English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 275-282 DOI: 10.7536/PC180730 前一篇   后一篇

• •

层状双金属氢氧化物在电催化中的应用

周伶俐1, 谢瑞刚2, 王林江1,3,**()   

  1. 1. 桂林理工大学材料科学与工程学院 桂林 541004
    2. 百色学院化学与环境工程学院 百色 533000
    3. 广西有色金属隐伏矿床勘察及材料开发协同创新中心 桂林 541004
  • 收稿日期:2018-07-23 出版日期:2019-02-15 发布日期:2018-12-20
  • 通讯作者: 王林江
  • 基金资助:
    国家自然科学基金项目(41572034); 国家自然科学基金项目(41272064)

Application of Layered Double Hydroxides in Electrocatalysis

Lingli Zhou1, Ruigang Xie2, Linjiang Wang1,3,**()   

  1. 1. College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
    2. College of Chemistry and Environment Engineering, Baise University, Baise 533000, China
    3. Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Guilin 541004, China
  • Received:2018-07-23 Online:2019-02-15 Published:2018-12-20
  • Contact: Linjiang Wang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(41572034); National Natural Science Foundation of China(41272064)

在能源紧张和环境问题突出的今天,开发可再生的清洁能源和储能装置已引起研究者们的广泛关注。电催化及其催化材料在新能源开发和使用中起着举足轻重的作用。而二维层状材料因其具有较高的比表面积和独特的电子特性可作为很好的电极材料,在电催化和储能中应用广泛。其中,层状双金属氢氧化物(layered double hydroxides, LDHs)以其典型的层状结构特征,且价格低廉、合成方法简单并易于功能化、组成易于调控、结构可裁剪等优点在电催化及催化材料的制备中具有很好的发展前景。本文主要从LDHs作为阳极析氧反应(oxygen evolution reaction, OER)催化剂、电催化剂载体以及作为制备电催化剂的前驱体三个方面综述了层状双金属氢氧化物应用于电催化材料的研究进展,对调控LDHs材料的电子结构、形貌、界面相互作用以及与贵金属催化剂之间的协同催化等提高其催化性能作了相关阐述,并对以LDHs为前驱体制备电催化剂作了简要阐述。最后,对LDHs应用于电催化所存在的问题及前景进行了展望。

The development of renewable clean energy and energy storage devices has attracted extensive attention because of bad condition of energy shortages and harsh environmental problems. Electrocatalytic reaction and catalyst materials play vital roles in the process of catalysis. Two dimensional layered materials have been widely used as electrode materials in electrocatalysis and energy storage devices thanks to their high specific surface area and unique electronic properties. Among them, layered double hydroxides(LDHs) have a good development prospect in the electrocatalysis process and preparation of catalyst materials due to their typical layered structure and unique advantages such as low price, easy to be prepared and functionalized, good tunability in the composition and structure, etc. This review summarizes the research progress of LDHs applied in catalyst for oxygen evolution reaction(OER), catalyst supporter and used as precursor to prepare electrocatalyst. Especially, we discusse the recent advances in tuning LDHs including electronic structure, morphology, interface interaction and synergetic catalytic effect with noble metal catalyst to improve the catalytic performance. In addition, we briefly describe the preparation of electrocatalysts using LDHs as precursors. Finally, the current difficulties and future research directions of LDHs are also discussed to give an outlook of their prospect in electrocatalysis.

()
图1 (a) 生长在泡沫镍上NiFe-LDH示意图;(b) 泡沫镍的SEM图;(c) LDHs的结构示意图[40]
Fig. 1 (a) Schematic illustration of NiFe-LDH nanoplates grown on nickel foam;(b) the SEM image of nickel foam; (c) the crystal structure of LDHs[40]. Copyright 2014, the Royal Society of Chemistry
图2 (a)自模板法制备层级中空Ni-Fe LDH纳米棱柱体流程;水解反应后的层级中空Ni-Fe LDH棱柱体的(b) FESEM(c) TEM图[31]
Fig. 2 (a) Formation of hierarchical Ni-Fe LDH hollow nanoprisms by a self-templated strategy;(b) FESEM and(c) TEM images of the hierarchical Ni-Fe LDH hollow prisms obtained after hydrolysis reaction[31]. Copyright 2018, John Wiley&Sons, Inc.
表1 不同调控方式所得的LDHs材料OER性能总结
Table 1 Summary of OER performance of LDHs obtained using different tuning methods
图3 (a)以CoAl-LDH/CP 制备P-CoP/CP的流程图;(b) 1.0 M KOH(c) 0.5 M H2SO4(d) 1.0 M PBS电解质中基于电化学活性面积的CoP/CP和p-CoP/CP的HER性能[73]
Fig. 3 (a) Schematic illustration showing the fabrication of p-CoP/CP from CoAl-LDH/CP; The HER performance for CoP/CP and p-CoP/CP after normalization of the electrochemical active area in(b) 1.0 M KOH(c) 0.5 M H2SO4 and(d) 1.0 M PBS[73]. Copyright 2018, the Royal Society of Chemistry.
[1]
Dunn B, Kamath H, Tarascon J M . Science, 2011,334(6058):928. https://www.ncbi.nlm.nih.gov/pubmed/22096188

