English
新闻公告
More
化学进展 2021, Vol. 33 Issue (2): 281-302 DOI: 10.7536/PC200515 前一篇   后一篇

• 综述 •

钙钛矿太阳能电池电子传输层的制备及应用

杨英1,2,3, 罗媛1,2,3, 马书鹏1,2,3, 朱从潭1,2,3, 朱刘4, 郭学益1,2,3,*()   

  1. 1 中南大学冶金与环境学院 长沙 410083
    2 有色金属资源循环利用湖南省重点实验室 长沙 410083
    3 有色金属资源循环利用国家地方联合工程研究中心 长沙 410083
    4 广东先导稀材股份有限公司 清远 511500
  • 收稿日期:2020-05-10 修回日期:2020-07-08 出版日期:2021-02-24 发布日期:2020-08-26
  • 通讯作者: 郭学益
  • 基金资助:
    国家自然科学基金项目(61774169); 清远市创新创业科研团队项目(2018001)

Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application

Ying Yang1,2,3, Yuan Luo1,2,3, Shupeng Ma1,2,3, Congtan Zhu1,2,3, Liu Zhu4, Xueyi Guo1,2,3,*()   

  1. 1 School of Metallurgy and Environment, Central South University, Changsha 410083, China
    2 Hunan Key Laboratory of Nonferrous Metal Resources Recycling, Changsha 410083, China
    3 National & Regional Joint Engineering Research Center of Nonferrous Metal Resources Recycling,Changsha 410083, China
    4 First Rare Materials Co., Ltd, Qingyuan 511500, China
  • Received:2020-05-10 Revised:2020-07-08 Online:2021-02-24 Published:2020-08-26
  • Contact: Xueyi Guo
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(61774169); Qingyuan Innovation and Entrepreneurship Research Team Project(2018001)

目前,有机-无机杂化钙钛矿太阳能电池(PSC)的器件效率已经超过25%。电子传输层作为PSC中的重要组成部分在提取和传输光生电子,阻挡空穴,修饰界面,调节界面能级和减少电荷复合等方面起着关键作用。无机n型材料,例如TiO2、ZnO、SnO2和其他金属氧化物材料具有成本低和稳定性好的特点,经常在传统PSC中被用作电子传输层(ETL)。有机n型材料,例如富勒烯及其衍生物、萘二酰亚胺聚合物和小分子,具有良好的成膜性能及强的电子传输性能,经常在反式PSC中被用作ETL。本综述详细介绍了PSC中电子传输层的作用机理和制备方法;重点总结了金属氧化物材料、有机分子材料、复合材料和多层分子材料电子传输层和其改性手段的最新研究进展;最后,展望了电子传输层材料朝着高性能PSC的实际应用和发展前景。

Organic-inorganic hybrid perovskite solar cell(PSC) is a photovoltaic device with great potential for development. In the past decade, many studies have been devoted to the preparation of high-performance PSC, and have made amazing progress. Device efficiency has now exceeded 25%. The electron transport layer plays a vital role in extracting and transporting photogenerated electrons, blocking holes, modifying interfaces, adjusting interface energy levels, and reducing charge recombination. Inorganic n-type materials, such as TiO2, ZnO, SnO2 and other metal oxide materials have the advantages of low cost and good stability, which are often used as ETLs in traditional PSC. Organic n-type materials, such as fullerenes and their derivatives, naphthalene diimide polymers and small molecules, have good film-forming properties and strong electron transport capabilities, which are often used as ETLs in inverted PSCs. This review will systematically classify the electron transport materials for perovskite solar cells, outline their preparation methods, introduce their charge transport mechanism and effect in perovskite solar cells. The latest research progress of metal oxide materials, organic molecular materials, composite materials, multilayer electron transport layer materials and their modification methods are systematically discussed. Finally, the practical application and development prospects of the electron transport layer materials towards high-performance PSC are prospected. In summary, this review helps to better understand the preparation and mechanism of various electron transport layer materials related to perovskite solar cells, and provides strategies for further understanding and preparing high-performance PSCs.

