English
新闻公告
More
化学进展 2022, Vol. 34 Issue (10): 2254-2266 DOI: 10.7536/PC220101 前一篇   后一篇

• 综述与评论 •

钴基费托合成催化剂的表界面性质调控

杨林颜, 郭宇鹏, 李正甲*(), 岑洁, 姚楠*(), 李小年*()   

  1. 浙江工业大学化学工程学院 工业催化研究所 杭州 310014
  • 收稿日期:2022-01-04 修回日期:2022-02-05 出版日期:2022-10-24 发布日期:2022-04-01
  • 通讯作者: 李正甲, 姚楠, 李小年
  • 基金资助:
    国家自然科学基金项目(22108253); 国家重点研发计划项目(2017YFB0602500)

Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst

Yang Linyan, Guo Yupeng, Li Zhengjia(), Cen Jie, Yao Nan(), Li Xiaonian()   

  1. College of Chemical Engineering, Institute of Industrial Catalysis, Zhejiang University of Technology,Hangzhou 310014, China
  • Received:2022-01-04 Revised:2022-02-05 Online:2022-10-24 Published:2022-04-01
  • Contact: Li Zhengjia, Yao Nan, Li Xiaonian
  • Supported by:
    National Natural Science Foundation of China(22108253); National Key R&D Program of China(2017YFB0602500)

合成气经费托合成(Fischer-Tropsch synthesis,FTs)转化为燃料和高附加值化学品是解决煤炭等资源清洁利用问题的重要途径,是现代煤化工的重要组成部分,对于降低石油进口依赖度,保证国家能源战略安全具有重要意义。钴基催化剂因活性高、链增长活性强、CO2选择性低、寿命长等而成为目前研究最为广泛的FTs催化剂之一。如何通过调控表界面性质来打破还原度和分散度的依赖关系,提高催化剂的反应活性以及一定碳链范围内的产物选择性依然是高效钴基FTs催化剂开发面临的重要挑战。本文分别从结构敏感性(尺寸和晶面效应)、金属-载体间相互作用和限域效应三个方面阐述钴基FTs催化剂表界面性质调控策略的最新研究进展,以期为钴基FTs催化剂微观结构设计及反应性能调控提供理论依据。

The conversion of synthesis gas into fuel and high value-added chemicals through the Fischer-Tropsch synthesis (FTs) process is a crucial way to solve the problem of clean utilization of resources such as coal, which has been an important part of the modern coal chemical industry in China. It can reduce the dependence on petroleum imports and ensure national energy strategy security. Cobalt-based catalysts have become one of the most widely studied Fischer-Tropsch synthesis catalysts due to their outstanding catalytic activity, high chain growth factor, low CO2 selectivity, and long life. How to adjust the surface and interface properties of the catalyst to break the dependence of reduction and dispersion, and improve the reaction activity and product selectivity within a certain carbon chain range is still a significant challenge for the development of high-performance cobalt-based Fischer-Tropsch synthesis catalysts. In this paper, the latest research progress in the regulation of the surface and interface properties of cobalt-based Fischer-Tropsch synthesis catalysts is reviewed from three aspects: structure sensitivity (size and crystal effect), metal-support interaction, and confinement effect, so as to provide a theoretical basis for the design of catalyst microstructure and regulation of reaction performance.