doi: 10.1126/science.1212741     URL     pmid: 22096188
[2]
Jia Z J, Wang Y, Qi T . RSC Adv., 2015,5(101):83314. https://www.ncbi.nlm.nih.gov/pubmed/29456838

doi: 10.1039/c5ra19497k     URL     pmid: 29456838
[3]
郭亚肖(Guo Y X), 商昌帅(Shang C S), 李敬(Li J), 汪尔康(Wang E K), . 中国科学:化学 (Scientia Sinica Chimica), 2018,48(08):926.
[4]
Wang W, Su C, Wu Y Z, Ran R, Shao Z P . Chem. Rev., 2013,113(10):8104. https://www.ncbi.nlm.nih.gov/pubmed/23902155

doi: 10.1021/cr300491e     URL     pmid: 23902155
[5]
Antolini E . J. Power Sources, 2007,170(1):1.
[6]
Tian J Q, Cheng N Y, Liu Q, Sun X P, He Y Q, Asiri A M . J. Mater. Chem. A, 2015,3(40):20056.
[7]
Liu P F, Yang S, Zhang B, Yang H G . ACS Appl. Mater. Interfaces, 2016,8(50):34474. https://www.ncbi.nlm.nih.gov/pubmed/27998124

doi: 10.1021/acsami.6b12803     URL     pmid: 27998124
[8]
Li Y G, Dai H J . Chem. Soc. Rev., 2014,43(15):5257. https://www.ncbi.nlm.nih.gov/pubmed/24926965

doi: 10.1039/c4cs00015c     URL     pmid: 24926965
[9]
Dou S, Tao L, Huo J, Wang S Y, Dai L M . Energy Environ. Sci., 2016,9(4):1320.
[10]
Qiao J L, Liu Y Y, Hong F, Zhang J J . Chem. Soc. Rev., 2014,43(2):631. https://www.ncbi.nlm.nih.gov/pubmed/24186433

doi: 10.1039/c3cs60323g     URL     pmid: 24186433
[11]
Rogers C, Perkins W S, Veber G, Williams T E, Cloke R R, Fischer F R . J. Am. Chem. Soc., 2017,139(11):4052. https://www.ncbi.nlm.nih.gov/pubmed/28234002

doi: 10.1021/jacs.6b12217     URL     pmid: 28234002
[12]
Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V . Science, 2011,331(6017):568. https://www.ncbi.nlm.nih.gov/pubmed/21292974

doi: 10.1126/science.1194975     URL     pmid: 21292974
[13]
高利芳(Gao L F), 宋忠乾(Song Z Q), 孙中辉(Sun Z H), 李风华(Li F H), 韩冬雪(Han D X), 牛利(Niu L) . 应用化学 (Chinese Journal of Applied Chemistry), 2018,35(03):247.
[14]
王丽娜(Wang L N), 徐玲玲(Xu L L), 张道令(Zhang D L) . 材料导报 (Materials Review), 2012,26(07):66.
[15]
贾潞(Jia L), 马建中(Ma J Z), 高党鸽(Gao D G), 吕斌(Lv B) . 化学进展 (Progress in Chemistry), 2018,30(1):295.
[16]
Jiang Z, Li Z P, Qin Z H, Sun H Y, Jiao X L, Chen D R . Nanoscale, 2013,5(23):11770. https://www.ncbi.nlm.nih.gov/pubmed/24121859

doi: 10.1039/c3nr03829g     URL     pmid: 24121859
[17]
Yilmaz G, Yam K M, Zhang C, Fan H J, Ho G W . Adv. Mater., 2017,29(26):1606814.
[18]
Wang X, Lin Y Y, Su Y, Zhang B, Li C J, Wang H, Wang L J . Electrochim. Acta, 2017,225:263.
[19]
Béléké A B, Higuchi E, Inoue H, Mizuhata M . J. Power Sources, 2014,247:572.
[20]
Zhang J T, Hu H, Li Z, Lou X W . Angew. Chem. Int. Ed., 2016,55(12):3982. https://www.ncbi.nlm.nih.gov/pubmed/26894940