Contents

1 Introduction

2 Charge transport mechanism of perovskite solar cells

2.1 Charge transport mechanism of positive perovskite solar cells

2.2 Charge transport mechanism of inverted perovskite solar cells

2.3 The role of electron transport layer in perovskite solar cells

3 Preparation methods of electron transport layer in perovskite solar cells

3.1 Spin coating

3.2 Chemical bath deposition

3.3 Atomic layer deposition

3.4 Other deposition methods

4 Electron transport materials in positive perovskite solar cells

4.1 TiO2

4.2 ZnO

4.3 SnO2

4.4 Other metal oxides(WOX, Nb2O5, CeOX)

5 Electron transport materials in inverted perovskite solar cells

5.1 Fullerene and its derivatives

5.2 Non-fullerene small organic molecules

5.3 Non-fullerene polymer molecules

6 Conclusion and outlook

()
图1 典型的PSC结构:(a)介观结构,(b)传统平面结构,(c)反式平面结构
Fig. 1 Typical perovskite solar cell structure: (a) mesoporous, (b) traditional plane, (c) inverted plane.
图2 (a)典型正式平面异质结和(b)典型反式平面异质结钙钛矿太阳能电池[10]
Fig. 2 (a) Typical positive planar heterojunction and (b) typical inverted planar heterojunction perovskite solar cell[10]
图3 (a)正式和(b)反式钙钛矿太阳能电池电子传输机理示意图
Fig. 3 Schematic diagram of electron transport mechanism of (a) positive and (b) inverted perovskite solar cell
图4 无氧条件下,基于TiO2的器件在连续紫外光照射下的衰减机制[27]
Fig. 4 The attenuation mechanism of TiO2device under continuous ultraviolet light irradiation without O2[27].Copyright 2020 Elsevier.
图5 电子传输层的制备方法:(a)旋涂法,(b)化学浴沉积法[49],(c)原子层沉积法
Fig. 5 Preparation methods of electron transport layer: (a) spin coating method, (b) chemical bath deposition method[49]. Copyright 2016 Royal Society of Chemistry, (c) atomic layer deposition method
图6 (a)基于原子层沉积(ALD)合成的致密TiO2薄膜的器件结构示意图、材料能级排列示意图、SEM截面图、不同厚度下的J-V曲线图[41];(b)脉冲激光沉积(PLD)TiO2纳米棒阵列的生长过程示意图、在室温下通过PLD沉积在硅基板上的TiO2纳米棒结构的SEM图、300 ℃下通过PLD沉积在ITO玻璃基板上的TiO2纳米结构的横截面SEM图[47]
Fig. 6 (a) Schematic diagram, material energy level arrangement, cross-sectional SEM image, and J-V curves of device with different TiO2 thicknesses synthesized by atomic layer deposition(ALD)[41]. Copyright 2017 Royal Society of Chemistry. (b) Schematic diagram of the growth process of TiO2 nanorod arrays with pulsed laser deposition(PLD), SEM images of TiO2 nanorod deposited on silicon substrates by PLD at room temperature, cross-sectional SEM images of TiO2 nanostructures deposited on ITO glass substrates by PLD at 300 ℃[47]. Copyright 2016 Royal Society of Chemistry.
图7 (a)基于TiO2/ZnO/C60三层ETL平面PSC的器件结构图、材料能级排列图,基于四个不同复合ETL的PSC和最佳PSC的J-V曲线图(插图为10 min的最大功率点跟踪结果,在0.892 V时稳定的PCE为18.12%)[59];(b)基于Mg掺杂TiO2器件的结构示意图,不同Mg掺杂浓度下薄膜的电导率测量结果图(插图描绘了此测量的样品结构)、700 mV时的Nyquist曲线图,J-V曲线图[63]
Fig. 7 (a) Schematic of device structure and energy level arrangement based on TiO2/ZnO/C60 electron transport trilayer planar PSC, J-V curves of PSCs based on four compound ETLs and the optimal PSC(The inset shows the maximum power point tracking for 10 min resulting in a stabilized PCE of 18.12% at 0.892 V)[59].Copyright 2018 American Chemical Society; (b) The device structure based on Mg doped TiO2 device, Conductivity measurement results of the films with different concentration of Mg treatment(The inset depicts the sample structure for this measurement), Nyquist plots at 700 mV and J-V curves[63].Copyright 2016 Royal Society of Chemistry.
图8 (a)基于c-ZnO薄膜的器件结构、燃烧合成示意图、材料能级排列示意图、J-V曲线图[69];(b)基于ZnO纳米线阵列的器件结构图、J-V曲线图、SEM截面图、75 min下生长的ZnO NW的SEM截面图[72]
Fig. 8 (a) Device structure with c-ZnO thin film, combustion synthesis schematic diagram, material energy level arrangement, and J-V curve of devices[69].Copyright 2019 John Wiley and Sons; (b) Device structure with ZnO nanowire array, J-V curve, and cross-sectional SEM image of PSC, cross-sectional SEM image of ZnO NW grown at 75 min[72].Copyright 2016 MDPI.
图9 (a)热退火过程中沉积在PC61BM修饰、PEI修饰的ZnO上的钙钛矿生长示意图,基于PC61BM修饰、PEI修饰ZnO的钙钛矿太阳能电池的J-V曲线,在没有热退火和100 ℃退火1 h情况下沉积在PEI修饰的ZnO上的钙钛矿薄膜的SEM图和晶粒尺寸分布[76];(b)基于ZnO和不同元素掺杂ZnO器件的材料能级排列示意图,基于K掺杂ZnO器件的SEM截面图、J-V曲线图、稳定性测试结果(将未封装的器件保持在黑暗和环境气氛下,相对湿度为40%~50%,温度为25±3 ℃)[79]
Fig. 9 (a) Schematics of the growth of perovskite deposited on PC61BM-coated ZnO and PEI-coated ZnO during thermal annealing, J-V curves of perovskite solar cell based on PC61BM-coated and PEI-coated ZnO, SEM images and grain size distribution of perovskite film deposited on PEI-coated ZnO without thermal annealing and with thermal annealing at 100 ℃ for 1 hour[76]. Copyright 2015 American Chemical Society; (b) Energy level arrangement of device based on ZnO and different element-doped ZnO, cross-sectional SEM image, J-V curve, and stability test of devices based on K-ZnO(Keep unpackaged devices in dark and ambient atmosphere, relative humidity is 40%~50%, temperature is 25±3 ℃)[79]. Copyright 2018 American Chemical Society.
图10 (a)原子层沉积(ALD)、旋涂-化学浴沉积(SC-CBD)所制备的SnO2层的SEM图(比例尺均为200 nm)、J-V曲线图(插图为最大功率追踪结果)[49];(b)基于旋涂法制备SnO2电子传输层的器件结构图、材料能级排列图、SEM截面图、J-V曲线图[89]
Fig. 10 (a)SEM images and J-V curves(the inset is the maximum power point(MPP) tracking ) are presented for SnO2 layers deposited by atomic layer deposition and spin coating and chemical bath deposition(Scale bars are 200 nm)[49]. Copyright 2016 Royal Society of Chemistry;(b) Device structure, energy level arrangement, cross-sectional SEM images and J-V curve of the device based on the SnO2 electron transport layer prepared by spin coating method[89]. Copyright 2015 American Chemical Society
图11 (a)基于石墨烯量子点修饰的SnO2器件的SEM截面图、照明下从GQD到SnO2的热电子转移示意图、基于SnO2和SnO2:GQD的J-V曲线图和稳定性测试结果[98];(b)基于Mg掺杂SnO2器件的SEM截面图、材料能级排列示意图,不同Mg掺杂含量的J-V曲线图、稳态效率图[100]
Fig. 11 (a) Cross-sectional SEM image of PSCs with GQD modified SnO2, schematic diagram of hot electron transfer from GQD to SnO2 under illumination, J-V curve of devices based on SnO2 and SnO2: GQD, and stability test results[98]. Copyright 2017 American Chemical Society; (b)Cross-sectional SEM image of a device based on Mg-doped SnO2, a schematic diagram of material energy level in device, J-V curves of device with different Mg-doped concentrations, and Steady-state efficiencies of the PSCs with SnO2 and Mg-SnO2[100]. Copyright 2016 Royal Society of Chemistry
表1 正式钙钛矿太阳能电池中金属氧化物电子传输层材料的性能参数
Table 1 Performance parameters of perovskite solar cells with different metal oxide electron transport materials
ETL Material regulation Preparation Size JSC/(mA·cm-2) VOC/V FF PCE/% Stability ref
TiO2 Different Nanoparticles Atomic layer deposition 200 nm 20.81 1.03 0.70 15.03 200 h/96% 41
morphology Magnetron sputtering 125 nm 24.19 1.05 0.68 17.25 - 43
of TiO2 Spin coating 40 nm 20.97 0.97 0.67 13.66 - 37
Electron beam evaporation 20 nm 21.80 1.07 0.77 18.10 - 46
Spin coating 150 nm 23.64 1.06 0.72 18.03 - 51
Spin coating 150 nm 22.89 1.09 0.75 18.72 - 51
Spin coating 100 nm 18.54 0.94 0.63 11.00 - 52
Nanorods Pulsed laser deposition 150 nm 20.10 1.01 0.69 14.10 - 47
Solvothermal growth 180 nm 22.92 1.04 0.76 18.22 16 d/92% 120
hydrothermal growth 800 nm 19.70 1.10 0.76 16.57 - 121
Nanowies hydrothermal growth 120 nm 21.70 1.08 0.78 18.30 200 h/90% 53
Nanotubes Electrochemical anodization 9.4 μm 8.27 0.75 0.59 3.64 - 54
Nanosheets Hydrothermal + spin coating 200 nm 18.20 0.80 0.60 8.70 - 122
3D nanoflowers Chemical bath deposition 300 nm 22.00 0.99 0.72 15.71 - 55
Interfacial modification and element
doping of
TiO2
Interface modification TiCl4 modification + spin
coating
90 nm 21.70 1.17 0.79 20.10 90 d/96% 56
SAM modification + spin
coating
- 23.15 1.06 0.77 18.90 - 57
GQD modification + spin
coating
- 24.92 1.08 0.76 20.45 - 58