()
图1 钴基FTs反应TOF(a)、CH4(b)和 C 5 +选择性(c)(基于CO转化率计算)随钴晶粒尺寸的变化图[21??????????????~36]
Fig. 1 TOF (a), CH4 (b) and C 5 + selectivity (c), based on CO consumption, vs particle size for Co-based Fischer-Tropsch catalysts[21??????????????~36]
图2 钴基FTs催化剂上CO活化的晶体学依赖关系:HCP vs FCC[44]
Fig. 2 The dependence of activity on the crystallographic structure and morphology: HCP vs FCC[44]
图3 HCP Co和FCC Co制备机理示意图和CO活化能及TOF值[45]
Fig. 3 Schematic illustration of the synthesis of HCP Co and FCC Co, and comparison of activation energy and TOF value[45]
图4 高碳醇在Co2C-Co0两相界面处生成的机理示意图[50]
Fig. 4 Schematic illustration of high alcohol formation mechanism on the surface of Co@Co2C catalyst[50]
图5 Co2C纳米棱柱形成过程示意图[53]
Fig.5 Sketch of the formation process of Co2C nanoprisms[53]
图6 三种典型的金属-载体相互作用(a)形成难还原化合物,(b)强相互作用,(c)弱相互作用
Fig. 6 The three typical phenomena of metal-support interactions: (a) formation of chemical composition, (b) mode of SMSI, (c) weak interaction between metal NPs and support
图7 Co/TiO2、Co/C-TiO2和Co/TiO2@xCN催化剂的制备及其FTs性能[60,61]
Fig. 7 Fabrication of Co/TiO2, Co/C-TiO2 and Co/TiO2@xCN catalysts, and their catalytic performance for syngas conversions[60,61]
图8 吡咯氮、吡啶氮和石墨氮示意图
Fig.8 Schematic diagram of pyrrole nitrogen, pyridine nitrogen and graphite nitrogen
图9 催化剂制备示意图 (a)Co3O4粒子和“西瓜子”结构钴基催化剂的制备;(b~d)TEM图片;(b)TTAB封端的Co3O4粒子,(c)Co3O4-TTAB-silica纳米复合物,(d)Cat-8h[29]
Fig. 9 Synthesis of the Cat-xh catalysts. (a) Schematic illustration of the synthesis of the Co3O4 nanocrystals with the narrow size distribution and the preparation of the Cat-xh catalysts with the uniform size distribution. (b~d) TEM images of the materials containing Co3O4 hydrothermal-synthesized for 8 h. (b) TTAB-capped Co3O4 nanocrystals. (c) Co3O4-TTAB-silica nanocomposite. (d) Cat-8h. Scale bars: (b) 50nm; (c) 10nm; (d) 20nm[29]
图10 包覆型Co@SiO2催化剂合成机理示意图[82]
Fig. 10 Schematic illustration of coated Co@SiO2 catalyst synthesis[82]
图11 Co-MOFs衍生制备钴基FTs催化剂的合成策略(a)ZIF-67和Co-MOF-74直接热解制备Co@CN和Co@C[93];(b)Co-MOF-71热解耦合TEOS水解制备Co-Si@催化剂[94];(c)MOF热解耦合乙炔气相沉积制备Co@C[95];(d)Co-MOF-71热解耦合TEOS制备Co@SiO2催化剂[96]
Fig. 11 Co-MOFs-derived catalysts for Fischer-Tropsch synthesis. (a) ZIF-67 and Co-MOF-74 derived Co@CN and Co@C[93]; (b) Si-doped Co@C catalyst[94]; (c) Co@C achieved by chemical vapour deposition of ethyne over MOFs[95]; (d) Schematic illustration of the synthesis of the Co@SiO2 catalyst[96]
[1]
Xu J, Yang Y, Li Y W. Fuel, 2015, 152: 122.

doi: 10.1016/j.fuel.2014.11.059     URL    
[2]
Khodakov A Y, Chu W, Fongarland P. Chem. Rev., 2007, 107(5): 1692.

pmid: 17488058
[3]
de Smit E, Weckhuysen B M. Chem. Soc. Rev., 2008, 37(12): 2758.

doi: 10.1039/b805427d     URL    
[4]
Chen Y P, Wei J T, Duyar M S, Ordomsky V V, Khodakov A Y, Liu J. Chem. Soc. Rev., 2021, 50(4): 2337.

doi: 10.1039/D0CS00905A     URL    
[5]
van Santen R A, Markvoort A J, Filot I A W, Ghouri M M, Hensen E J M. Phys. Chem. Chem. Phys., 2013, 15(40): 17038.