doi: 10.1002/anie.201511632     URL     pmid: 26894940
[21]
Nayak S, Mohapatra L, Parida K . J. Mater. Chem. A, 2015,3(36):18622.
[22]
Fan G, Li F, Evans D G, Duan X . Chem. Soc. Rev., 2014,43(20):7040. https://www.ncbi.nlm.nih.gov/pubmed/25001024

doi: 10.1039/c4cs00160e     URL     pmid: 25001024
[23]
Theiss F L, Ayoko G A, Frost R L . Appl. Surf. Sci., 2016,383:200.
[24]
Yu J F, Wang Q, O’Hare D, Sun L Y . Chem. Soc. Rev., 2017,46(19):5950. https://www.ncbi.nlm.nih.gov/pubmed/28766671

doi: 10.1039/c7cs00318h     URL     pmid: 28766671
[25]
Prevot V, Tokudome Y . J. Mater. Sci., 2017,52(19):11229.
[26]
Trotochaud L, Ranney J K, Williams K N, Boettcher S W . J. Am. Chem. Soc., 2012,134(41):17253. https://www.ncbi.nlm.nih.gov/pubmed/22991896

doi: 10.1021/ja307507a     URL     pmid: 22991896
[27]
龙霞(Long X), 王亚琼(Wang Y Q), 鞠敏(Ju M), 王政(Wang Z), 杨世和(Yang S H) . 应用化学 (Chinese Journal of Applied Chemistry), 2018,35(08):881.
[28]
Gong M, Li Y, Wang H, Liang Y, Wu J Z, Zhou J, Wang J, Regier T, Wei F, Dai H . J. Am. Chem. Soc., 2013,135(23):8452. https://www.ncbi.nlm.nih.gov/pubmed/23701670

doi: 10.1021/ja4027715     URL     pmid: 23701670
[29]
Guzmán-Vargas A, Vazquez-Samperio J, Oliver-Tolentino M A, Ramos-Sánchez G, Flores-Moreno J L, Reguera E . Electrocatalysis, 2017,8(4):383.
[30]
Song F, Hu X L . Nat. Commun., 2014,5:4477. https://www.ncbi.nlm.nih.gov/pubmed/25030209

doi: 10.1038/ncomms5477     URL     pmid: 25030209
[31]
Yu L, Yang J F, Guan B Y, Lu Y, Lou X W . Angew. Chem. Int. Ed., 2018,57(1):172. https://www.ncbi.nlm.nih.gov/pubmed/29178355

doi: 10.1002/anie.201710877     URL     pmid: 29178355
[32]
Long X, Xiao S, Wang Z L, Zheng X L, Yang S H . Chem. Commun., 2015,51(6):1120. https://www.ncbi.nlm.nih.gov/pubmed/25467629

doi: 10.1039/c4cc08856e     URL     pmid: 25467629
[33]
Li P S, Duan X X, Kuang Y, Li Y P, Zhang G X, Liu W, Sun X M . Adv. Energy Mater., 2018,8(15):1703341.
[34]
Lu Z Y, Qian L, Tian Y, Li Y P, Sun X M, Duan X . Chem. Commun., 2016,52(5):908. https://www.ncbi.nlm.nih.gov/pubmed/26579843

doi: 10.1039/c5cc08845c     URL     pmid: 26579843
[35]
Yang Y, Dang L N, Shearer, M. J., Sheng H Y, Li W J, Chen J, Xiao P, Zhang Y H, Hamers, R. J., Jin S . Adv. Energy Mater., 2018,8(15):1703189.
[36]
Wang Y Y, Zhang Y Q, Liu Z J, Xie C, Feng S, Liu D D, Shao M F, Wang S Y . Angew. Chem. Int. Ed., 2017,56(21):5867. https://www.ncbi.nlm.nih.gov/pubmed/28429388

doi: 10.1002/anie.201701477     URL     pmid: 28429388
[37]
Zhou P, Wang Y Y, Xie C, Chen C, Liu H W, Chen R, Huo J, Wang S Y . Chem. Commun., 2017,53(86):11778. https://www.ncbi.nlm.nih.gov/pubmed/29034926

