English
新闻公告
More
化学进展 2022, Vol. 34 Issue (4): 773-786 DOI: 10.7536/PC210901   后一篇

• 综述 •

外泌体递药系统及其在肿瘤治疗中的应用

陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进*()   

  1. 沈阳药科大学 无涯创新学院 沈阳 110016
  • 收稿日期:2021-09-01 修回日期:2021-12-04 出版日期:2022-04-24 发布日期:2022-05-10
  • 通讯作者: 孙进
  • 作者简介:

    孙进 沈阳药科大学无涯创新学院院长,教授,博导。孙进教授长期从事前体药物、纳米药物和仿生药物递送系统的研究。享受国务院政府特殊津贴,曾获评教育部“长江学者特聘教授”、中组部“万人计划”科技创新领军人才、科技部“中青年科技领军人才”、教育部“新世纪优秀人才支持计划”、辽宁省特聘教授、中国药学会-石药集团青年药剂学奖;担任辽宁省“兴辽英才科技创新团队”负责人、辽宁省“药用辅料与包材工程技术研究中心”主任、沈阳市“生物药剂学”重点实验室负责人、Asian Journal of Pharmaceutical Sciences副主编。

Exosomes Drug Delivery Systems and Their Application in Tumor Treatment

Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun()   

  1. Wuya College of Innovation, Shenyang Pharmaceutical University,Shenyang 110016, China
  • Received:2021-09-01 Revised:2021-12-04 Online:2022-04-24 Published:2022-05-10
  • Contact: Jin Sun

癌症是世界上第二大死亡原因,其每年的发病率都很高。尽管现有的治疗方法在过去十年中取得了重大进展。但是由于现有多数抗肿瘤药物具有非特异性细胞毒性、生物相容性差和生物利用度低等缺点,导致化疗等方法的治疗效果较差。外泌体是由多种细胞分泌的囊泡,具有磷脂双层结构和纳米颗粒大小。它具有良好的生物相容性、高稳定性和良好的靶向性。在癌症治疗中,外泌体作为一种潜在有效的药物递送系统已经引起越来越多的关注。本文综述了外泌体作为靶向肿瘤药物载体的设计策略,并试图为基于外泌体的纳米载体在各种肿瘤治疗中的应用提供新的见解。

Cancer is the second leading cause of death in the world, and the incidence rate of cancer remains high every year. Although existing treatments have made significant progress in the past decade, due to the non-specific cytotoxicity, poor biocompatibility and low bioavailability of existing anti-tumor drugs, the therapeutic effect of chemotherapy and other methods is poor. Exosomes are membrane vesicles secreted by various kinds of cells with phospholipid bilayer structure and nano particle size (30~100 nm). Exosomes are the media of information exchange and material transportation between cells, carrying proteins, lipids, nucleic acids and other substances of host cells. With the in-depth study of exosomes, their application is more and more widespread. In the process of intercellular communication, exosomes can regulate the biological response of target cells, which may promote or inhibit disease. They have good biocompatibility, high stability and excellent targetability. Exosomes serving as potentially effective drug delivery systems in cancer treatment have attracted increasing attention. In order to enhance the therapeutic effect of exosomes and reduce the toxicity of drugs to normal cells, it is necessary to improve the targetability of exosomes. Researchers try to customize exosomes with different targeting categories and abilities by modifying exosomes in various ways, which endows exosomes with broad prospects in the field of targeted therapy of tumors. This review highlights the design strategy of exosomes as drug carriers to target tumors, and tries to provide new insights of exosomes-based nanocarriers in various tumor treatment. Besides, this review mainly introduces the biogenesis of exosomes, the physiological function of exosomes and their separation methods. Particular attention is paid to the design strategy of engineered exosomes targeting tumors, including using exosomes from different sources, different surface modification methods and different stimuli-responsive exosomes. Finally, we summarize and discuss the progress of exosomes as drug carriers to solid tumors, and the deficiencies of exosomes in clinical application.