C60/ZnO modification + spin coating 40 nm 22.06 1.07 0.79 18.63 14 d/80% 59
Element doping Nb doping + chemical bath deposition 40 nm 22.86 1.10 0.77 19.23 1200 h/90% 60
Mg doping + spin coating 30 nm 22.56 1.10 0.77 19.08 - 63
Zn doping + chemical bath deposition 70 nm 21.83 1.10 0.73 17.60 33 d/91% 123
Li doping + spray pyrolysis 50 nm 23.26 1.08 0.68 17.06 - 64
Ag doping + screen printing 140 nm 22.80 1.03 0.75 17.70 - 124
TiO2 prepared at low
temperature
Nanoparticles Reactive ion etching 200 nm 21.11 1.07 0.73 17.29 - 65
Nanoparticles Sol-gel + spin coating 50 nm 20.40 1.01 0.77 15.80 - 66
Nanoparticles SnO2 modification + chemical bath deposition 60 nm 22.52 1.10 0.76 18.85 - 67
ZnO Differentmor-phology of
ZnO
Nanoparticles Spray pyrolysis 50 nm 17.90 1.08 0.66 12.70 - 68
Atomic layer deposition 30 nm 20.40 0.98 0.66 13.10 - 39
Spin coating 40 nm 21.10 1.07 0.72 16.10 800 h/36% 79
Combustion synthesis + spin coating 30 nm 24.67 1.08 0.75 19.84 700 h/>90% 69
Frequency(RF) magnetron
sputtering
40 nm 21.80 1.00 0.73 15.90 - 125
Solvothermal + spin coating 350 nm 23.26 1.06 0.64 15.92 7 d/>95% 70
Nanorods hydrothermal growth 150 nm 21.43 0.84 0.57 10.34 - 71
Electrospinning 440 nm 22.00 0.99 0.68 14.81 - 83
hydrothermal growth 300 nm 21.33 0.81 0.60 10.37 - 84
Nanowires hydrothermal growth 600 nm 21.50 0.67 0.62 9.06 - 72
3D Nanowalls hydrothermal growth 2 μm 7.75 0.77 0.43 2.56 - 73
ETL Material regulation Preparation Size JSC/(mA·cm-2) VOC/V FF PCE/% Stability ref
Interface malificution and element
doping of ZnO
Interface modi-
fication
Al2O3 modification +
hydrothermal growth
910 nm 22.42 1.02 0.71 16.08 - 75
PCBM modification + sol-gel + spin coating 60 nm 19.10 1.10 0.59 12.30 - 77
Element doping K doping + spin coating 40 nm 22.95 1.13 0.77 19.91 800 h/91% 79
In doping + electrospinning 440 nm 23.00 1.00 0.70 16.10 - 83
Ni doping + hydrothermal growth 300 nm 23.18 0.81 0.68 12.77 - 84
ZnO prepared at low
temperature
Nanoparticles Spin coating 25 nm 13.40 1.03 0.74 10.20 - 85
Nanoparticles Spin coating 130 nm 21.92 0.90 0.63 12.34 - 86
Nanoparticles PEIE modification + sol-gel + spin coating - 20.90 0.97 0.59 11.90 - 87
SnO2 Different
morphology
of SnO2
Nanoparticles Atomic layer deposition 15 nm 21.30 1.14 0.74 18.40 - 88
Atomic layer deposition 15 nm 22.10 1.08 0.75 17.80 - 126
Spin coating 60 nm 23.27 1.11 0.67 17.21 - 89
Spin coating + chemical bath deposition 30 nm 22.37 1.18 0.77 20.78 90 d/>20% 49
Chemical bath deposition 20 nm 21.30 1.05 0.66 14.80 - 127
Spin coating 40 nm 21.98 1.08 0.64 15.29 - 99
Spin coating 40 nm 23.20 1.08 0.61 15.31 - 101
Chemical bath deposition 30 nm 21.43 1.14 0.75 19.69 - 107
Spin coating 25 nm 24.31 1.07 0.77 19.90 40 d/100% 90
Spin coating 200 nm 17.39 0.70 0.53 6.50 - 91
Hydrothermal + spin coating 30 nm 23.71 1.08 0.71 18.60 - 128
Hydrothermal + spin coating 30 nm 23.05 1.13 0.80 20.79 - 129
Nanorods Hydrothermal growth 160 nm 23.10 1.00 0.66 15.46 - 92
Solvothermal + spin coating 60 nm 22.44 1.07 0.75 18.08 - 103
Nanotubes In-situ template self-etching 900 nm 18.38 0.94 0.71 12.26 25 d/90% 93
Nanosheets Electrospray 130 nm 19.90 1.04 0.69 14.27 94
Interface modification and element doping of
SnO2
Interface modi-fication KCl modification + spin coating 60 nm 23.10 1.13 0.79 20.50 30 d/90% 96
UV-O3 treatment + spin coating 50 nm 21.95 1.07 0.69 16.21 - 130
SAM modification + spin coating 40 nm 22.03 1.10 0.77 18.77 - 97
GQD modification + spin coating 40 nm 23.05 1.13 0.78 20.31 90 d/95% 98
Element doping Li doping + spin coating 40 nm 23.27 1.11 0.71 18.20 - 99
Zn doping + spin coating 40 nm 23.40 1.10 0.69 17.78 1200 h/100% 101
Nb doping + chemical bath deposition 30 nm 22.77 1.16 0.75 20.47 - 107
La doping + spin coating 50 nm 21.77 1.09 0.72 17.08 10 d/74% 105
Y doping + solvothermal + spin coating 60 nm 23.56 1.13 0.78 20.71 - 103
RCQ doping + spin coating 20 nm 24.10 1.14 0.83 22.77 1000 h/95% 109
SnO2 pre-
pared at low temperature
Nanoparticles Spin coating + hydrothermal treatment 20 nm 21.35 1.11 0.77 18.09 30 d/92% 110
Nanoparticles Sol-gel + spin coating 40 nm 21.80 1.13 0.73 18.00 14 d/87% 111
Nanoparticles CPTA modification + spin coating 32 nm 22.39 1.08 0.75 18.36 46 d/87% 112
WOx Nanoparticles Vacuum thermal evaporation 30 nm 22.15 0.95 0.75 15.85 30 d/80% 114
Nb2O5 Nanoparticles RF magnetron sputtering 85 nm 22.90 1.04 0.72 17.10 - 115
Nanoparticles Electron beam evaporation 60 nm 24.69 1.06 0.71 18.59 - 116
CeOx Nanoparticles Spin coating 60 nm 21.93 1.04 0.63 14.32 - 118
Nanoparticles Spin coating 60 nm 20.43 1.05 0.80 17.10 200 h/>90% 119
图12 富勒烯及其衍生物的化学分子结构
Fig. 12 Chemical molecular structure of fullerene and its derivatives
图13 (a) 基于非富勒烯小分子(TPE-PDI4)器件的能级排列图、J-V曲线图(插图为TPE-PDI4的分子结构)[150]; (b) 非富勒烯小分子NDI-ID的分子结构、器件结构、J-V曲线图[152]
Fig. 13 (a)Energy level arrangement and J-V curve of a non-fullerene-based small molecule(TPE-PDI4) in device(the inset is the molecular structure of TPE-PDI4)[150].Copyright 2018 Royal Society of Chemistry; (b)Molecular structure, device structure and J-V curve of Non-fullerene small molecule NDI-ID[152]. Copyright 2018 John Wiley and Sons.
图14 非富勒烯聚合物分子的化学分子结构图[155,156]
Fig. 14 Chemical molecular structure of non-fullerene polymer molecules[155,156]. Copyright 2018 John Wiley and Sons, Copyright 2019 American Chemical Society.
表2 反式钙钛矿太阳能电池中有机电子传输层材料的性能参数
Table 2 Performance parameters of inverted perovskite solar cells with different organic electron transport materials
Material ETL Preparation Size JSC/(mA·cm-2) VOC/V FF PCE/% Stability ref
Fullerene and its
derivatives
C60 Spin coating 50 nm 17.78 0.95 0.55 9.32 - 133
Vapor deposition 1 nm 22.30 1.08 0.76 18.20 - 134
MAI doping + SAM
modification + spin coating
20 nm 22.60 1.07 0.81 19.50 30 d/90% 145
N-PDBI doping + spin
coating
- 23.00 1.06 0.75 18.30 650 h/80% 146
C70 Spin coating 50 nm 17.43 0.94 0.62 10.18 - 133
C60/C70 Spin coating 50 nm 21.01 0.95 0.71 14.04 - 133
PCBM Spin coating - 20.50 1.08 0.63 13.90 - 136
Spin coating 55 nm 20.70 0.87 0.78 14.10 - 157
Spin coating 50 nm 20.97 0.93 0.70 13.74 - 133
Spin coating 80 nm 21.00 0.92 0.67 13.00 139
Fluoride treatment + spin coating - 21.78 1.00 0.73 16.17 550 h/80% 142
DTT2FPDI modification + spin coating 15 nm 23.90 1.10 0.74 19.40 - 143
N2200 modification + spin coating 20.69 0.99 0.80 16.26 30 d/59.8% 144
2,6-Py doping + spin coating - 23.14 1.09 0.77 19.41 200 h/80% 147
CQDs doping + spin coating - 22.30 0.97 0.80 18.10 20 d/70% 148
C70-DPM-OE Spin coating 80 nm 21.90 0.97 0.75 16.00 - 139
Non-fullerene small organic molecules TPE-PDI4 Spin coating 37 nm 21.68 1.01 0.74 16.29 200 h/72% 150
PDIN Spin coating 30 nm 20.34 1.03 0.73 15.28 450 h/82% 151
NDI-ID Spin coating 40 nm 23.00 1.10 0.80 20.20 500 h/90% 152
TPE-DPP4 Spin coating 4 nm 22.03 1.05 0.80 18.44 600 h/>80% 153
TPE-ISO4 Spin coating 4 nm 21.86 1.04 0.80 18.19 600 h/<80% 153
Non-fullerene polymer molecules P(NDI2DT-TTCN) Spin coating 70 nm 22.00 1.00 0.77 17.00 100 h/89% 155
PN-F25% Spin coating 80 nm 22.10 1.10 0.72 17.50 300 h/73% 156
PN-F50% Spin coating 80 nm 21.60 1.08 0.68 15.90 300/78% 156
[1]
CaliÓ L, Momblona C, Gil-Escrig L, Kazim S, Sessolo M, Sastre-Santos Á, Bolink H J, Ahmad S. Sol. Energy Mater. Sol. Cells, 2017, 163:237.
[2]
Liu P, Xu B, Hua Y, Cheng M, Aitola K, Sveinbjörnsson K, Zhang J B, Boschloo G, Sun L C, Kloo L. J. Power Sources, 2017, 344:11.
[3]
Zheng S Z, Wang G P, Liu T F, Lou L Y, Xiao S, Yang S H. Sci. China Chem., 2019, 62:800.
[4]
Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131:6050.