doi: 10.1039/c7cc07186h     URL     pmid: 29034926
[38]
Wang Y, Xie C, Zhang Z Y, Liu D D, Chen R, Wang S Y . Adv. Funct. Mater., 2018,28(4):1703363.
[39]
杜世超(Du S C), 任志宇(Ren Z Y), 吴君(Wu J), 付宏刚(Fu H G) . 高等学校化学学报 (Chemical Journal of Chinese Universities), 2016,37(08):1415.
[40]
Lu Z Y, Xu W W, Zhu W, Yang Q, Lei X D, Liu J F, Li Y P, Sun X M, Duan X . Chem. Commun., 2014,50(49):6479. https://www.ncbi.nlm.nih.gov/pubmed/24817324

doi: 10.1039/c4cc01625d     URL     pmid: 24817324
[41]
Zhang J, Xie X L, Li C J, Wang H, Wang L J . RSC Adv., 2015,5(38):29757.
[42]
Lin Y Y, Xie X L, Wang X, Zhang B, Li C J, Wang H, Wang L J . Electrochim. Acta, 2017,246:406.
[43]
Li C, Lu H, Lin Y Y, Xie X L, Wang H, Wang L J . RSC Adv., 2016,6(99):97237. https://www.ncbi.nlm.nih.gov/pubmed/27774146

doi: 10.1039/C6RA21303K     URL     pmid: 27774146
[44]
Shao M F, Ning F Y, Zhao J W, Wei M, Evans D G, Duan X . Adv. Funct. Mater., 2013,23(28):3513.
[45]
王海燕(Wang H Y), 石高全(Shi G Q) . 物理化学学报 (Acta Physico-Chimica Sinica), 2018,34(01):22.
[46]
Ping J F, Wang Y X, Lu Q P, Chen B, Chen J Z, Huang Y, Ma Q L, Tan C L, Yang J, Cao X H, Wang Z J, Wu J, Ying Y B, Zhang H . Adv. Mater., 2016,28(35):7640. https://www.ncbi.nlm.nih.gov/pubmed/27356037

doi: 10.1002/adma.201601019     URL     pmid: 27356037
[47]
Wang W, Liu Y C, Li J, Luo J, Fu L, Chen S L . J. Mater. Chem. A, 2018,6(29):14299.
[48]
Yu L, Zhou H Q, Sun J Y, Qin F, Yu F, Bao J M, Yu Y, Chen S, Ren Z F . Energy Environ. Sci., 2017,10(8):1820.
[49]
Zhang C, Zhao J, Zhou L, Li Z, Shao M, Wei M . J. Mater. Chem. A, 2016,4(29):11516.
[50]
Sakita A M P, Noce R D, Vallés E, Benedetti A V . Appl. Surf. Sci., 2018,434:1153.
[51]
Yang Q H, Xu Q, Jiang H L . Chem. Soc. Rev., 2017,46:4774. https://www.ncbi.nlm.nih.gov/pubmed/28621344

doi: 10.1039/c6cs00724d     URL     pmid: 28621344
[52]
Lu S L, Hu Y M, Wan S, McCaffrey R, Jin Y H, Gu H W, Zhang W . J. Am. Chem. Soc., 2017,139(47):17082. https://www.ncbi.nlm.nih.gov/pubmed/29095604

doi: 10.1021/jacs.7b07918     URL     pmid: 29095604
[53]
Xie R G, Pan Y, Gu H W . RSC Adv., 2015,5(21):16497.
[54]
Capon A, Parson R . J. Electroanal. Chem. Interfacial Electrochem., 1973,44(1):1.
[55]
Wasmus S, Küver A . J. Electroanal. Chem., 1999,461(1):14.
[56]
Xie R G, Chen M Z, Wang J Q, Mei S J, Pan Y, Gu H W . RSC Adv., 2015,5(1):650.
[57]
Sulaiman J E, Zhu S, Xing Z, Chang Q, Shao M . ACS Catal., 2017,7(8):5134.
[58]
Jia Z J, Wang Y, Qi T . RSC Adv., 2015,5(76):62142.
[59]
Zhu H Y, Gu C D, Ge X, Tu J P . Electrochim. Acta, 2016,222:938.
[60]
Zhang F F, Wang Z Y, Xu K Q, Xia J F, Liu Q Y, Wang Z H . Int. J. Hydrogen Energy, 2018,43(33):16302.
[61]
Anantharaj S, Karthick K, Venkatesh M, Simha T V S V, Salunke A S, Ma L, Liang H, Kundu S . Nano Energy, 2017,39:30.
[62]
Wang D D, Chen X, Evans D G, Yang W S . Nanoscale, 2013,5(12):5312. https://www.ncbi.nlm.nih.gov/pubmed/23681343