Contents

1 Introduction

2 Exosomes and their characteristics

2.1 Composition of exosomes

2.2 Biogenesis of exosomes

2.3 Physiological function of exosomes

2.4 Isolation of exosomes

2.5 Drug loading mechanism of exosomes

3 The design strategy of engineered exosomes targeting tumors

3.1 Exosomes from different cell sources

3.2 Surface modification of exosomes

3.3 Stimuli-responsive exosomes

4 Application of exosomes as drug delivery carriers in tumor therapy

4.1 Lung cancer

4.2 Pancreatic cancer

4.3 Breast cancer

4.4 Colorectal cancer

4.5 Glioblastoma

5 Conclusion and outlook

()
图1 外泌体的发生[44]
Fig. 1 Biogenesis of exosomes[44]
表1 外泌体分离方法的优缺点对比
Table 1 Comparison of advantages and disadvantages of Isolation of exosomes
图2 外泌体的分离[40]
Fig. 2 Isolation of exosomes[40]
表2 外泌体载药方法的优缺点对比
Table 2 Comparison of advantages and disadvantages of different techniques for loading cargos in exosomes
图3 E-PSiNPs作为靶向癌症化疗药物载体[56]
Fig. 3 Schematic illustration of E-PSiNPs as drug carriers for targeted cancer chemotherapy[56]
图4 外泌体的化学键合修饰[95]
Fig. 4 Chemical bonding modification of exosomes[95]
图5 载药SMNC-EXOs的构建和递送示意图[98]
Fig. 5 Schematic illustration of construction and delivery of drug-loaded SMNC-EXOs[98]
图6 (A) FA-AuNR@RGD-DOX-Exos的构建、其在近红外照射下的抗肿瘤作用和在荷瘤小鼠模型中评价FA-AuNR@RGD-DOX-Exos治疗效果的示意图。(B) FA-AuNR@RGD-DOX-Exos作为靶向递送和化疗/光热协同肿瘤治疗的纳米平台的示意图[102]
Fig. 6 (A) Schematic illustration of the design of FA-AuNR@RGD-DOX-Exos and their antitumor effect under NIR irradiation. The therapeutic efficiency of FA-AuNR@RGD-DOX-Exos was evaluated in a tumor-bearing mouse model. (B) Schematic illustration of FA-AuNR@RGD-DOX-Exos as a robust nanoplatform for targeted delivery and chemo-photothermal synergistic tumor therapy[102]
图7 内源性纳米声增敏剂用于US以增强靶向递送识别同型癌细胞、刺激反应性药物释放和增强SDT[107]
Fig. 7 Illustration of endogenous nanosonosensitizers for focused US-augmented targeting delivery to recognize homotypic cancer cell, stimuli-responsive drug release, and enhanced SDT[107]
图8 肿瘤衍生外泌体膜修饰的序贯释药、级联增强活化的仿生前药纳米粒的制备及抗乳腺癌转移原理示意图[1]
Fig. 8 Schematic representation of the exosome-like sequential-bioactivating paclitaxel prodrug nanoplatform with CTCs clearance, CuB-mediated metastasis suppression, ROS enhancement, and cascade amplified PTX chemotherapy[1]
图9 RGE-Exo-SPION/Cur的合成示意图[124]
Fig. 9 Schematic representation of RGE-Exo-SPION/Cur synthesis[124]
[1]
Wang K Y, Ye H, Zhang X B, Wang X, Yang B, Luo C, Zhao Z Q, Zhao J, Lu Q, Zhang H T, Kan Q M, Wang Y J, He Z G, Sun J. Biomaterials, 2020, 257: 120224.

doi: 10.1016/j.biomaterials.2020.120224     URL    
[2]
Cheng Q Q, Shi X J, Han M L, Smbatyan G, Lenz H J, Zhang Y. J. Am. Chem. Soc., 2018, 140(48): 16413.

doi: 10.1021/jacs.8b10047     URL    
[3]
He C J, Zheng S, Luo Y, Wang B. Theranostics, 2018, 8(1): 237.

doi: 10.7150/thno.21945     URL    
[4]
Gaurav I, Thakur A, Iyaswamy A, Wang X H, Chen X Y, Yang Z J. Molecules, 2021, 26(6): 1544.

doi: 10.3390/molecules26061544     URL    
[5]
Kibria G, Ramos E K, Wan Y, Gius D R, Liu H P. Mol. Pharmaceutics, 2018, 15(9): 3625.

doi: 10.1021/acs.molpharmaceut.8b00277     URL    
[6]
Wang Y, Zhang Y R, Cai G, Li Q. Int. J. Nanomed., 2020, 15: 4257.

doi: 10.2147/IJN.S239548     pmid: 32606676
[7]
Yu G, Jung H, Kang Y Y, Mok H. Biomaterials, 2018, 162: 71.

doi: 10.1016/j.biomaterials.2018.02.003     URL    
[8]
Record M, Carayon K, Poirot M, Silvente-Poirot S. Biochim. Et Biophys. Acta BBA Mol. Cell Biol. Lipids, 2014, 1841(1): 108.
[9]
Kahlert C, Melo S A, Protopopov A, Tang J B, Seth S, Koch M, Zhang J H, Weitz J, Chin L, Futreal A, Kalluri R. J. Biol. Chem., 2014, 289(7): 3869.

doi: 10.1074/jbc.C113.532267     URL    
[10]
Deng W Y, Tang T T, Hou Y F, Zeng Q, Wang Y F, Fan W J, Qu S L. Clin. Chimica Acta, 2019, 495: 109.

doi: 10.1016/j.cca.2019.04.051     URL    
[11]
Melzer C, Rehn V, Yang Y Y, Bähre H, von der Ohe J, Hass R. Cancers, 2019, 11(6): 798.