URL     pmid: 19366264
[5]
Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M, Park N G. Sci. Rep., 2012, 2:591.
[6]
Bi D Q, Tress W, Dar M I, Gao P, Luo J S, Renevier C, Schenk K, Abate A, Giordano F, Correa Baena J P, Decoppet J D, Zakeeruddin S M, Nazeeruddin M K, Grätzel M, Hagfeldt A. Sci. Adv., 2016, 2:e1501170.
[7]
Jiang Q, Zhao Y, Zhang X W, Yang X L, Chen Y, Chu Z M, Ye Q F, Li X X, Yin Z G, You J B. Nat. Photonics, 2019, 13:460.
[8]
National Renewable Energy Laboratory. Best Research-CellEfficiencies , 2019.
[9]
Yang Y, Chen T, Pan D Q, Gao J, Zhu C T, Lin F Y, Zhou C H, Tai Q D, Xiao S, Yuan Y B, Dai Q L, Han Y B, Xie H P, Guo X Y. Nano Energy, 2020, 67:104246.
[10]
Chan S H, Chang Y H, Wu M C. Front. Mater., 2019, 6:57.
[11]
Zhou Y, Li X, Lin H. Small, 2020, 16:1902579.
[12]
Guo H, Chen H Y, Zhang H Y, Huang X, Yang J, Wang B J, Li Y L, Wang L P, Niu X B, Wang Z M. Nano Energy, 2019, 59:1.
[13]
Myung C W, Lee G, Kim K S. J. Mater. Chem. A, 2018, 6:23071.
[14]
Shin S S, Yeom E J, Yang W S, Hur S, Kim M G, Im J, Seo J, Noh J H, Seok S I. Science, 2017, 356:167.
[15]
Fang Z M, Meng X Y, Zuo C T, Li D, Xiao Z, Yi C Y, Wang M K, Jin Z W, Yang S F, Ding L M. Sci. Bull., 2019, 64:1743.
[16]
Yan L, Xue Q F, Liu M Y, Zhu Z L, Tian J J, Li Z C, Chen Z, Chen Z M, Yan H, Yip H L, Cao Y. Adv. Mater., 2018, 30:1802509.
[17]
Wang D, Wu C C, Luo W, Guo X, Qu B, Xiao L X, Chen Z J. ACS Appl. Energy Mater., 2018, 1:2215.
[18]
Wang Z K, Liao L S. Adv. Opt. Mater., 2018, 6(17):1800276.
[19]
Cheng M, Zuo C T, Wu Y Z, Li Z, Xu B M, Hua Y, Ding L M. Sci. Bull., 2020, 65:1237.

