English
新闻公告
More
化学进展 2015, Vol. 27 Issue (1): 91-102 DOI: 10.7536/PC140738 前一篇   后一篇

• 综述与评论 •

基于SERS探针技术的细胞识别、成像与诊疗

宋春元*, 陈文蔷, 杨琰君, 杨博玥, 苏邵, 汪联辉*   

  1. 南京邮电大学信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室培育基地 江苏省有机电子与信息显示协同创新中心 南京 210023
  • 收稿日期:2014-07-01 修回日期:2014-09-01 出版日期:2015-01-15 发布日期:2014-11-24
  • 通讯作者: 宋春元, 汪联辉 E-mail:iamcysong@njupt.edu.cn;iamlhwang@njupt.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2012CB933301),国家自然科学基金项目(No. 61302027, 21305070, 21475064),江苏省自然科学基金项目(No. BK20130871),“有机与生物光电子学”教育部创新团队项目(IRT1148),生物电子学国家重点实验室开放研究基金(2013G2),江苏省科技支撑计划(No. BE2014719),江苏高校优势学科建设工程(PAPD)和南京邮电大学科研启动基金(NY212032)资助

Surface-Enhanced Raman Scattering Tags Used in Cell Recognition, Imaging, Diagnosis and Treatment

Song Chunyuan*, Chen Wenqiang, Yang Yanjun, Yang Boyue, Su Shao, Wang Lianhui*   

  1. Key Lab for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), and Synergetic Innovation Center for Organic Electronics and Information Displays, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received:2014-07-01 Revised:2014-09-01 Online:2015-01-15 Published:2014-11-24
  • Supported by:

    The work was surpported by the National Basic Research Program of China (973 Program) (No. 2012CB933301), the National Natural Science Foundation of China (No. 61302027, 21305070, 21475064), the Natural Science Foundation of Jiangsu Province (No. BK20130871), the Program for Changjiang Scholars and Innovative Research Team in University (IRT1148), the Open Research Fund of State Key Laboratory of Bioelectronics (2013G2), Sci-tech Support Plan of Jiangsu Province (No. BE2014719), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Foundation of Nanjing University of Posts and Telecommunications (NY212032).

表面增强拉曼散射(surface-enhanced Raman scattering, SERS),是指吸附在粗糙的金属纳米结构表面的被分析物,在光照射下其拉曼光谱获得显著增强的异常表面光学现象。近年来,SERS技术已广泛地用于物质检测和生物传感等研究,在生物医学领域表现出巨大的应用潜力并取得了令人瞩目的研究成果。本文回顾了SERS探针技术在细胞识别、成像与诊疗等方面的应用及最新研究进展,重点介绍了SERS细胞探针的构建方法与原理,以及基于SERS探针的细胞检测应用策略,并讨论了SERS探针技术在细胞检测中仍有待解决的关键问题。

Surface-enhanced Raman scattering (SERS) refers to an abnormal surface optical phenomenon that Raman spectra of the analyte adsorbed on metal nanostructures can be significantly enhanced under laser irradiation. In recent years, SERS has been widely used in the substance detection and biological sensing, which has achieved significant development and shown great potential applications in the biomedical field. In this paper, the preparation principle and the latest development of SERS tags used in cell detection are introduced, and their recent applications in cell recognition, imaging, diagnosis and treatment are reviewed, as well as the detection strategies and issues related to SERS tag-based cell detection are discussed.

