English
新闻公告
More
化学进展 2018, Vol. 30 Issue (2/3): 190-197 DOI: 10.7536/PC170817 前一篇   后一篇

• 综述 •

剪切响应性药物传递体系

董志瑞, 仝维鋆*   

  1. 浙江大学 教育部高分子合成与功能构造重点实验室 高分子科学与工程学系 杭州 310027
  • 收稿日期:2017-08-17 修回日期:2017-09-21 出版日期:2018-02-15 发布日期:2017-12-11
  • 通讯作者: 仝维鋆,tongwj@zju.edu.cn E-mail:tongwj@zju.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21374101)、浙江大学曹光彪高科技发展基金和中央高校基本科研业务费(No.2016QNA4033)资助

Shear-Responsive Drug Delivery Systems

Zhirui Dong, Weijun Tong*   

  1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2017-08-17 Revised:2017-09-21 Online:2018-02-15 Published:2017-12-11
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21374101), the Zhejiang University K.P.Cao's High Technology Development Foundation, and the Fundamental Research Funds for the Central Universities(No.2016QNA4033).
动脉粥样硬化和血栓的一个主要症状为血管病变引起的血管狭窄。动脉粥样硬化能够引发心肌梗塞和脑梗塞等疾病,严重威胁人类生命健康。因此,发展治疗血管狭窄疾病的有效方法至关重要。动脉血管的严重狭窄造成其血管壁剪切应力比健康血管至少增大一个数量级,这种显著区别的剪切应力可以用来作为药物靶向传递的触发信号。剪切响应性药物传递体系能够在增大的剪切应力下在血管狭窄部位释放负载的药物,从而起到靶向治疗的效果,且对于正常组织和器官的副作用很小,对于治疗动脉粥样硬化及血管局部栓塞等血管狭窄疾病具有非常重要的意义,因此这种新的刺激响应性药物传递体系正成为领域内的研究热点。本文综述了剪切响应性药物传递体系的最新研究进展,分类介绍了这些剪切响应性药物载体的设计思路和作用机制,并对当前剪切响应性药物传递体系面临的困难和存在的不足进行了讨论,对其发展前景作了展望。
One major symptom of atherosclerosis and vascular thrombosis is vascular stenosis caused by vascular lesion. Atherosclerosis has become one of the major threats to human health since it can result in severe diseases such as myocardial infarction and cerebral infarction. Therefore,it is of great significance to develop more effective ways to treat vascular stenosis diseases. The wall shear stress at severely stenosed arteries is at least one order of magnitude higher than that in healthy vessels. The significantly increased mechanical force could be used as a trigger signal for effective targeted drug delivery. Shear-responsive drug delivery systems can release their payloads under increased shear stress at the stenosed sites and have minimal side effects on the normal tissues and organs. Therefore, this natural physical trigger is an important and promising approach for targeted drug delivery to cure some cardiovascular diseases, especially vascular stenosis diseases such as atherosclerosis. Shear-responsive drug delivery systems have attracted great interests of researchers. The recent advances on shear-responsive drug delivery systems are reviewed. Various shear-responsive drug delivery systems classified on the basis of design ideas and responsive mechanisms are discussed. At last, the urgent needs, challenges and some personal perspectives of the shear-responsive drug carriers are also presented.
Contents
1 Introduction
2 Mechanism of shear-responsive drug delivery
3 Shear-responsive drug delivery systems
3.1 Aggregates of nanoparticles
3.2 Microcapsules and vesicles
3.3 RBCs-nanoparticles composite carriers
3.4 Supramolecular self-assembly hydrogels
4 Conclusion

中图分类号: 