doi: 10.1016/j.scib.2020.04.021     URL    
[20]
Zhang P, Wu J, Zhang T, Wang Y F, Liu D T, Chen H, Ji L, Liu C H, Ahmad W, Chen Z D, Li S B. Adv. Mater., 2018, 30(3):1703737.
[21]
Yang J L, Zuo C T, Peng Y, Yang Y, Yang X D, Ding L M. Sci. Bull., 2020, 65:872.
[22]
Cheng Y H, Xie C C, Liu X X, Zhu G Y, Li H W, Venkataraj S, Tan Z K, Ding L M, Aberle A G, Lin F. Sci. Bull., 2020, 65:607.
[23]
Zhen C, Wu T T, Chen R Z, Wang L Z, Liu G, Cheng H M. ACS Sustainable Chem. Eng., 2019, 7:4586.
[24]
Mao G P, Wang W, Shao S, Sun X J, Chen S A, Li M H, Li H M. Rare Met., 2018, 37:95.

doi: 10.1007/s12598-017-0951-4     URL    
[25]
Ting H K, Ni L, Ma S B, Ma Y Z, Xiao L X, Chen Z J. Acta Physica. Sinica, 2015, 64(3):11.
丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 物理学报, 2015, 64(3):11.
[26]
Leijtens T, Eperon G E, Pathak S, Abate A, Lee M M, Snaith H J. Nat. Commun., 2013, 4:2885.
[27]
Ji J, Liu X, Jiang H R, Duan M J, Liu B, Huang H, Wei D, Li Y F, Li M C. iScience, 2020, 23:101013.
[28]
Singh R, Ryu I, Yadav H, Park J, Jo J W, Yim S, Lee J J. Sol. Energy, 2019, 185:307.
[29]
Zhao Y H, Zhang K C, Wang Z W, Huang P, Zhu K, Li Z D, Li D H, Yuan L G, Zhou Y, Song B. ACS Appl. Mater. Interfaces, 2017, 9:26234.
[30]
Khorasani A, Marandi M, Iraji zad A, Taghavinia N. Electrochimica Acta, 2019, 297:1071.
[31]
Rong Y G, Ming Y, Ji W X, Li D, Mei A Y, Hu Y, Han H W. J. Phys. Chem. Lett., 2018, 9:2707.
[32]
Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Han H. Science, 2014, 345:295.

URL     pmid: 25035487
[33]
Xu C, Zhang Z L, Hu Y, Sheng Y S, Jiang P, Han H W, Zhang J. J. Energy Chem., 2018, 27:764.
[34]
Bu T L, Li J, Zheng F, Chen W J, Wen X M, Ku Z L, Peng Y, Zhong J, Cheng Y B, Huang F Z. Nat. Commun., 2018, 9:4609.
[35]
Cao J, Wu B H, Chen R H, Wu Y, Hui Y, Mao B W, Zheng N F. Adv. Mater., 2018, 30:1705596.
[36]
Jiang Q, Zhang X W, You J B. Small, 2018, 14:1801154.
[37]
Xia G J, Liu H L, Zhao X M, Dong X F, Wang S R, Li X G. Chem. Eng. J., 2019, 370:1111.
[38]
Kim I S, Haasch R T, Cao D H, Farha O K, Hupp J T, Kanatzidis M G, Martinson A B F. ACS Appl. Mater. Interfaces, 2016, 8:24310.

URL     pmid: 27598453
[39]
Dong X, Hu H W, Lin B C, Ding J N, Yuan N Y. Chem. Commun., 2014, 50:14405.
[40]
Wang C L, Zhao D W, Grice C R, Liao W Q, Yu Y, Cimaroli A, Shrestha N, Roland P J, Chen J, Yu Z H, Liu P, Cheng N, Ellingson R J, Zhao X Z, Yan Y F. J. Mater. Chem. A, 2016, 4:12080.
[41]
Shalan A E, Narra S, Oshikiri T, Ueno K, Shi X, Wu H P, Elshanawany M M, Wei-Guang Diau E, Misawa H. Sustain. Energy Fuels, 2017, 1:1533.
[42]
Su T S, Hsieh T Y, Hong C Y, Wei T C. Sci. Rep., 2015, 5:16098.
[43]
Huang A B, Lei L, Zhu J T, Yu Y, Liu Y, Yang S W, Bao S H, Cao X, Jin P. ACS Appl. Mater. Interfaces, 2017, 9:2016.
[44]
Mahmood K, Swain B S, Jung H S. Nanoscale, 2014, 6:9127.

URL     pmid: 24975490
[45]
Kumari N, Patel S R, Gohel J V. Opt. Quantum Electron., 2018, 50:180.
[46]
Schulze P S C, Bett A J, Winkler K, Hinsch A, Lee S, Mastroianni S, Mundt L E, Mundus M, Würfel U, Glunz S W, Hermle M, Goldschmidt J C. ACS Appl. Mater. Interfaces, 2017, 9:30567.
[47]
Yang B, Mahjouri-Samani M, Rouleau C M, Geohegan D B, Xiao K. Phys. Chem. Chem. Phys., 2016, 18:27067.
[48]
Mohamad Noh M F, Arzaee N A, Safaei J, Mohamed N A, Kim H P, Mohd Yusoff A R, Jang J, Mat Teridi M A. J. Alloy. Compd., 2019, 773:997.
[49]
Anaraki E H, Kermanpur A, Steier L, Domanski K, Matsui T, Tress W, Saliba M, Abate A, Grätzel M, Hagfeldt A, Correa-Baena J P. Energy Environ. Sci., 2016, 9:3128.
[50]
Wu M C, Chan S H, Lee K M, Chen S H, Jao M H, Chen Y F, Su W F. J. Mater. Chem. A, 2018, 6:16920.
[51]
Lee D G, Kim M C, Kim B J, Kim D H, Lee S M, Choi M, Lee S, Jung H S. Appl. Surf. Sci., 2019, 477:131.
[52]
Chen P, Wang Y L, Wang M Q, Zhang X T, Wang L L, Liu Y C. J. Energy Chem., 2015, 24:717.
[53]
Wu W Q, Chen D H, Cheng Y B, Caruso R A. ACS Appl. Mater. Interfaces, 2020, 12:11450.
[54]
Tenkyong T, Praveen B, Pugazhendhi K, Sharmila D J, Shyla J M. CrystEngComm, 2019, 21:4798.
[55]
Chen X, Tang L J, Yang S, Hou Y, Yang H G. J. Mater. Chem. A, 2016, 4:6521.
[56]
Tan H R, Jain A, Voznyy O, Lan X Z, García de Arquer F P, Fan J Z, Quintero-Bermudez R, Yuan M J, Zhang B, Zhao Y C, Fan F J, Li P C, Quan L N, Zhao Y B, Lu Z H, Yang Z Y, Hoogland S, Sargent E H. Science, 2017, 355:722.