Contents
1 Introduction
2 SERS tags
2.1 Noble metal nanoparticles
2.2 Raman reporter molecules
2.3 Surface coating for protection
2.4 Biofunction with biomolecules
3 Application of SERS tags in cell
3.1 Cell recognition
3.2 Cell imaging
3.3 Cell pH sensing
3.4 Cancer diagnosis and treatment
4 Conclusions and outlooks

中图分类号: 

()

[1] Wu Q H. Spectrosc. Lett., 2014, 47(9): 704.
[2] Nima Z A, Mahmood M, Xu Y, Mustafa T, Watanabe F, Nedosekin D A, Juratli M A, Fahmi T, Galanzha E I, Nolan J P, Basnakian A G, Zharov V P, Biris A S.Sci. Rep., 2014, 4: 4752.
[3] Zheng X S, Hu P, Zhong J H, Zong C, Wang X, Liu B J, Ren B. Phys. Chem. C, 2014, 118(7): 3750.
[4] Fleischmann M, Hendra P J, McQuillan A J. Chem. Phys. Lett., 1974, 26(2): 163.
[5] Jeanmaire D L,Van Duyne R P. J. Electroanal. Chem. Interfacial Electrochem., 1977, 84(1): 1.
[6] Xu H, Li Q, Wang L H, He Y, Shi J Y, Tang B, Fan C H, Chem. Soc. Rev., 2014, 43: 2650.
[7] Yang X F, Li J, Pei H, Zhao Y, Zuo X L, Fan C H, Huang Q. Anal. Chem., 2014, 86(6): 3227.
[8] Zhou G B, Lin M H, Song P, Chen X Q, Chao J, Wang L H, Huang Q, Huang W, Fan C H, Zuo X L. Anal. Chem., 2014, 86(15):7843.
[9] He Y, Su Y Y, Yang X B, Kang Z H, Xu T T, Zhang R Q, Fan C H, Lee S T. J. Am. Chem. Soc., 2009, 131(12): 4434.
[10] Lu Y, Huang Q, Meng G, Wu L, Zhang J. Analyst, 2014, 139(12): 3083.
[11] Pinzaru S C, Falamas A, Dehelean C, Morari C,Venter M. Croat. Chem. Acta, 2013, 86(3): 233.
[12] Wang Y L, Li D, Li P, Wang W D, Ren W, Dong S J, Wang E K. J. Phys. Chem. C, 2007, 111(45): 16833.
[13] Otto A, Mrozek I, Grabhorn H, Akemann W J. Matter, 1992, 4: 1143.
[14] Wu D Y, Liu X M, Duan S, Xu X, Ren B, Lin S H, Tian Z Q. Phys. Chem., 2008, 112(11): 4195.
[15] Xu H, Aizpurua J, Käll M, Apell P. Phys. Rev. E, 2000, 62(3): 4318.
[16] Fang W, Wang Z Y, Zong S F, Chen H, Zhu D, Zhong Y, Cui Y P. Biosens. Bioelectron., 2014, 57: 10.
[17] DeVetter B M, Bhargava R, Murphy C J. Photochem. Photobiol., 2014, 90(2): 415.
[18] Zhu H, Du M L, Zhang M, Wang P, Bao S Y, Zou M L, Fu Y Q, Yao J M. Biosens. Bioelectron., 2014, 54: 91.
[19] Wang Y, Li D, Li P, Wang W, Ren W, Dong S, Wang E. J. Phys. Chem. C, 2007, 111(45): 16833.
[20] Wang Z Y, Zong S F, Yang J, Song C Y, Li J, Cui Y P. Biosens. Bioelectron., 2010, 26(1): 241.
[21] Jana N R, Gearheart L, Murphy C J. J. Phys. Chem. B, 2001, 105(19): 4065.
[22] Wang C G, Irudayaraj J. Small, 2010, 6(2): 283.
[23] Yuan H, Khoury C G, Hwang H, Wilson C M, Grant G A, Vo-Dinh T. Nanotechnol., 2012, 23(7): 075102.
[24] Boca S, Rugina D, Pintea A, Barbu-Tudoran L, Astilean S. Nanotechnol., 2011, 22(5): 055702.
[25] Pavan Kumar G V, Shruthi S, Vibha B. J. Phys. Chem. C, 2007, 111(11): 4388.
