English
新闻公告
More
化学进展 2015, Vol. 27 Issue (1): 103-112 DOI: 10.7536/PC140930 前一篇   后一篇

• 综述与评论 •

反向基因转染技术的最近研究进展

张鹏飞, 胡秀凤, 成璐, 王玮*, 刘文广*   

  1. 天津大学材料科学与工程学院 天津市材料复合与功能化重点实验室 天津 300072
  • 收稿日期:2014-09-01 修回日期:2014-10-01 出版日期:2015-01-15 发布日期:2014-11-24
  • 通讯作者: 刘文广, 王玮 E-mail:wgliu@tju.edu.cn;wwgfz@tju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51173129, 51325305)资助

The Recent Development in Reverse Gene Transfection

Zhang Pengfei, Hu Xiufeng, Cheng Lu, Wang Wei*, Liu Wenguang*   

  1. Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
  • Received:2014-09-01 Revised:2014-10-01 Online:2015-01-15 Published:2014-11-24
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.51173129, 51325305).

随着基因治疗研究的深入,基因转染技术得到了长足的发展。在反向基因转染概念被提出来的十余年间,反向基因转染技术也引起了广泛关注。反向基因转染技术是相对于常规转染而言的,即首先通过基质锚定DNA(或RNA),然后将细胞接种于该基质表面,细胞贴附的同时摄取锚定的DNA(或RNA)而实现基因转染,因而也被称为表面介导基因转染、基质介导基因转染、固相基因转染。与传统转染方法相比,其具备以下优势:载体/DNA(或RNA)复合物更加稳定,转染试剂可以更有效地接触细胞而达到更高的转染效率,低的细胞毒性和血清环境中不影响转染效率等。本文主要综述了反向转染技术的最新研究进展及其主要应用领域。

With the in-depth study of gene therapy, the gene transfection techniques have achieved rapid development. Since it was proposed in 1997, reverse transfection concept has also aroused considerable attention. Reverse gene transfection is also known as surface-mediated transfection or matrix-mediated transfection, or solid-phase transfection. In a typical procedure of reverse transfection, DNA (or RNA) is firstly anchored to the substrate; cells are transplanted on the substrate surface in the next step; the adsorbed DNA (or RNA) is internalized into post-attached cells to realize the gene transfection. Compared with conventional gene transfection, the reverse method is imparted with several advantages including more stable complexation of vector/DNA (or RNA), more effective contact between the transfection reagent and cells, which is favourable for achieving higher transfection efficiency and lower cytotoxicity, and well-maintained transfection performance in the presence of serum. The recent research progress of reverse gene transfection and its applications are focused on in this review.

Contents
1 Introduction 2 Approaches to reverse gene transfection
2.1 Nucleic acid (and vector) directly anchored to the substrate surface
2.2 Electrostatic adsorption
2.3 Layer-by-layer
2.4 Hydrogen bond
2.5 Specific interaction
2.6 Covalent bond
3 Applications of reverse gene transfection
3.1 Tissue engineering
3.2 Gene screening
3.3 Primary cells
3.4 Non-adherent cells
4 Conclusion and perspective

中图分类号: 

()