URL     pmid: 28154242
[57]
Han F, Hao G M, Wan Z Q, Luo J S, Xia J X, Jia C Y. Electrochimica Acta, 2019, 296:75.
[58]
Shen D L, Zhang W F, Xie F Y, Li Y F, Abate A, Wei M D. J. Power Sources, 2018, 402:320.
[59]
Xu J, Fang M D, Chen J, Zhang B, Yao J X, Dai S Y. ACS Appl. Mater. Interfaces, 2018, 10:20578.
[60]
Yin G N, Ma J X, Jiang H, Li J, Yang D, Gao F, Zeng J H, Liu Z K, Liu S F. ACS Appl. Mater. Interfaces, 2017, 9:10752.

doi: 10.1021/acsami.7b01063     URL     pmid: 28291331
[61]
Zhang X, Bao Z Q, Tao X Y, Sun H X, Chen W, Zhou X F. RSC Adv., 2014, 4:64001.

doi: 10.1039/C4RA11155A     URL    
[62]
Zhou H, Chen Q, Li G, Luo S, Song T B, Duan H S, Hong Z, You J, Liu Y, Yang Y. Science, 2014, 345:542.

URL     pmid: 25082698
[63]
Zhang H Y, Shi J J, Xu X, Zhu L F, Luo Y H, Li D M, Meng Q B. J. Mater. Chem. A, 2016, 4:15383.
[64]
Liu D T, Li S B, Zhang P, Wang Y F, Zhang R, Sarvari H, Wang F, Wu J, Wang Z M, Chen Z D. Nano Energy, 2017, 31:462.

doi: 10.1016/j.nanoen.2016.11.028     URL    
[65]
Kim B J, Kwon S L, Kim M C, Jin Y U, Lee D G, Jeon J B, Yun Y, Choi M, Boschloo G, Lee S, Jung H S. ACS Appl. Mater. Interfaces, 2020, 12:7125.

URL     pmid: 31958005
[66]
You M S, Heo J H, Park J K, Moon S H, Park B J, Im S H. Sol. Energy Mater. Sol. Cells, 2019, 194:1.
[67]
Xie H X, Yin X T, Liu J, Guo Y X, Chen P, Que W X, Wang G F, Gao B W. Appl. Surf. Sci., 2019, 464:700.
[68]
Ngo T T, Barea E M, Tena-Zaera R, Mora-SerÓ I. ACS Appl. Energy Mater., 2018, 1:4057.

doi: 10.1021/acsaem.8b00733     URL    
[69]
Zheng D, Wang G, Huang W, Wang B H, Ke W J, Logsdon J L, Wang H Y, Wang Z, Zhu W G, Yu J S, Wasielewski M R, Kanatzidis M G, Marks T J, Facchetti A. Adv. Funct. Mater., 2019, 29:1900265.
[70]
Zhang R, Fei C B, Li B, Fu H Y, Tian J J, Cao G Z. ACS Appl. Mater. Interfaces, 2017, 9:9785.

doi: 10.1021/acsami.7b00726     URL     pmid: 28244306
[71]
Li W S, Lin T R, Yang H T, Li Y R, Chuang K C, Li Y S, Luo J D, Hus C S, Cheng H C. Jpn. J. Appl. Phys., 2018, 57:06KB03.
[72]
Dymshits A, Iagher L, Etgar L. Materials, 2016, 9:60.
[73]
Islavath N, Das D, Joshi S V, Ramasamy E. Mater. Des., 2017, 116:219.
[74]
Fang Z M, Liu L, Zhang Z M, Yang S F, Liu F Y, Liu M Z, Ding L M. Sci. Bull., 2019, 64:507.
[75]
Li S B, Zhang P, Wang Y F, Sarvari H, Liu D T, Wu J, Yang Y J, Wang Z M, Chen Z D. Nano Res., 2017, 10:1092.
[76]
Cheng Y H, Yang Q D, Xiao J Y, Xue Q F, Li H W, Guan Z Q, Yip H L, Tsang S W. ACS Appl. Mater. Interfaces, 2015, 7:19986.

doi: 10.1021/acsami.5b04695     URL     pmid: 26280249
[77]
Zhang J Q, Tan C H, Du T, Morbidoni M, Lin C T, Xu S D, Durrant J R, McLachlan M A. Sci. Bull., 2018, 63:343.
[78]
Mahmud M A, Elumalai N K, Upama M B, Wang D, Soufiani A M, Wright M, Xu C, Haque F, Uddin A. ACS Appl. Mater. Interfaces, 2017, 9:33841.

URL     pmid: 28910073
[79]
Azmi R, Hwang S, Yin W P, Kim T W, Ahn T K, Jang S Y. ACS Energy Lett., 2018, 3:1241.
[80]
Baktash A, Amiri O, Sasani A. Superlattices Microstruct., 2016, 93:128.
[81]
Bhoomanee C, Ruankhama P, Choopun S, Prathan A, Wongratanaphisan D. Mater. Today: Proc., 2019, 17:1259.
[82]
Su T Y, Zheng Y H, Ma Z W, Cheng L, Xu X L, Zhang F P, Yu G, Sheng Z G. ChemistrySelect, 2018, 3:363.
[83]
Mahmood K, Khalid A, Ahmad S W, Mehran M T. Surf. Coat. Technol., 2018, 352:231.
[84]
Chen P Y, Yang S H. Opt. Mater. Express, 2016, 6:3651.
[85]
Liu D Y, Kelly T L. Nat. Photonics, 2014, 8:133.
[86]
Jung K, Lee J, Kim J, Chae W S, Lee M J. J. Power Sources, 2016, 324:142.
[87]
Lim J W, Wang H, Choi C H, Quan L N, Chung K, Park W T, Noh Y Y, Kim D H. J. Power Sources, 2019, 438:226956.
[88]
Correa Baena J P, Steier L, Tress W, Saliba M, Neutzner S, Matsui T, Giordano F, Jacobsson T J, Srimath Kandada A R, Zakeeruddin S M, Petrozza A, Abate A, Nazeeruddin M K, Grätzel M, Hagfeldt A. Energy Environ. Sci., 2015, 8:2928.
[89]
Ke W J, Fang G J, Wan J W, Tao H, Liu Q, Xiong L B, Qin P L, Wang J, Lei H W, Yang G, Qin M C, Zhao X Z, Yan Y F. Nat. Commun., 2015, 6:6700.

doi: 10.1038/ncomms7700     URL     pmid: 25798925
[90]
Jiang Q, Zhang L Q, Wang H L, Yang X L, Meng J H, Liu H, Yin Z G, Wu J L, Zhang X W, You J B. Nat. Energy, 2017, 2:16177.
[91]
Li Y, Zhu J, Huang Y, Liu F, Lv M, Chen S H, Hu L H, Tang J W, Yao J X, Dai S Y. RSC Adv., 2015, 5:28424.
[92]
Zhang X K, Rui Y C, Wang Y Q, Xu J L, Wang H Z, Zhang Q H, Müller-Buschbaum P. J. Power Sources, 2018, 402:460.
[93]
Gao C M, Yuan S, Cao B Q, Yu J H. Chem. Eng. J., 2017, 325:378.
[94]
Mahmood K, Khalid A, Nawaz F, Mehran M T. J. Colloid Interface Sci., 2018, 532:387.