[26] Lee S, Chon H, Lee M, Choo J, Shin S Y, Lee Y H, Rhyu I J, Son S W, Oh C H. Biosens.Bioelectron., 2009, 24(7): 2260.
[27] Song C, Wang Z, Yang J. Acta Chim. Sinica, 2009, 67: 493.
[28] Wang X M, Zhang R Y, Wu C H, Dai Y Y, Song M, Gao F, Lv G, Li J Y, Li X M. J. Biomed. Mater. Res. Part A, 2007, 80(4): 852.
[29] Tan X B, Wang Z Y, Yang J, Song C Y, Zhang R H, Cui Y P. Nanotechnol., 2009, 20(44): 445102.
[30] Wang Z Y, Wu H, Wang C L, Xu S H, Cui Y P. J. Mater. Chem., 2011, 21(12): 4307.
[31] Fang H, Zhang C X, Liu L, Zhao Y M, Xu H J, Biosens. Bioelectron., 2014, 64: 434.
[32] Chen Z Y, Dai Z M, Chen N, Liu S P, Pang F F, Lu B, Wang T Y. IEEE Photonics Technol. Lett, 2014, 26(8): 777.
[33] Deng Y L, Juang Y J. Biosens. Bioelectron., 2014, 53: 37.
[34] Sarkar A, Wang H, Daniels-Race T. Electron. Mater. Lett., 2014, 10(2): 325.
[35] MacLaughlin C M, Mullaithilaga N, Yang G, Ip S Y, Wang C, Walker G C. Langmuir, 2013, 29(6): 1908.
[36] Guven B, Dudak F C, Boyaci I H, Tamer U, Ozsoz M. Analyst, 2014, 139(5): 1141.
[37] Lin C C, Chang C W. Biosens. Bioelectron., 2014, 51: 297.
[38] You L J, An Q, Guo J, Hu J J, Wang C C. RSC Adv., 2013, 3(38): 17469.
[39] Furusho H, Oishi M, Kishi T, Yasumori A, Nagasaki Y. Chem. Lett., 2010, 39(1): 52.
[40] Kang H, Yim J, Jeong S, Yang J K, Kyeong S, Jeon S J, Kim J, Eom K D, Lee H, Kim H I, Jeong D H, Kim J H, Lee Y S. ACS Appl. Mater. Interfaces, 2013, 5(24): 12804.
[41] Wrzesien J, Graham D. Tetrahedron, 2012, 68(4): 1230.
[42] Brady C I, Mack N H, Brown L O, Doorn S K. Anal. Chem. Phys. Lett., 2009, 81: 7181.
[43] Mulvaney S P, Musick M D, Keating C D, Natan M J. Langmuir, 2003, 19: 4784.
[44] Pinkhasova P, Yang L, Zhang Y, Sukhishvili S, Du H. Langmuir, 2012, 28: 2529.
[45] Niu X J, Chen H Y, Wang Y Q, Wang W H, Sun X Y, Chen L X. ACS Appl. Mater. Interfaces, 2014, 6(7): 5152.
[46] Zhang D M, Ansar S M, Vangala K, Jiang D P. J. Raman Spectrosc., 2010, 41(9): 952.
[47] Dey P, Olds W, Blakey I, Thurecht K J, Izake E L, Fredericks P M. J. Raman Spectrosc., 2013, 44(12): 1659.
[48] Sun L, Sung K B, Dentinger C, Lutz B, Nguyen L. B. Nano Lett., 2007, 7: 351.
[49] Dinish U S, Balasundaram G, Chang Y T, Olivo M. Sci. Rep., 2014, 4: 4075.
[50] Dinish U S, Fu C Y, Soh K S, Bhuvaneswari R, Kumar A, Olivo M. Biosens. Bioelectron., 2012, 33(1): 293.
[51] Wang X, Qian X M, Beitler J J, Chen Z G, Khuri F R, Lewis M M, Shin H J C, Nie S M, Shin D M. Cancer Res., 2011, 71(5): 1526.
[52] Liu Z M, Guo Z Y, Zhong H Q, Qin X C, Wan M M, Yang B W. Phys. Chem. Chem. Phys., 2013, 15(8): 2961.
[53] Marz A, Trupp S, Rosch P, Mohr G J, Popp J. Anal. Bioanal.Chem., 2012, 402(8): 2625.
[54] MacLaughlin C M, Parker E P K, Walker G C, Wang C. Nanomed. Nanotechnol. Biol. Med., 2013, 9(1): 55.