doi: 10.3390/cancers11060798     URL    
[12]
Rashed M H, Bayraktar E, Helal G K, Abd-Ellah M, Amero P, Chavez-Reyes A, Rodriguez-Aguayo C. Int. J. Mol. Sci., 2017, 18(3): 538.

doi: 10.3390/ijms18030538     URL    
[13]
Bang C, Thum T. Int. J. Biochem. Cell Biol., 2012, 44(11): 2060.

doi: 10.1016/j.biocel.2012.08.007     URL    
[14]
Antimisiaris S, Mourtas S, Marazioti A. Pharmaceutics, 2018, 10(4): 218.

doi: 10.3390/pharmaceutics10040218     URL    
[15]
Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M, De Medina P, Monsarrat B, Perret B, Silvente-Poirot S, Poirot M, Record M. J. Lipid Res., 2010, 51(8): 2105.

doi: 10.1194/jlr.M003657     URL    
[16]
Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, Valle M, Elortza F, Lu S C, Mato J M, Falcon-Perez J M. J. Proteome Res., 2008, 7(12): 5157.

doi: 10.1021/pr8004887     pmid: 19367702
[17]
Xu W, Yang Z, Lu N. J Exp Clin Cancer Res., 2016, 35(1):156.

doi: 10.1186/s13046-016-0429-5     URL    
[18]
Robbins P D, Morelli A E. Nat. Rev. Immunol., 2014, 14(3): 195.

doi: 10.1038/nri3622     pmid: 24566916
[19]
Patil S M, Sawant S S, Kunda N K. Eur. J. Pharm. Biopharm., 2020, 154: 259.

doi: 10.1016/j.ejpb.2020.07.026     URL    
[20]
Zhao Q, Chen S, Li T, Xiao B, Zhang X. J Clin Lab Anal., 2018, 32(4): e22333.

doi: 10.1002/jcla.22333     URL    
[21]
Xu Z Q, Yang M G, Liu H J, Su C Q. J. Cell. Biochem., 2018, 119(4): 3317.

doi: 10.1002/jcb.26492     URL    
[22]
Kalluri R, LeBleu V S. Science, 2020, 367(6478): eaau6977.

doi: 10.1126/science.aau6977     URL    
[23]
Yáñez-Mó M, Siljander P R M, Andreu Z, Bedina Zavec A, Borràs F E, Buzas E I, Buzas K, Casal E, Cappello F, Carvalho J, Colá s E, Cordeiro-da Silva A, Fais S, Falcon-Perez J M, Ghobrial I M, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard N H H, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Krämer-Albers E M, Laitinen S, Lässer C, Lener T, Ligeti E, Linē A, Lipps G, Llorente A, Lötvall J, Manček-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte’t Hoen E N M, Nyman T A, O’Driscoll L, Olivan M, Oliveira C, Pá llinger É, del Portillo H A, Reventós J, Rigau M, Rohde E, Sammar M, Sá nchez-Madrid F, Santarém N, Schallmoser K, Stampe Ostenfeld M, Stoorvogel W, Stukelj R, van der Grein S G, Helena Vasconcelos M, Wauben M H M, de Wever O. J. Extracell. Vesicles, 2015, 4(1): 27066.

doi: 10.3402/jev.v4.27066     URL    
[24]
Sun B C, Peng J, Wang S F, Liu X J, Zhang K H, Zhang Z Z, Wang C, Jing X G, Zhou C F, Wang Y. Rev. Neurosci., 2018, 29(5): 531.

doi: 10.1515/revneuro-2017-0059     URL    
[25]
Lindenbergh M F S, Stoorvogel W. Annu. Rev. Immunol., 2018, 36(1): 435.

doi: 10.1146/annurev-immunol-041015-055700     URL    
[26]
Ye F, Wang Y, He Q J, Cui C, Yu H L, Lu Y X, Zhu S L, Xu H Y, Zhao X L, Yin H D, Li D Y, Li H, Zhu Q. Int. J. Biol. Sci., 2020, 16(6): 904.

doi: 10.7150/ijbs.35839     URL    
[27]
Konečná B, Tóthová L, Repiská G. Int. J. Mol. Sci., 2019, 20(12):2890.

doi: 10.3390/ijms20122890     URL    
[28]
Li K Y, Chen Y H, Li A, Tan C L, Liu X B. Int. J. Cancer, 2019, 144(7): 1486.

doi: 10.1002/ijc.31774     URL    
[29]
Jiang L Q, Dong H J, Cao H, Ji X F, Luan S Y, Liu J. Med. Sci. Monit., 2019, 25: 3329.

doi: 10.12659/MSM.914027     URL    
[30]
Li Z, Wang Y J, Xiao K, Xiang S, Li Z, Weng X S. Cell. Physiol. Biochem., 2018, 47(5): 2008.