doi: 10.1016/j.jcis.2018.08.009     URL     pmid: 30096532
[95]
Chen Y C, Meng Q, Zhang L R, Han C B, Gao H L, Zhang Y Z, Yan H. J. Energy Chem., 2019, 35:144.
[96]
Liu X, Zhang Y F, Shi L, Liu Z H, Huang J L, Yun J S, Zeng Y Y, Pu A B, Sun K W, Hameiri Z, Stride J A, Seidel J, Green M A, Hao X J. Adv. Energy Mater., 2018, 8:1800138.
[97]
Zuo L J, Chen Q, de Marco N, Hsieh Y T, Chen H J, Sun P Y, Chang S Y, Zhao H X, Dong S Q, Yang Y. Nano Lett., 2017, 17:269.
[98]
Xie J S, Huang K, Yu X G, Yang Z R, Xiao K, Qiang Y P, Zhu X D, Xu L B, Wang P, Cui C, Yang D R. ACS Nano, 2017, 11:9176.

doi: 10.1021/acsnano.7b04070     URL     pmid: 28858471
[99]
Park M, Kim J Y, Son H J, Lee C H, Jang S S, Ko M J. Nano Energy, 2016, 26:208.
[100]
Xiong L B, Qin M C, Yang G, Guo Y X, Lei H W, Liu Q, Ke W J, Tao H, Qin P L, Li S Z, Yu H Q, Fang G J. J. Mater. Chem. A, 2016, 4:8374.
[101]
Ye H B, Liu Z Y, Liu X Y, Sun B, Tan X H, Tu Y X, Shi T L, Tang Z R, Liao G L. Appl. Surf. Sci., 2019, 478:417.
[102]
Chen H, Liu D T, Wang Y F, Wang C Y, Zhang T, Zhang P, Sarvari H, Chen Z, Li S B. Nanoscale Res. Lett., 2017, 12:238.
[103]
Song J, Zhang W N, Wang D, Deng K M, Wu J H, Lan Z. Sol. Energy, 2019, 185:508.
[104]
Ma Z, Zhou W Y, Xiao Z, Zhang H, Li Z Y, Zhuang J, Peng C T, Huang Y L. Org. Electron., 2019, 71:98.
[105]
Xu Z H, Teo S H, Gao L G, Guo Z L, Kamata Y, Hayase S, Ma T L. Org. Electron., 2019, 73:62.
[106]
Bahadur J, Ghahremani A H, Martin B, Druffel T, Sunkara M K, Pal K. Org. Electron., 2019, 67:159.
[107]
Halvani Anaraki E, Kermanpur A, Mayer M T, Steier L, Ahmed T, Turren-Cruz S H, Seo J, Luo J S, Zakeeruddin S M, Tress W R, Edvinsson T, Grätzel M, Hagfeldt A, Correa-Baena J P. ACS Energy Lett., 2018, 3:773.
[108]
Bai Y, Fang Y J, Deng Y H, Wang Q, Zhao J J, Zheng X P, Zhang Y, Huang J S. ChemSusChem, 2016, 9:2686.
[109]
Hui W, Yang Y G, Xu Q, Gu H, Feng S L, Su Z H, Zhang M R, Wang J O, Li X D, Fang J F, Xia F, Xia Y D, Chen Y H, Gao X Y, Huang W. Adv. Mater., 2020, 32:1906374.
[110]
Liu C, Zhang L Z, Zhou X Y, Gao J S, Chen W, Wang X Z, Xu B M. Adv. Funct. Mater., 2019, 29:1807604.
[111]
Chen C, Jiang Y, Guo J L, Wu X Y, Zhang W H, Wu S J, Gao X S, Hu X W, Wang Q M, Zhou G F, Chen Y W, Liu J M, Kempa K, Gao J W. Adv. Funct. Mater., 2019, 29:1900557.
[112]
Zhong M Y, Liang Y Q, Zhang J Q, Wei Z X, Li Q, Xu D S. J. Mater. Chem. A, 2019, 7:6659.
[113]
Wang K, Shi Y T, Dong Q S, Li Y, Wang S F, Yu X F, Wu M Y, Ma T L. J. Phys. Chem. Lett., 2015, 6:755.

URL     pmid: 26262648
[114]
Wang F Y, Zhang Y H, Yang M F, Du J Y, Yang L L, Fan L, Sui Y R, Liu X Y, Yang J H. J. Power Sources, 2019, 440:227157.
[115]
Ling X F, Yuan J Y, Liu D Y, Wang Y J, Zhang Y N, Chen S, Wu H H, Jin F, Wu F P, Shi G Z, Tang X, Zheng J W, Liu S F, Liu Z K, Ma W L. ACS Appl. Mater. Interfaces, 2017, 9:23181.

doi: 10.1021/acsami.7b05113     URL     pmid: 28627165
[116]
Feng J S, Yang Z, Yang D, Ren X D, Zhu X J, Jin Z W, Zi W, Wei Q B, Liu S F. Nano Energy, 2017, 36:1.
[117]
Feng J S, Zhu X J, Yang Z, Zhang X R, Niu J Z, Wang Z Y, Zuo S N, Priya S, Liu S F, Yang D. Adv. Mater., 2018, 30:1801418.
[118]
Wang X, Deng L L, Wang L Y, Dai S M, Xing Z, Zhan X X, Lu X Z, Xie S Y, Huang R B, Zheng L S. J. Mater. Chem. A, 2017, 5:1706.
[119]
Hu T, Xiao S Q, Yang H J, Chen L, Chen Y W. Chem. Commun., 2018, 54:471.
[120]
Li X, Dai S M, Zhu P, Deng L L, Xie S Y, Cui Q, Chen H, Wang N, Lin H. ACS Appl. Mater. Interfaces, 2016, 8:21358.

URL     pmid: 27480286
[121]
Li R, Zhang H Y, Chai R X, Zhang M, Guo M. Ceram. Int., 2019, 45:12353.
[122]
Maitani M M, Satou H, Ohmura A, Tsubaki S, Wada Y J. Jpn. J. Appl. Phys., 2017, 56:08MC17.
[123]
Liu X T, Wu Z H, Zhang Y Q, Tsamis C. Appl. Surf. Sci., 2019, 471:28.
[124]
Chen S H, Chan S H, Lin Y T, Wu M C. Appl. Surf. Sci., 2019, 469:18.
[125]
Tseng Z L, Chiang C H, Wu C G. Sci. Rep., 2015, 5:13211.

doi: 10.1038/srep13211     URL     pmid: 26411577
[126]
Kuang Y H, Zardetto V, van Gils R, Karwal S, Koushik D, Verheijen M A, Black L E, Weijtens C, Veenstra S, Andriessen R, Kessels W M M, Creatore M. ACS Appl. Mater. Interfaces, 2018, 10:30367.

doi: 10.1021/acsami.8b09515     URL     pmid: 30113160
[127]
BarbÉ J, Tietze M L, Neophytou M, Murali B, Alarousu E, Labban A E, Abulikemu M, Yue W, Mohammed O F, McCulloch I, Amassian A, del Gobbo S. ACS Appl. Mater. Interfaces, 2017, 9:11828.