doi: 10.1039/c3cp52506f     pmid: 24030478
[6]
Savost’yanov A P, Yakovenko R E, Sulima S I, Bakun V G, Narochnyi G B, Chernyshev V M, Mitchenko S A. Catal. Today, 2017, 279: 107.

doi: 10.1016/j.cattod.2016.02.037     URL    
[7]
Xu R, Hou C P, Xia G F, Sun X, Li M F, Nie H, Li D D. Catal. Today, 2020, 342: 111.

doi: 10.1016/j.cattod.2019.04.004     URL    
[8]
Eschemann T O, Oenema J, de Jong K P. Catal. Today, 2016, 261: 60.

doi: 10.1016/j.cattod.2015.06.016     URL    
[9]
Nabaho D, Hans Niemantsverdriet J W, Claeys M, van Steen E. Catal. Today, 2016, 261: 17.

doi: 10.1016/j.cattod.2015.08.050     URL    
[10]
Guo S P, Niu C C, Ma Z Y, Wang J G, Hou B, Jia L T, Li D B. ChemCatChem, 2021, 13(5): 1375.

doi: 10.1002/cctc.202001512     URL    
[11]
Guo Q, Huang J, Qian W X, Zhang H T, Ma H F, Ying W Y. Catal. Lett., 2018, 148(9): 2789.

doi: 10.1007/s10562-018-2443-z     URL    
[12]
Zhao N, Chen Y, Li X, Nisa M U, Jiang X N, Dai L Y, Li Z H. Appl. Surf. Sci., 2021, 570: 151127.

doi: 10.1016/j.apsusc.2021.151127     URL    
[13]
Du H, Jiang M, Zhao Z A, Li Y H, Liu T, Zhu H J, Zhang Z C, Ding Y J. Catal. Lett., 2021, 151(12): 3632.

doi: 10.1007/s10562-021-03602-y     URL    
[14]
Nakhaei Pour A, Housaindokht M R, Kamali Shahri S M. Ind. Eng. Chem. Res., 2018, 57(41): 13639.

doi: 10.1021/acs.iecr.8b02485     URL    
[15]
Wang B, Han Y Y, Chen S F, Zhang Y H, Li J L, Hong J P. Catal. Today, 2020, 355: 10.

doi: 10.1016/j.cattod.2019.03.009     URL    
[16]
Ghogia A C, Nzihou A, Serp P, Soulantica K, Pham Minh D. Appl. Catal. A Gen., 2021, 609: 117906.

doi: 10.1016/j.apcata.2020.117906     URL    
[17]
Shi Y M, Yao N, Lu C S, Fan Y B, Liu H Z, Li X N. Prog. Chem., 2009, 21(10): 2044.
石玉梅, 姚楠, 卢春山, 范洋波, 刘化章, 李小年. 化学进展, 2009, 21(10): 2044. ).
[18]
Boudart M, McDonald M A. J. Phys. Chem., 1984, 88(11): 2185.
[19]
Khadzhiev S N. Pet. Chem., 2016, 56(6): 465.

doi: 10.1134/S0965544116060050     URL    
[20]
Chen W, Lin T J, Dai Y Y, An Y L, Yu F, Zhong L S, Li S G, Sun Y H. Catal. Today, 2018, 311: 8.

doi: 10.1016/j.cattod.2017.09.019     URL    
[21]
Bezemer G L, Bitter J H, Kuipers H P C E, Oosterbeek H, Holewijn J E, Xu X D, Kapteijn F, van Dillen A J, de Jong K P. J. Am. Chem. Soc., 2006, 128(12): 3956.

doi: 10.1021/ja058282w     URL    
[22]
Chernyak S A, Suslova E V, Ivanov A S, Egorov A V, Maslakov K I, Savilov S V, Lunin V V. Appl. Catal. A Gen., 2016, 523: 221.