doi: 10.1159/000491469     URL    
[31]
Liang B, He X, Zhao Y X, Zhang X X, Gu N. Biomed Res. Int., 2020, 2020: 7298687.
[32]
Suh J H, Joo H S, Hong E B, Lee H J, Lee J M. Int. J. Mol. Sci., 2021, 22(3):1144.

doi: 10.3390/ijms22031144     URL    
[33]
Wang J Y, Wu F, Liu C T, Dai W W, Teng Y W, Su W H, Kong W, Gao F, Cai L J, Hou A, Jiang C L. Virol. Sin., 2019, 34(1): 59.

doi: 10.1007/s12250-019-00087-3     URL    
[34]
Kamerkar S, LeBleu V S, Sugimoto H, Yang S J, Ruivo C F, Melo S A, Lee J J, Kalluri R. Nature, 2017, 546(7659): 498.

doi: 10.1038/nature22341     URL    
[35]
Taylor D D, Shah S. Methods, 2015, 87: 3.

doi: 10.1016/j.ymeth.2015.02.019     URL    
[36]
Fitzgerald J, Leonard P, Darcy E, Sharma S, O’Kennedy R. Methods in Molecular Biology. New York: Springer, 2017, 1485: 27.
[37]
Li P, Kaslan M, Lee S H, Yao J, Gao Z Q. Theranostics, 2017, 7(3): 789.

doi: 10.7150/thno.18133     URL    
[38]
Batrakova E V, Kim M S. J. Control. Release, 2015, 219: 396.

doi: 10.1016/j.jconrel.2015.07.030     URL    
[39]
Doyle L, Wang M. Cells, 2019, 8(7): 727.

doi: 10.3390/cells8070727     URL    
[40]
Wu P P, Zhang B, Ocansey D K W, Xu W R, Qian H. Biomaterials, 2021, 269: 120467.

doi: 10.1016/j.biomaterials.2020.120467     URL    
[41]
Pomatto M A C, Bussolati B, D’Antico S, Ghiotto S, Tetta C, Brizzi M F, Camussi G. Mol. Ther. Methods Clin. Dev., 2019, 13: 133.

doi: 10.1016/j.omtm.2019.01.001     URL    
[42]
Faruqu F N, Xu L Z, Al-Jamal K T. J. Vis. Exp., 2018(142): e58814.
[43]
Sun D M, Zhuang X Y, Xiang X Y, Liu Y L, Zhang S Y, Liu C R, Barnes S, Grizzle W, Miller D, Zhang H G. Mol. Ther., 2010, 18(9): 1606.

doi: 10.1038/mt.2010.105     URL    
[44]
Zhang Y, Bi J Y, Huang J Y, Tang Y N, Du S Y, Li P Y. Int. J. Nanomed., 2020, 15: 6917.

doi: 10.2147/IJN.S264498     pmid: 33061359
[45]
Wang M, Altinoglu S, Takeda YS, Xu Q. PLoS One, 2015, 10(11): e0141860.

doi: 10.1371/journal.pone.0141860     URL    
[46]
Sun H Y, Burrola S, Wu J C, Ding W Q. Int. J. Mol. Sci., 2020, 21(17): 6097.

doi: 10.3390/ijms21176097     URL    
[47]
Morad G, Carman C V, Hagedorn E J, Perlin J R, Zon L I, Mustafaoglu N, Park T E, Ingber D E, Daisy C C, Moses M A. ACS Nano, 2019, 13(12): 13853.

doi: 10.1021/acsnano.9b04397     URL    
[48]
Shi J J, Kantoff P W, Wooster R, Farokhzad O C. Nat. Rev. Cancer, 2017, 17(1): 20.

doi: 10.1038/nrc.2016.108     URL    
[49]
Deng S Q, zhou X J, Ge Z R, Song Y T, Wang H R, Liu X H, Zhang D H. Int. J. Biochem. Cell Biol., 2019, 114: 105564.

doi: 10.1016/j.biocel.2019.105564     URL    
[50]
Yang R B, Liao Y, Wang L F, He P, Hu Y J, Yuan D Y, Wu Z D, Sun X. Front. Immunol., 2019, 10: 2346.

doi: 10.3389/fimmu.2019.02346     URL    
[51]
Li M Y, Li S S, Du C Y, Zhang Y N, Li Y, Chu L Q, Han X, Galons H, Zhang Y M, Sun H, Yu P. Eur. J. Med. Chem., 2020, 207: 112784.

doi: 10.1016/j.ejmech.2020.112784     URL    
[52]
Whiteside T L. Adv Clin Chem., 2016, 74:103.

doi: 10.1016/bs.acc.2015.12.005     pmid: 27117662
[53]
Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L. Nat. Med., 2001, 7(3): 297.