doi: 10.1039/c3nr00444a     URL     pmid: 23681343
[63]
Long X, Li G X, Wang Z L, Zhu H Y, Zhang T, Xiao S, Guo W Y, Yang S H . J. Am. Chem. Soc., 2015,137(37):11900. https://www.ncbi.nlm.nih.gov/pubmed/26338434

doi: 10.1021/jacs.5b07728     URL     pmid: 26338434
[64]
朱永明(Zhu Y M), 姜云鹏(Jiang Y P), 胡会利(Hu H L) . 化学进展 (Progress in Chemistry), 2017,29(11):1422.
[65]
Wang S L, Hou M, Zhao Q, Jiang Y Y, Wang Z, Li H Z, Fu Y, Shao Z G . J. Energy Chem., 2017,26(1):168. https://www.ncbi.nlm.nih.gov/pubmed/26598463

doi: 10.1016/j.bmcl.2015.11.006     URL     pmid: 26598463
[66]
Hao S, Yang L B, Liu D N, Kong R M, Du G, Asiri A M, Yang Y C, Sun X P . Chem. Commun., 2017,53(42):5710. https://www.ncbi.nlm.nih.gov/pubmed/28487917

doi: 10.1039/c7cc01680h     URL     pmid: 28487917
[67]
Zhou L, Shao M F, Wei M, Duan X . J. Energy Chem., 2017,26(6):1094.
[68]
Zhao Y F, Jia X D, Chen G B, Shang L, Waterhouse G I N, Wu L Z, Tung C H, O’Hare D, Zhang T R . J. Am. Chem. Soc., 2016,138(20):6517. https://www.ncbi.nlm.nih.gov/pubmed/27159825

doi: 10.1021/jacs.6b01606     URL     pmid: 27159825
[69]
Zhou L, Jiang S, Liu Y K, Shao M F, Wei M, Duan X . ACS Appl. Energy Mater., 2018,1(2):623.
[70]
姜媛媛(Jiang Y Y), 陈传霞(Chen C X), 倪朋娟(Ni P J), 逯一中(Lu Y Z) . 分析化学 (Chinese Journal of Analytical Chemistry), 2018,46(04):550.
[71]
Gao L C, Chen S, Zhang H W, Zou Y H, She X L, Yang D J, Zhao Q S, Zhao X L . In. J. Hydrogen Energy, 2018,43(30):13904.
[72]
Sun H M, Xu X B, Yan Z H, Chen X, Jiao L F, Cheng F Y, Chen J . J. Mater. Chem. A, 2018,6:22062
[73]
Zeng Y, Wang Y, Huang G, Chen C, Huang L, Chen R, Wang S . Chemical Communications, 2018,54(12):1465. https://www.ncbi.nlm.nih.gov/pubmed/29355259

doi: 10.1039/c7cc08838h     URL     pmid: 29355259
[74]
Alexander A M, Hargreaves J S J . Chem. Soc. Rev., 2010,39(11):4388. https://www.ncbi.nlm.nih.gov/pubmed/20526487

doi: 10.1039/b916787k     URL     pmid: 20526487
[75]
Xie J F, Xie Y . Chem. Eur. J., 2016,22(11):3588. https://www.ncbi.nlm.nih.gov/pubmed/26494184

doi: 10.1002/chem.201501120     URL     pmid: 26494184
[76]
Jia X D, Zhao Y F, Chen G B, Shang L, Shi R, Kang X F, Waterhouse G I N, Wu L Z, Tung C H, Zhang T R . Adv. Energy Mater., 2016,6(10):1502585. http://doi.wiley.com/10.1002/aenm.201502585

doi: 10.1002/aenm.201502585     URL    
[77]
Zhu H L, Jiang R, Chen X Q, Chen Y G, Wang L Y . Sci. Bull., 2017,62(20):1373. https://linkinghub.elsevier.com/retrieve/pii/S2095927317304802

doi: 10.1016/j.scib.2017.09.012     URL    
[78]
Jin S . ACS Energy Lett., 2017,2(8):1937. https://pubs.acs.org/doi/10.1021/acsenergylett.7b00679

doi: 10.1021/acsenergylett.7b00679     URL    
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[8] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[9] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[12] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[13] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[14] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[15] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.