()
[1] Ingall T J, O'Fallon W N, Asplund K, Goldfrank L R, Hertzberg V S, Louis T A, Christianson T G H. Stroke, 2004, 35:2418.
[2] Wechsler L R. New Engl. J.Med., 2011, 364:2138.
[3] Bark D L, Ku D N. J Biomech., 2010, 43:2970.
[4] Foin N, Lee R D, Torii R, Guitierrez-Chico J L, Mattesini A, Nijjer S, Sen S Y, Petraco R, Davies J E, Mario C D, Joner M, Virmani R, Wong P. Int. J. Cardiol., 2014, 177:800.
[5] Coskunm M, Vermeire S, Nielsen O H. Trends Pharmacol. Sci., 2017, 38:127.
[6] Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R. Chem. Rev., 2016, 116:5338.
[7] Tibbitt M W, Dahlman J E, Langer R. J. Am. Chem. Soc., 2016, 138:704.
[8] Maeda H, Matsumura Y. Adv. Drug Deliver. Rev., 2011, 63:129.
[9] Fang J, Nakamura H, Maeda H. Adv. Drug Deliver. Rev., 2011, 63:136.
[10] Jiang K, Chi T, Li T, Zheng G R, Fan L L, Liu Y J, Chen X F, Chen S J, Jia L, Shao J W. Nanoscale, 2017, 9:9428.
[11] Zheng H Q, Zhang Y N, Liu L F, Wan W, Guo P, Nystrom A M, Zou X D. J. Am. Chem. Soc., 2016, 138:962.
[12] Baek S, Singh R K, Kim T H, Seo J, Shin U S, Chrzanowski W, Kim H W. ACS Appl. Mater. Inter., 2016, 8:8967.
[13] Wang X Y, Zhang J S, Wang Y T, Wang C P, Xiao J R, Zhang Q, Cheng Y Y. Biomaterials, 2016, 81:114.
[14] Wang Z P, Feng Z Q, Gao C Y. Chem. Mater., 2008, 20, 4194.
[15] Sutton J T, Haworth K J, Pyne-Geithman G, Holland C K. Expert Opin. Drug Deliv., 2013, 10:573.
[16] Wang G S, Ma Y Y, Wei Z Y, Qi M. Chem. Eng. J., 2016, 289:150.
[17] Nieuwlaat R, Schwalm J D, Khatib R, Yusuf S. Eur. Heart J, 2013, 34:1262.
[18] Cicha I, Singh R, Garlichs C D, Alexiou C. J. Control. Release, 2016, 229:23.
[19] Saxer T, Zumbuehl A, Mueller B. Cardiovasc. Res., 2013, 99:328.
[20] Lowe G D. Baillieres Best Pract. Res. Clin. Haematol.,1999, 12, 435.
[21] Cunningham K S, Gotlieb A I. Lab. Invest., 2005, 85:9.
[22] Ernst W, Jan O, Ulrich K. Atherosclerosis, 2011, 216:277.
[23] Nesbitt W S, Westein E, Tovar-Lopez F J, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson S P. Nat. Med., 2009, 15:665.
[24] Fisher A B, Chien S, Barakat A L, Nerem R M. Am. J. Physiol. Lung Cell Mol. Physiol., 2001, 281:1529.
[25] Wootton D M, Ku D N. Annu. Rev. Biomed. Eng., 1999, 1:299.
[26] Bark D L, Ku D N. J. Biomech., 2010, 43:2970.
[27] Jo Y S, Vlies A J, Gantz J, Thacher T, Antonijevic S, Cavadini S, Demurtas D, Stergiopulos N, Hubbell J A. J. Am. Chem. Soc., 2009, 131:14413.
[28] Holme M N, Fedotenko I A, Abegg D, Althaus J, Babel L, Favarger F, Reiter R, Tanasescu R, Zaffalon P L, ZieglerA, Müller B, Saxer T, Zumbuehl A. Nat. Nanotechnol., 2012, 7:536.
[29] Korin N, Kanapathipillai M, Matthews M D, Crescente M, Brill A, Mammoto T, Ghosh K, Jurek S, Bencherif S A, Bhatta D, Coskun A U, Feldman C L, Wagner D D, Ingber D E. Science, 2012, 337:738.
[30] Marosfoi M G, Korin N, Gounis M J, Uzun O, Vedantham S, Langan E T, Papa A L, Brooks O W, Johnson C, Puri A S, Bhatta D, Kanapathipillai M, Bronstein B R, Chueh J Y, Ingber D E, Wakhloo A K. Stroke, 2015, 46:3507.
[31] Mellal L, Belharet K, Folio D, Ferreira A. Nanopart. Res., 2015, 17:64.
[32] Zanina A, Vilesov A, Budtova T. Int. J. Pharm., 2002, 242:137.
[33] Zeo U, Tarabukina E, Budtova T. J. Controlled Release, 2005, 108:73.
[34] Tong W J, Song X X, Gao C Y. Chem. Soc. Rev., 2012, 41:6103.
[35] 仝维鋆(Tong W J), 高长有(Gao C Y). 高等学校化学学报(Chemical Journal of Chinese Universities),2008, 29(7):1285.
[36] She S P, Xu C X, Yin X F, Tong W J, Gao C Y. Langmuir, 2012, 28:5010.
[37] She S P, Li Q Q, Shan B W, Tong W J, Gao C Y. Adv. Mater., 2013, 25:5814.
[38] Natsume T, Yoshimoto M. ACS Appl. Mater. Inter., 2014, 6:3671.
[39] Staedtke V, Brahler M, Muller A, Georgieva R, Bauer S, Sternberg N, Voigt A, Lemke A, Keck C, Moschwitzer J, Baumler H, Small, 2010, 6:96.
[40] Muzykantov V R, Sakharov D V, Smirnov M D, Domogatsky S P, Samokhin G P. FEBS Lett., 1985, 182:62.
[41] Muzykantov V R. Exper. Opin. Drug Delivery, 2010, 7:403.
[42] Azarmi S, Roa W H, Lobenberg R. Adv. Drug Delivery Rev., 2008, 60:863.
[43] Faraji A H, Wipf P. Bioorg. Med. Chem., 2009, 17:2950.
[44] Wang A Z, Langer R, Farokhzad O C. Annu. Rev. Med., 2012, 63:185.
[45] Anselmo A C, Kumar S, Gupta V, Pearce A M, Ragusa A, Muzykantov V, Mitragotri S. Biomaterials, 2015, 68:1.
[46] Zhao Y N, Sun X X, Zhang G N, Trewyn B G, Slowing I I, Lin V S Y. ACS Nano, 2011, 5:1366.
[47] Anselmo A C, Gupta V, Zern B J, Pan D, Zakrewsky M, Muzykantov V, Mitragotri S. ACS Nano, 2013, 7:11129.
[48] Chambers E, Mitragotri S. J. Controlled Release, 2004, 100:111.
[49] Chambers E, Mitragotri S. Exp. Biol. Med., 2007, 232:958.
[50] Chen C J, Li S K, Liu K, Ma G H, Yan X H. Small, 2016, 12:4719.
[51] Kaplan J A, Barthélémy P, Grinstaff M W. Chem. Commun., 2016, 52:5860.
[52] Himmelein S, Lewe V, Stuartb M C A, Ravoo B J. Chem. Sci., 2014, 5:1054.
[53] Feng Q, Wei K C, Lin S, Xu Z, Sun Y X, Shi P, Li G, Bian L M. Biomaterials, 2016, 101:217.
[54] Rodell C B, Kaminski A L, Burdick J A. Biomacromolecules, 2013, 14:4125.
[55] Jia Y G, Zhu X X. Chem. Mater., 2015, 27:387.
[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[8] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[9] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[10] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[11] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[12] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[13] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[14] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.
[15] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.
阅读次数
全文


摘要

剪切响应性药物传递体系