doi: 10.1038/85438     pmid: 11231627
[54]
Taylor D D, Gercel-Taylor C. Semin. Immunopathol., 2011, 33(5): 441.

doi: 10.1007/s00281-010-0234-8     URL    
[55]
Luan X, Sansanaphongpricha K, Myers I, Chen H W, Yuan H B, Sun D X. Acta Pharmacol. Sin., 2017, 38(6): 754.

doi: 10.1038/aps.2017.12     pmid: 28392567
[56]
Yong T Y, Zhang X Q, Bie N N, Zhang H B, Zhang X T, Li F Y, Hakeem A, Hu J, Gan L, Santos H A, Yang X L. Nat. Commun., 2019, 10(1): 3838.

doi: 10.1038/s41467-019-11718-4     URL    
[57]
Qiao L, Hu S Q, Huang K, Su T, Li Z H, Vandergriff A, Cores J, Dinh P U, Allen T, Shen D L, Liang H X, Li Y J, Cheng K. Theranostics, 2020, 10(8): 3474.

doi: 10.7150/thno.39434     pmid: 32206102
[58]
Yunna C, Mengru H, Lei W, Weidong C. Eur. J. Pharmacol., 2020, 877:173090.

doi: 10.1016/j.ejphar.2020.173090     URL    
[59]
Lan J Q, Sun L, Xu F, Liu L, Hu F Q, Song D, Hou Z L, Wu W, Luo X L, Wang J, Yuan X L, Hu J B, Wang G H. Cancer Res., 2019, 79(1): 146.

doi: 10.1158/0008-5472.CAN-18-0014     URL    
[60]
Li M D, Wang T, Tian H, Wei G H, Zhao L, Shi Y J. Artif. Cells Nanomed. Biotechnol., 2019, 47(1): 3793.

doi: 10.1080/21691401.2019.1669617     URL    
[61]
Liu S J, Chen J, Shi J, Zhou W Y, Wang L, Fang W L, Zhong Y, Chen X H, Chen Y F, Sabri A, Liu S M. Basic Res. Cardiol., 2020, 115(2): 22.

doi: 10.1007/s00395-020-0781-7     URL    
[62]
Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Bae Seo J, Ofrecio J, Wollam J, Hernandez-Carretero A, Fu W, Li P, Olefsky J. Cell, 2017, 171(2): 372.

doi: S0092-8674(17)30993-5     pmid: 28942920
[63]
Wang P P, Wang H H, Huang Q Q, Peng C, Yao L, Chen H, Qiu Z, Wu Y F, Wang L, Chen W D. Theranostics, 2019, 9(6): 1714.

doi: 10.7150/thno.30716     URL    
[64]
Lin W P, Huang L F, Li Y, Fang B, Li G, Chen L L, Xu L L. Biomed Res. Int., 2019, 2019: 2820853.
[65]
Chen S, Tang Y M, Liu Y S, Zhang P, Lv L, Zhang X, Jia L F, Zhou Y S. Cell Prolif., 2019, 52(5): e12669.
[66]
Ha D H, Kim H K, Lee J, Kwon H H, Park G H, Yang S H, Jung J Y, Choi H, Lee J H, Sung S, Yi Y W, Cho B S. Cell, 2020, 9(5):1157.
[67]
Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Viganò L, Locatelli A, Sisto F, Doglia S M, Parati E, Bernardo M E, Muraca M, Alessandri G, Bondiolotti G, Pessina A. J. Control. Release, 2014, 192: 262.

doi: 10.1016/j.jconrel.2014.07.042     URL    
[68]
Katakowski M, Buller B, Zheng X G, Lu Y, Rogers T, Osobamiro O, Shu W, Jiang F, Chopp M. Cancer Lett., 2013, 335(1): 201.

doi: 10.1016/j.canlet.2013.02.019     pmid: 23419525
[69]
Waisman A, Lukas D, Clausen B E, Yogev N. Semin Immunopathol., 2017, 39(2):153.

doi: 10.1007/s00281-016-0583-z     pmid: 27456849
[70]
Patente T A, Pinho M P, Oliveira A A, Evangelista G C M, Bergami-Santos P C, Barbuto J A M. Front. Immunol., 2019, 9: 3176.

doi: 10.3389/fimmu.2018.03176     URL    
[71]
Veerman R E, de Güçlüler Akpinar G, Eldh M, Gabrielsson S. Trends Mol. Med., 2019, 25(5): 382.

doi: 10.1016/j.molmed.2019.02.003     URL    
[72]
Pitt J M, André F, Amigorena S, Soria J C, Eggermont A, Kroemer G, Zitvogel L. J. Clin. Investig., 2016, 126(4): 1224.

doi: 10.1172/JCI81137     URL    
[73]
Khan A R, Yang X Y, Fu M F, Zhai G X. J. Control. Release, 2018, 291: 37.

