chem. Soc., 2013, 135(47): 17881.
[47]
Xiao W, Liu P T, Zhang J Y, Song W D, Feng Y P, Gao D Q, Ding J. Adv. Energy Mater., 2017, 7(7): 1602086.
[48]
Deng S J, Luo M, Ai C Z, Zhang Y, Liu B, Huang L, Jiang Z, Zhang Q H, Gu L, Lin S W, Wang X L, Yu L, Wen J G, Wang J A, Pan G X, Xia X H, Tu J P. Angew. Chem. Int. Ed., 2019, 58(45): 16289.
[49]
Geng X M, Sun W W, Wu W, Chen B, Al-Hilo A, Benamara M, Zhu H L, Watanabe F, Cui J B, Chen T P. Nat. Commun., 2016, 7: 10672.
[50]
Li H, Tsai C, Koh A L, Cai L L, Contryman A W, Fragapane A H, Zhao J H, Han H S, Manoharan H C, Abild-Pedersen F, Nørskov J K, Zheng X L. Nat. Mater., 2016, 15(1): 48.

doi: 10.1038/nmat4465     URL    
[51]
Wu W Z, Niu C Y, Wei C, Jia Y, Li C, Xu Q. Angew. Chem. Int. Ed., 2019, 58(7): 2029.

doi: 10.1002/anie.v58.7     URL    
[52]
Wang X, Zhang Y W, Si H N, Zhang Q H, Wu J, Gao L, Wei X F, Sun Y, Liao Q L, Zhang Z, Ammarah K, Gu L, Kang Z, Zhang Y. J. Am. Chem. Soc., 2020, 142(9): 4298.

doi: 10.1021/jacs.9b12113     pmid: 31999446
[53]
Zhu J Q, Wang Z C, Dai H J, Wang Q Q, Yang R, Yu H, Liao M Z, Zhang J, Chen W, Wei Z, Li N, Du L J, Shi D X, Wang W L, Zhang L X, Jiang Y, Zhang G Y. Nat. Commun., 2019, 10: 1348.

doi: 10.1038/s41467-019-09269-9     URL    
[54]
Luo Z Y, Ouyang Y X, Zhang H, Xiao M L, Ge J J, Jiang Z, Wang J L, Tang D M, Cao X Z, Liu C P, Xing W. Nat. Commun., 2018, 9: 2120.

doi: 10.1038/s41467-018-04501-4     URL    
[55]
Ye G L, Gong Y J, Lin J H, Li B, He Y M, Pantelides S T, Zhou W, Vajtai R, Ajayan P M. Nano Lett., 2016, 16(2): 1097.

doi: 10.1021/acs.nanolett.5b04331     URL    
[56]
Lauritsen J V, Kibsgaard J, Olesen G H, Moses P G, Hinnemann B, Helveg S, Nørskov J K, Clausen B S, Topsøe H, Lægsgaard E, Besenbacher F. J. Catal., 2007, 249(2): 220.

doi: 10.1016/j.jcat.2007.04.013     URL    
[57]
Bonde J, Moses P G, Jaramillo T F, Nørskov J K, Chorkendorff I. Faraday Discuss., 2009, 140: 219.

doi: 10.1039/B803857K     URL    
[58]
Dolinska J, Chidambaram A, Adamkiewicz W, Estili M, Lisowski W, Iwan M, Palys B, Sudholter E J R, Marken F, Opallo M, Rassaei L. J. Mater. Chem. B, 2016, 4(8): 1448.

doi: 10.1039/c5tb02175h     pmid: 32263111
[59]
Li D J, Maiti U N, Lim J, Choi D S, Lee W J, Oh Y, Lee G Y, Kim S O. Nano Lett., 2014, 14(3): 1228.

doi: 10.1021/nl404108a     URL    
[60]
Zhang X, Zhang Y, Yu B B, Yin X L, Jiang W J, Jiang Y, Hu J S, Wan L J. J. Mater. Chem. A, 2015, 3(38): 19277.
[61]
Chang Y H, Lin C T, Chen T Y, Hsu C L, Lee Y H, Zhang W J, Wei K H, Li L J. Adv. Mater., 2013, 25(5): 756.

doi: 10.1002/adma.201202920     URL    
[62]
Ge X B, Chen L Y, Zhang L, Wen Y R, Hirata A, Chen M W. Adv. Mater., 2014, 26(19): 3100.