doi: 10.1021/acsami.6b13675     URL     pmid: 28177212
[128]
Liu H R, Chen Z L, Wang H B, Ye F H, Ma J J, Zheng X L, Gui P B, Xiong L B, Wen J, Fang G J. J. Mater. Chem. A, 2019, 7:10636.
[129]
Yang G, Chen C, Yao F, Chen Z L, Zhang Q, Zheng X L, Ma J J, Lei H W, Qin P L, Xiong L B, Ke W J, Li G, Yan Y F, Fang G J. Adv. Mater., 2018, 30:1706023.
[130]
Huang L K, Sun X X, Li C, Xu J, Xu R, Du Y Y, Ni J, Cai H K, Li J, Hu Z Y, Zhang J J. ACS Appl. Mater. Interfaces, 2017, 9:21909.

doi: 10.1021/acsami.7b04392     URL     pmid: 28613825
[131]
Gatti T, Menna E, Meneghetti M, Maggini M, Petrozza A, Lamberti F. Nano Energy, 2017, 41:84.
[132]
Yan Y L, Gao J M, Meng F N, Wang N, Gao L G, Ma T L. Progress in Chemistry, 2019, 31(7):1031.
闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马延丽. 化学进展, 2019, 31(7):1031.
[133]
Dai S M, Tian H R, Zhang M L, Xing Z, Wang L Y, Wang X, Wang T, Deng L L, Xie S Y, Huang R B, Zheng L S. J. Power Sources, 2017, 339:27.
[134]
Liu D Y, Wang Q, Traverse C J, Yang C C, Young M, Kuttipillai P S, Lunt S Y, Hamann T W, Lunt R R. ACS Nano, 2018, 12:876.
[135]
Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D. Science, 2015, 347:522.

doi: 10.1126/science.aaa0472     URL     pmid: 25635093
[136]
Upama M B, Elumalai N K, Mahmud M A, Wang D, Haque F, Gonçales V R, Gooding J J, Wright M, Xu C, Uddin A. Org. Electron., 2017, 50:279.
[137]
Said A A, Xie J, Zhang Q C. Small, 2019, 15:1900854.
[138]
Luo D Y, Yang W Q, Wang Z P, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z J, Liu T H, Chen K, Ye F J, Wu P, Zhao L C, Wu J, Tu Y G, Zhang Y F, Yang X Y, Zhang W, Friend R H, Gong Q H, Snaith H J, Zhu R. Science, 2018, 360:1442.

doi: 10.1126/science.aap9282     URL     pmid: 29954975
[139]
Xing Y, Sun C, Yip H L, Bazan G C, Huang F, Cao Y. Nano Energy, 2016, 26:7.
[140]
Chen R, Wang W, Bu T L, Ku Z L, Zhong J, Peng Y, Xiao S Q, You W, Huang F Z, Cheng Y B, Fu Z Y. Acta Phys.-Chim. Sin., 2019, 35(4):401.
[141]
Chen C, Wu C, Ding X D, Tian Y, Zheng M M, Cheng M, Xu H, Jin Z W, Ding L M. Nano Energy., 2020, 71:6.
[142]
Chang C Y, Wang C P, Raja R, Wang L, Tsao C S, Su W F. J. Mater. Chem. A, 2018, 6:4179.
[143]
Wang H L, Yang F, Xiang Y R, Ye S, Peng X, Song J, Qu J L, Wong W Y. J. Mater. Chem. A, 2019, 7:24191.
[144]
Ren C X, He Y, Li S Q, Sun Q J, Liu Y F, Wu Y K, Cui Y X, Li Z F, Wang H, Hao Y Y, Wu Y C. Org. Electron., 2019, 70:292.
[145]
Bai Y, Dong Q F, Shao Y C, Deng Y H, Wang Q, Shen L, Wang D, Wei W, Huang J S. Nat. Commun., 2016, 7:12806.

doi: 10.1038/ncomms12806     URL     pmid: 27703136
[146]
Wang Z P, McMeekin D P, Sakai N, van Reenen S, Wojciechowski K, Patel J B, Johnston M B, Snaith H J. Adv. Mater., 2017, 29:1604186.
[147]
Jiang Y Y, Li J, Xiong S X, Jiang F Y, Liu T F, Qin F, Hu L, Zhou Y H. J. Mater. Chem. A, 2017, 5:17632.
[148]
Zhu X M, Sun J, Yuan S, Li N, Qiu Z W, Jia J B, Liu Y N, Dong J, Lv P, Cao B Q. New J. Chem., 2019, 43:7130.
[149]
Wan L, Li X D, Song C J, He Y, Zhang W J. Sol. Energy Mater. Sol. Cells, 2019, 191:437.
[150]
Jiang K, Wu F, Yu H, Yao Y Q, Zhang G Y, Zhu L N, Yan H. J. Mater. Chem. A, 2018, 6:16868.
[151]
Miao J S, Hu Z, Liu M, Umair Ali M, Goto O, Lu W, Yang T B, Liang Y Y, Meng H. Org. Electron., 2018, 52:200.
[152]
Jung S K, Heo J H, Lee D W, Lee S C, Lee S H, Yoon W, Yun H, Im S H, Kim J H, Kwon O P. Adv. Funct. Mater., 2018, 28:1870129.
[153]
Wang R, Qiao J H, He B Z, Tang X S, Wu F, Zhu L N. J. Mater. Chem. C, 2018, 6:8429.
[154]
Zhang M Y, Zhan X W. Adv. Energy Mater., 2019, 9:1900860.
[155]
Kim H I, Kim M J, Choi K, Lim C, Kim Y H, Kwon S K, Park T. Adv. Energy Mater., 2018, 8:1702872.
[156]
Tian L, Hu Z C, Liu X C, Liu Z X, Guo P P, Xu B M, Xue Q F, Yip H L, Huang F, Cao Y. ACS Appl. Mater. Interfaces, 2019, 11:5289.
[1] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[2] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[3] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[4] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[5] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[6] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[7] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[8] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[9] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[10] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[11] 王蕾, 周勤, 黄禹琼, 张宝, 冯亚青. 界面钝化策略:提高钙钛矿太阳能电池的稳定性[J]. 化学进展, 2020, 32(1): 119-132.
[12] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[13] 闫业玲, 曹俊媚, 孟凡宁, 王宁, 高立国, 马廷丽. 大面积钙钛矿太阳能电池[J]. 化学进展, 2019, 31(7): 1031-1043.
[14] 王俊莲, 刘新宇, 谢美英, 王化军. 体离子印迹材料的制备方法[J]. 化学进展, 2018, 30(7): 989-1012.
[15] 张成江, 袁晓艳, 袁泽利, 钟永科, 张卓旻, 李攻科. 基于席夫碱反应的共价有机骨架材料[J]. 化学进展, 2018, 30(4): 365-382.
阅读次数
全文


摘要