doi: 10.1016/j.jconrel.2018.10.004     URL    
[74]
Morse M A, Garst J, Osada T, Khan S, Hobeika A, Clay T M, Valente N, Shreeniwas R, Sutton M A, Delcayre A, Hsu D H, Le Pecq J B, Lyerly H K. J. Transl. Med., 2005, 3(1): 9.

doi: 10.1186/1479-5876-3-9     URL    
[75]
Toyofuku M, Nomura N, Eberl L. Nat. Rev. Microbiol., 2019, 17(1): 13.

doi: 10.1038/s41579-018-0112-2     URL    
[76]
Gujrati V, Kim S, Kim S H, Min J J, Choy H E, Kim S C, Jon S. ACS Nano, 2014, 8(2): 1525.

doi: 10.1021/nn405724x     pmid: 24410085
[77]
Sedykh S, Kuleshova A, Nevinsky G. Int. J. Mol. Sci., 2020, 21(18): 6646.

doi: 10.3390/ijms21186646     URL    
[78]
Munagala R, Aqil F, Jeyabalan J, Gupta R C. Cancer Lett., 2016, 371(1): 48.

doi: 10.1016/j.canlet.2015.10.020     pmid: 26604130
[79]
Matsuda A, Patel T. Methods in Molecular Biology. New York, NY: Springer New York, 2018, 1740:187.
[80]
Aqil F, Munagala R, Jeyabalan J, Agrawal A K, Kyakulaga A H, Wilcher S A, Gupta R C. Cancer Lett., 2019, 449: 186.

doi: 10.1016/j.canlet.2019.02.011     URL    
[81]
Zhuang X Y, Deng Z B, Mu J Y, Zhang L F, Yan J, Miller D, Feng W K, McClain C J, Zhang H G. J. Extracell. Vesicles, 2015, 4(1): 28713.

doi: 10.3402/jev.v4.28713     URL    
[82]
ŞCahin F, Koçak P, Güneş M Y, Özkan İ, Yıldırım E, Kala E Y. Appl. Biochem. Biotechnol., 2019, 188(2): 381.

doi: 10.1007/s12010-018-2913-1     URL    
[83]
Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, Hutchins E, Mu J Y, Deng Z B, Luo C, Sundaram K, Sriwastva M K, Zhang L F, Hsieh M, Reiman R, Haribabu B, Yan J, Jala V R, Miller D M, van Keuren-Jensen K, Merchant M L, McClain C J, Park J W, Egilmez N K, Zhang H G. Cell Host Microbe, 2018, 24(5): 637.

doi: S1931-3128(18)30523-7     URL     pmid: 30449315
[84]
Aqil F, Jeyabalan J, Agrawal A K, Kyakulaga A H, Munagala R, Parker L, Gupta R C. Food Funct., 2017, 8(11): 4100.

doi: 10.1039/C7FO00882A     URL    
[85]
Munir J, Lee M, Ryu S. Adv. Nutr., 2020, 11(3): 687.

doi: 10.1093/advances/nmz123     URL    
[86]
Khare T, Palakurthi S S, Shah B M, Palakurthi S, Khare S. Int. J. Mol. Sci., 2020, 21(11): 3956.

doi: 10.3390/ijms21113956     URL    
[87]
Xin L, Yuan Y W, Liu C, Zhou L Q, Liu L, Zhou Q, Li S H. Dig. Dis. Sci., 2021, 66(4): 1045.

doi: 10.1007/s10620-020-06262-x     URL    
[88]
Yuan D F, Zhao Y L, Banks W A, Bullock K M, Haney M, Batrakova E, Kabanov A V. Biomaterials, 2017, 142: 1.

doi: 10.1016/j.biomaterials.2017.07.011     URL    
[89]
Kim M S, Haney M J, Zhao Y L, Yuan D F, Deygen I, Klyachko N L, Kabanov A V, Batrakova E V. Nanomed.: Nanotechnol. Biol. Med., 2018, 14(1): 195.

doi: 10.1016/j.nano.2017.09.011     URL    
[90]
Ohno S I, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M. Mol. Ther., 2013, 21(1): 185.

doi: 10.1038/mt.2012.180     URL    
[91]
Alvarez-Erviti L, Seow Y, Yin H F, Betts C, Lakhal S, Wood M J A. Nat. Biotechnol., 2011, 29(4): 341.

doi: 10.1038/nbt.1807     pmid: 21423189
[92]
Morishita M, Takahashi Y, Nishikawa M, Ariizumi R, Takakura Y. Mol. Pharmaceutics, 2017, 14(11): 4079.

doi: 10.1021/acs.molpharmaceut.7b00760     URL    
[93]
Zhao Z, McGill J, Gamero-Kubota P, He M. Lab a Chip, 2019, 19(10): 1877.

doi: 10.1039/C8LC01279B     URL    
[94]
Lee J, Lee H, Goh U, Kim J, Jeong M, Lee J, Park J H. ACS Appl. Mater. Interfaces, 2016, 8(11): 6790.