doi: 10.1002/adma.201305678     URL    
[63]
Bollinger M V, Lauritsen J V, Jacobsen K W, Nørskov J K, Helveg S, Besenbacher F. Phys. Rev. Lett., 2001, 87(19): 196803.
[64]
Yu Y F, Huang S Y, Li Y P, Steinmann S N, Yang W T, Cao L Y. Nano Lett., 2014, 14(2): 553.

doi: 10.1021/nl403620g     URL    
[65]
Voiry D, Salehi M, Silva R, Fujita T, Chen M W, Asefa T, Shenoy V B, Eda G, Chhowalla M. Nano Lett., 2013, 13(12): 6222.

doi: 10.1021/nl403661s     URL    
[66]
Wang S, Zhang D, Li B, Zhang C, Du Z G, Yin H M, Bi X F, Yang S B. Adv. Energy Mater., 2018, 8(25): 1801345.
[67]
Duerloo K A N, Li Y, Reed E J. Nat. Commun., 2014, 5: 4214.

doi: 10.1038/ncomms5214     URL    
[68]
Lau T H M, Wu S, Kato R, Wu T S, Kulhavý J, Mo J Y, Zheng J W, Foord J S, Soo Y L, Suenaga K, Darby M T, Tsang S C E. ACS Catal., 2019, 9(8): 7527.

doi: 10.1021/acscatal.9b01503     URL    
[69]
Tsai C, Li H, Park S, Park J, Han H S, Nørskov J K, Zheng X L, Abild-Pedersen F. Nat. Commun., 2017, 8: 15113.
[70]
Ouyang Y X, Ling C Y, Chen Q, Wang Z L, Shi L, Wang J L. Chem. Mater., 2016, 28(12): 4390.

doi: 10.1021/acs.chemmater.6b01395     URL    
[71]
He Y M, Tang P Y, Hu Z L, He Q Y, Zhu C, Wang L Q, Zeng Q S, Golani P, Gao G H, Fu W, Huang Z Q, Gao C T, Xia J, Wang X L, Wang X W, Zhu C, Ramasse Q M, Zhang A, An B X, Zhang Y Z, Martí-Sánchez S, Morante J R, Wang L, Tay B K, Yakobson B I, Trampert A, Zhang H, Wu M H, Wang Q J, Arbiol J, Liu Z. Nat. Commun., 2020, 11: 57.

doi: 10.1038/s41467-019-13631-2     URL    
[72]
Petö J, Ollár T, Vancsó P, Popov Z I, Magda G Z, Dobrik G, Hwang C, Sorokin P B, TapasztÓ L. Nat. Chem., 2018, 10(12): 1246.

doi: 10.1038/s41557-018-0136-2     URL    
[73]
Luo Z Y, Wang Y, Wang X, Jin Z, Wu Z J, Ge J J, Liu C P, Xing W. ACS Appl. Mater. Interfaces, 2019, 11(43): 39782.
[74]
Pandey A, Mukherjee A, Chakrabarty S, Chanda D, Basu S. ACS Appl. Mater. Interfaces, 2019, 11(45): 42094.
[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[3] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[4] 薛世翔, 吴攀, 赵亮, 南艳丽, 雷琬莹. 钴铁水滑石基材料在电催化析氧中的应用[J]. 化学进展, 2022, 34(12): 2686-2699.
[5] 谢尹, 张立阳, 应佩晋, 王佳程, 孙宽, 李猛. 外场强化电解水析氢[J]. 化学进展, 2021, 33(9): 1571-1585.
[6] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[7] 曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
[8] 韩嘉琦, 李志达, 纪德强, 苑丹丹, 吴红军. 单原子改性二硫化钼电催化析氢[J]. 化学进展, 2021, 33(12): 2392-2403.
[9] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[10] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[11] 王洪红, 雷文, 李孝建, 黄仲, 贾全利, 张海军. 催化还原降解Cr(Ⅵ)[J]. 化学进展, 2020, 32(12): 1990-2003.
[12] 吴正颖, 刘谢, 刘劲松, 刘守清, 查振龙, 陈志刚. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8): 1086-1102.
[13] 陈雅静, 李旭兵, 佟振合, 吴骊珠. 人工光合成制氢[J]. 化学进展, 2019, 31(1): 38-49.
[14] 刘亚迪, 刘锋, 王诚, 赵波, 王建龙. 固体聚合物电解池析氧催化剂[J]. 化学进展, 2018, 30(9): 1434-1444.
[15] 吕宪伟, 胡忠攀, 赵挥, 刘玉萍, 袁忠勇. 自支撑型过渡金属磷化物电催化析氢反应研究[J]. 化学进展, 2018, 30(7): 947-957.
阅读次数
全文


摘要

二硫化钼析氢电催化剂