[1] Palsson B, Andreadis S. Exp. Hematol., 1997, 25: 94.
[2] Ziauddin J, Sabatini D M. Nature, 2001, 411: 107.
[3] Bengali Z, Pannier A K, Segura T, Anderson B C, Jang J H, Mustoe T A, Shea L D. Biotechnol. Bioeng., 2005, 90: 290.
[4] Jewell C M, Lynn D M. Curr. Opin. Colloid Interface Sci., 2008, 13: 395.
[5] Ji Q, Yamazaki T, Hanagata N, Lee M V, Hill J P, Ariga K. Chem. Commun., 2012, 48: 8496.
[6] Wu K M, Xu J, Liu M Y, Song W, Yan J, Gao S, Zhao L Z, Zhang Y M. Int. J. Nanomed., 2013, 8: 1595.
[7] Honma K, Miyata T, Ochiya T. Curr. Drug. Discov. Tech., 2004, 1: 287.
[8] Villa-Diaz L G, Garcia-Perez J L, Krebsbach P H. Stem Cells Dev., 2010, 19: 1949.
[9] Shen H, Tan J, Saltzman W M. Nat. Mater., 2004, 3: 569.
[10] Oyane A, Wang X, Sogo Y, Ito A, Tsurushima H. Acta Biomater., 2012, 8: 2034.
[11] Nagane K, Kitada M, Wakao S, Dezawa M, Tabata Y. Tissue Eng. Part A, 2009, 15: 1655.
[12] He C X, Li N, Hu Y L, Zhu X M, Li H J, Han M, Miao P H, Hu Z J, Wang G, Liang W Q,Tabata Y, Gao J Q. Pharm. Res., 2011, 28: 1577.
[13] Solanki A, Shah S, Yin P T, Lee K B. Sci. Rep., 2013, 3: 1553.
[14] Uchimura E, Yamada S, Uebersax L, Fujita S, Miyake M, Miyake J. J. Biosci. Bioeng., 2007, 103: 101.
[15] Lin Q K, Ren K F, Ji J. Colloids Surf. B-Biointerfaces, 2009, 74: 298.
[16] Lu Z Z, Wu J, Sun T M, Ji J, Yan L F, Wang J. Biomaterials, 2008, 29: 733.
[17] Wang X F, Ren K F, Lin Q K, Ji J. Sci. China Chem., 2010, 53: 508.
[18] Yamauchi F, Kato K, Iwata H. Biochim. Biophys. Acta, 2004, 1672: 138.
[19] Holmes C A, Tabrizian M. ACS Appl. Mater. Inter., 2013, 5: 524.
[20] Tang L, Liu W, Liu G. Adv. Mater., 2010, 22: 2652.
[21] Tang L, Yang Y, Bai T, Liu W. Biomaterials, 2011, 32: 1943.
[22] Wang N, Zhang J, Sun L, Wang P, Liu W. Acta Biomater., 2014, 10: 2529.
[23] Segura T, Volk M J, Shea L D. J. Control. Release, 2003, 93: 69.
[24] Segura T, Chung P H, Shea L D. Biomaterials, 2005, 26 (13): 1575.
[25] Segura T, Shea L D. Bioconjugate Chem., 2002, 13: 621.
[26] Carbone R. Peptide Microarrays: Methods in Molecular Biology, Walker J M (Ed.).Clifton: Humana Press, 2009. 339.
[27] Park I K, Von Recum H A, Jiang S Y, Pun S H. Langmuir, 2006, 22: 8478.
[28] Zheng J, Manuel W S, Hornsby P J. Biotechnol. Progr., 2000, 16: 254.
[29] Bonadio J, Smiley E, Patil P, Goldstein S. Nat. Med., 1999, 5: 753.
[30] Yin L C, Zhao X, Ji S Z, He C. B, Wang G Y, Tang C, Gu S, Yin C. Biomaterials, 2014, 35: 2488.
[31] Elangovan S, DMello S R, Hong L, Ross R D, Allamargot C, Dawson D V, Stanford C M, Johnson G K, Sumner D R, Salem A K. Biomaterials, 2014, 35: 737.
[32] Jewell C M, Zhang J, Fredin N J, Wolff M R, Hacker T A, Lynn D M. Biomacromolecules, 2006, 7: 2483.
[33] Fujita S, Ota E, Sasaki C, Takano K, Miyake M, Miyake J. J. Biosci. Bioeng., 2007, 104: 329.
[34] Chen P C, Huang Y Y, Juang J L. Lab Chip, 2011, 11: 3619.
[35] Mannherz O, Mertens D, Hahn M, Lichter P. Genomics, 2006, 87: 665.
[36] Chia N Y, Chan Y S, Feng B, Lu X Y, Orlov Y L, Moreau D, Kumar P, Yang L, Jiang J, Lau M S, Huss M, Soh B S, Kraus P, Li P, Lufkin T, Lim B, Clarke N D, Bard F, Ng H H. Nature, 2010, 468: 316.
[37] Whitehurst A. W, Bodemann B O, Cardenas J, Ferguson D, Girard L, Peyton M, Minna J D, Hao W, Roth M G, Xie X J, White M A. Nature, 2007, 446: 815.
[38] Erfle H Neumann B, Liebel U, Rogers P, Held M, Walter T, Ellenberg J, Pepperkok R. Nat. Protoc., 2007, 2: 392.
[39] Choi S, Yu X H, Paiboonkit L J, Hollister S J, Murphy W L. Sci. Rep., 2013, 3: 1567.
[40] Kato K, Umezawa K, Miyake M, Miyake J, Nagamune T. Biotechniques, 2004, 37: 444.
[41] Li C Y, Yuan W, Jiang H, Li J S, Xu F J, Yang W T, Ma J. Bioconjugate Chem., 2011, 22: 1842.
[42] Yuan W, Li C, Zhao Y, Chen Z, Sui C G, Yang W T, Xu F J, Ma J. Adv. Fuct. Mater., 2012, 22: 1835.
[43] Bae J, Goto S, Mie M, Kobatake E. J. Biotechnol., 2010, 150: 447.
[44] Rea J C, Gibly R F, Davis N E, Barron A E, Shea L D. Biomacromolecules, 2009, 10: 2779.
[45] Uchimura E, Yamada S, Nomura T, Matsumoto K, Fujita S, Miyake M, Miyake J. J. Biosci. Bioeng., 2007, 104: 152.

[1] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[2] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[3] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[4] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
[5] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[6] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[7] 杨强强, 李川, 于淑娴, 范书华, 王月霞, 洪敏. 纳米载体在共负载siRNA及化疗药物对逆转肿瘤多药耐药性方面的应用[J]. 化学进展, 2021, 33(10): 1900-1916.
[8] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[9] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[10] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[11] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[12] 白凌闯, 赵静, 冯亚凯. 多功能基因递送系统促进内皮细胞增殖[J]. 化学进展, 2019, 31(2/3): 300-310.
[13] 冯盛, 杨芳, 刘梦瑶, 范红显, 徐念. 抗癌药物多烯紫杉醇载体[J]. 化学进展, 2019, 31(2/3): 368-380.
[14] 周伶俐, 谢瑞刚, 王林江. 层状双金属氢氧化物在电催化中的应用[J]. 化学进展, 2019, 31(2/3): 275-282.
[15] 董志瑞, 仝维鋆*. 剪切响应性药物传递体系[J]. 化学进展, 2018, 30(2/3): 190-197.