doi: 10.1021/acsami.6b01315     URL    
[95]
Li Y Y, Zhang Y T, Li Z, Zhou K, Feng N P. ACS Biomater. Sci. Eng., 2019, 5(10): 4870.

doi: 10.1021/acsbiomaterials.9b00417     URL    
[96]
Sun W Q, Xing C Y, Zhao L B, Zhao P, Yang G D, Yuan L J. Mol. Ther. Nucleic Acids, 2020, 20: 558.

doi: 10.1016/j.omtn.2020.03.016     URL    
[97]
Hung M E, Leonard J N. J. Biol. Chem., 2015, 290(13): 8166.

doi: 10.1074/jbc.M114.621383     URL    
[98]
Qi H Z, Liu C Y, Long L X, Ren Y, Zhang S S, Chang X D, Qian X M, Jia H H, Zhao J, Sun J J, Hou X, Yuan X B, Kang C S. ACS Nano, 2016, 10(3): 3323.

doi: 10.1021/acsnano.5b06939     URL    
[99]
Zhan Q, Yi K K, Qi H Z, Li S D, Li X P, Wang Q X, Wang Y F, Liu C Y, Qiu M Z, Yuan X B, Zhao J, Hou X, Kang C S. Theranostics, 2020, 10(17): 7889.

doi: 10.7150/thno.45028     pmid: 32685027
[100]
Zhang Z J, Wang J, Chen C Y. Adv. Mater., 2013, 25(28): 3869.

doi: 10.1002/adma.201301890     URL    
[101]
Wu G H, Mikhailovsky A, Khant H A, Fu C, Chiu W, Zasadzinski J A. J. Am. Chem. Soc., 2008, 130(26): 8175.

doi: 10.1021/ja802656d     URL    
[102]
Wang J, Dong Y, Li Y W, Li W, Cheng K, Qian Y, Xu G Q, Zhang X S, Hu L, Chen P, Du W, Feng X J, Zhao Y D, Zhang Z H, Liu B F. Adv. Funct. Mater., 2018, 28(18): 1707360.

doi: 10.1002/adfm.201707360     URL    
[103]
Wang M, Lv C Y, Li S, Wang J K, Luo W Z, Zhao P C, Liu X Y, Wang Z M, Jiao Y, Sun H W, Zhao Y, Zhang P. J. Nanobiotechnology, 2021, 19(1): 210.

doi: 10.1186/s12951-021-00907-3     URL    
[104]
Qian X Q, Zheng Y Y, Chen Y. Adv. Mater., 2016, 28(37): 8097.

doi: 10.1002/adma.201602012     URL    
[105]
Canavese G, Ancona A, Racca L, Canta M, Dumontel B, Barbaresco F, Limongi T, Cauda V. Chem. Eng. J., 2018, 340: 155.

doi: 10.1016/j.cej.2018.01.060     URL    
[106]
Qian X Q, Han X X, Chen Y. Biomaterials, 2017, 142: 13.

doi: 10.1016/j.biomaterials.2017.07.016     URL    
[107]
Liu Y C, Bai L M, Guo K L, Jia Y L, Zhang K, Liu Q H, Wang P, Wang X B. Theranostics, 2019, 9(18): 5261.

doi: 10.7150/thno.33183     URL    
[108]
Schenk E L, Patil T, Pacheco J, Bunn P A. Oncol., 2021, 26(3): e454.

doi: 10.1002/onco.13590     URL    
[109]
Aqil F, Kausar H, Agrawal A K, Jeyabalan J, Kyakulaga A H, Munagala R, Gupta R. Exp. Mol. Pathol., 2016, 101(1): 12.

doi: 10.1016/j.yexmp.2016.05.013     URL    
[110]
Munagala R, Aqil F, Jeyabalan J, Agrawal A K, Mudd A M, Kyakulaga A H, Singh I P, Vadhanam M V, Gupta R C. Cancer Lett., 2017, 393: 94.

doi: S0304-3835(17)30104-0     pmid: 28202351
[111]
Bray F, Ferlay J, Soerjomataram I, Siegel R L, Torre L A, Jemal A. CA: A Cancer J. Clin., 2018, 68(6): 394.
[112]
Liu H, Qiao S S, Fan X Y, Gu Y F, Zhang Y X, Huang S. Oncol. Lett., 2021, 21(4): 298.

doi: 10.3892/ol.2021.12559     URL    
[113]
Hajizadeh F, Aghebati Maleki L, Alexander M, Mikhailova M V, Masjedi A, Ahmadpour M, Hashemi V, Jadidi-Niaragh F. Life Sci., 2021, 264: 118699.

doi: 10.1016/j.lfs.2020.118699     URL    
[114]
Mulcahy L A, Pink R C, Carter D R F. J. Extracell. Vesicles, 2014, 3(1): 24641.