[55] Sha M Y, Xu H X, Natan M J, Cromer R. J. Am. Chem. Soc., 2008, 130(51): 17214.
[56] Zong S F, Wang Z Y, Yang J, Wang C L, Xu S H, Cui Y P. Talanta, 2012, 97: 368.
[57] Samanta A, Jana S, Das R K, Chang Y T. RSC Adv., 2014, 4(24): 12415.
[58] Chen H, Wang Z Y, Ma X Q, Zong S F, Cui Y P. Talanta, 2013, 116: 978.
[59] Vendrell M, Maiti K K, Dhaliwal K, Chang Y T. Trends Biotechnol., 2013, 31(4): 249.
[60] Lee S. Anal. Chem., 2007, 79: 916.
[61] Lee S, Chon H, Lee M, Choo J, Shin S Y, Lee Y H, Rhyu I J, Son S W, Oh C H. Biosens. Bioelectron., 2009, 24(7): 2260.
[62] Wu P, Gao Y, Zhang H, Cai C X. Anal. Chem., 2012, 84(18): 7692.
[63] Zhang G, Qu G, Chen Y, Shen A, Xie W, Zhou X, Hu J. J. Phys. Chem. B, 2013, 1(35): 4364.
[64] Wu P, Gao Y, Lu Y, Zhang H, Cai C. Analyst, 2013, 138(21): 6501.
[65] Zhang Y Y, Yu W S, Pei L, Lai K Q, Rasco B A, Huang Y Q. Food Chem., 2014, 169: 80.
[66] Ganbold E O, Lee C M, Cho E M, Son S J, Kim S, Joo S W, Yang S I. Anal. Methods, 2014, 6(11): 3573.
[67] Zong S, Wang Z, Yang J, Wang C, Xu S, Cui Y. Talanta, 2012, 97: 368.
[68] 崔颜 (Cui Y), 任斌 (Ren B), 田中群 (Tian Z Q). 东南大学学报 (医学版) (Journal of Southeast University (Medical Science Edition)), 2011, 1: 254.
[69] Kneipp J, Kneipp H, Wittig B. J. Phys. Chem. C, 2010, 114: 7421.
[70] Zong S, Wang Z, Yang J, Cui Y. Anal. Chem., 2011, 83(11): 4178.
[71] Liang L, Li J, Li Q, Huang Q, Shi J Y, Yan H, Fan C H. Angew. Chem. Int. Edit., 2014, 53(30): 7745
[72] Song J, Zhou J, Duan H. J. Am. Chem. Soc., 2012, 134(32): 13458.
[73] Wang Y Q, Chen L X, Liu P. Chem. Eur. J., 2012, 18(19): 5935.
[74] Lu W, Singh A K, Khan S A. J. Am. Chem. Soc., 2010,132(51): 18103.
[75] Shen S, Tang H Y, Zhang X T, Ren J F, Pang Z Q, Wang D G, Gao H L, Qian Y, Jiang X G, Yang W L. Biomater., 2013, 34(12): 3150.
[76] Fu C C, Gu Y J, Wu Z Y, Wang Y Y, Xu S P, Xu W Q. Sens. Actuators B, 2014, 201: 173.

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[3] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[4] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[5] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[6] 王振, 李曦, 栗园园, 王其, 卢晓梅, 范曲立. 可激活的NIR-Ⅱ探针用于肿瘤成像[J]. 化学进展, 2022, 34(1): 198-206.
[7] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[8] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[9] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
[10] 赵超, 蔡宗苇. 基于质谱成像和组学分析的环境毒理研究[J]. 化学进展, 2021, 33(4): 503-511.
[11] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[12] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[13] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[14] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[15] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.