doi: 10.3402/jev.v3.24641     URL    
[115]
Zhao X Y, Wu D L, Ma X D, Wang J L, Hou W J, Zhang W. Biomed. Pharmacother., 2020, 128: 110237.

doi: 10.1016/j.biopha.2020.110237     URL    
[116]
Tian Y H, Li S P, Song J, Ji T J, Zhu M T, Anderson G J, Wei J Y, Nie G J. Biomaterials, 2014, 35(7): 2383.

doi: 10.1016/j.biomaterials.2013.11.083     URL    
[117]
Siegel R L, Miller K D, Jemal A. CA: A Cancer J. Clin., 2018, 68(1): 7.
[118]
Krishna R, Mayer L D. Eur. J. Pharm. Sci., 2000, 11(4): 265.

pmid: 11033070
[119]
Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, Sumani K M, Alder H, Amadori D, Patel T, Nuovo G J, Fishel R, Croce C M. PNAS, 2010, 107(49): 21098.

doi: 10.1073/pnas.1015541107     URL    
[120]
Liang G F, Zhu Y L, Ali D J, Tian T, Xu H T, Si K, Sun B, Chen B A, Xiao Z D. J. Nanobiotechnology, 2020, 18(1): 10.

doi: 10.1186/s12951-019-0563-2     URL    
[121]
Shao J T, Zaro J, Shen Y X. Int. J. Nanomed., 2020, 15: 9355.

doi: 10.2147/IJN.S281890     URL    
[122]
Yang T, Martin Phurman K, Phipps R, Yin VP, Lockman P, Fogarty B, Brown A, Sc, Bai S. Pharm Res., 2015, 32(6):2003.

doi: 10.1007/s11095-014-1593-y     URL    
[123]
Tian T, Zhang H X, He C P, Fan S, Zhu Y L, Qi C, Huang N P, Xiao Z D, Lu Z H, Tannous B A, Gao J. Biomaterials, 2018, 150: 137.

doi: S0142-9612(17)30640-3     pmid: 29040874
[124]
Jia G, Han Y, An Y L, Ding Y N, He C, Wang X H, Tang Q S. Biomaterials, 2018, 178: 302.

doi: 10.1016/j.biomaterials.2018.06.029     URL    
[125]
Escudier B, Dorval T, Chaput N, André F, Caby M P, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, Boccaccio C, Bonnerot C, Dhellin O, Movassagh M, Piperno S, Robert C, Serra V, Valente N, Le Pecq J B, Spatz A, Lantz O, Tursz T, Angevin E, Zitvogel L. J. Transl. Med., 2005, 3(1): 10.

doi: 10.1186/1479-5876-3-10     pmid: 15740633
[126]
Sun W, Luo J D, Jiang H, Duan D D. Acta Pharmacol. Sin., 2018, 39(4): 534.

doi: 10.1038/aps.2018.17     URL    
[1] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[2] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[3] 王欣瑜, 赵富平, 张儒, 孙子茹, 刘胜男, 高清志. 抗肿瘤缺氧诱导因子-1的小分子抑制剂[J]. 化学进展, 2021, 33(12): 2259-2269.
[4] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[5] 薛一凡, 孟文卉, 汪润泽, 任俊杰, 衡伟利, 张建军. 过饱和度理论及过饱和药物递送系统[J]. 化学进展, 2020, 32(6): 698-712.
[6] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[7] 乔斌, 陈虹妃, 张卉, 蔡称心. 肿瘤外泌体的分析检测[J]. 化学进展, 2019, 31(6): 847-857.
[8] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[9] 白凌闯, 赵静, 冯亚凯. 多功能基因递送系统促进内皮细胞增殖[J]. 化学进展, 2019, 31(2/3): 300-310.
[10] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[11] 何天稀, 梁琼麟, 王九, 罗国安. 脂质体类药物载体的微流控制备[J]. 化学进展, 2018, 30(11): 1734-1748.
[12] 龚兆翠, 尹超, 赵惠, 卢晓梅, 范曲立, 黄维. 光控纳米载体在药物释放中的应用[J]. 化学进展, 2016, 28(9): 1387-1396.
[13] 韩冬琳, 亓洪昭, 赵瑾, 龙丽霞, 任玉, 原续波. 增强纳米药物载体肿瘤内渗透分布的研究进展[J]. 化学进展, 2016, 28(9): 1397-1405.
[14] 付开乔, 张光彦, 蒋序林. 聚天冬酰胺衍生物药物/基因载体的合成和应用[J]. 化学进展, 2016, 28(8): 1196-1206.
[15] 李思迪, 侯信, 亓洪昭, 赵瑾, 原续波. 外泌体:为高效药物投递策略提供天然的内源性纳米载体[J]. 化学进展, 2016, 28(2/3): 353-362.