doi: 10.1016/j.apcata.2016.06.012     URL    
[23]
Xiong H F, Motchelaho M A M, Moyo M, Jewell L L, Coville N J. J. Catal., 2011, 278(1): 26.

doi: 10.1016/j.jcat.2010.11.010     URL    
[24]
Eschemann T O, Lamme W S, Manchester R L, Parmentier T E, Cognigni A, Rønning M, de Jong K P. J. Catal., 2015, 328: 130.

doi: 10.1016/j.jcat.2014.12.010     URL    
[25]
Luo Q X, Guo L P, Yao S Y, Bao J, Liu Z T, Liu Z W. J. Catal., 2019, 369: 143.

doi: 10.1016/j.jcat.2018.11.002     URL    
[26]
Yang Y F, Jia L T, Hou B, Li D B, Wang J G, Sun Y H. J. Phys. Chem. C, 2014, 118(1): 268.

doi: 10.1021/jp408174w     URL    
[27]
Yang Y F, Jia L T, Hou B, Li D B, Wang J G, Sun Y H. ChemCatChem, 2014, 6(1): 319.

doi: 10.1002/cctc.201300897     URL    
[28]
Fu T J, Lv J, Li Z H. Ind. Eng. Chem. Res., 2014, 53(4): 1342.

doi: 10.1021/ie402128y     URL    
[29]
Cheng Q P, Tian Y, Lyu S S, Zhao N, Ma K, Ding T, Jiang Z, Wang L H, Zhang J, Zheng L R, Gao F, Dong L, Tsubaki N, Li X G. Nat. Commun., 2018, 9: 3250.

doi: 10.1038/s41467-018-05755-8     URL    
[30]
Melaet G, Lindeman A E, Somorjai G A. Top. Catal., 2014, 57(6/9): 500.

doi: 10.1007/s11244-013-0206-z     URL    
[31]
Yang Y F, Jia L T, Hou B, Li D B, Wang J G, Sun Y H. Catal. Sci. Technol., 2014, 4(3): 717.

doi: 10.1039/c3cy00729d     URL    
[32]
Fischer N, van Steen E, Claeys M. J. Catal., 2013, 299: 67.

doi: 10.1016/j.jcat.2012.11.013     URL    
[33]
Zhong M, Wang J G, Chen C B, Ma Z C, Jia L T, Hou B, Li D B. Catal. Sci. Technol., 2019, 9(21): 6037.

doi: 10.1039/c9cy01422e    
[34]
Prieto G, Martínez A, ConcepciÓn P, Moreno-Tost R. J. Catal., 2009, 266(1): 129.

doi: 10.1016/j.jcat.2009.06.001     URL    
[35]
van Deelen T W, Su H, Sommerdijk N A J M, de Jong K P. Chem. Commun., 2018, 54(20): 2530.

doi: 10.1039/C7CC07741F     URL    
[36]
den Breejen J P, Sietsma J R A, Friedrich H, Bitter J H, de Jong K P. J. Catal., 2010, 270(1): 146.

doi: 10.1016/j.jcat.2009.12.015     URL    
[37]
Pestman R, Chen W, Hensen E. ACS Catal., 2019, 9(5): 4189.

doi: 10.1021/acscatal.9b00185    
[38]
Herranz T, Deng X Y, Cabot A, Guo J G, Salmeron M. J. Phys. Chem. B, 2009, 113(31): 10721.

doi: 10.1021/jp901602s     URL    
[39]
Tuxen A, Carenco S, Chintapalli M, Chuang C H, Escudero C, Pach E, Jiang P, Borondics F, Beberwyck B, Alivisatos A P, Thornton G, Pong W F, Guo J H, Perez R, Besenbacher F, Salmeron M. J. Am. Chem. Soc., 2013, 135(6): 2273.

doi: 10.1021/ja3105889     URL    
[40]
Lyu S, Peng B, Kuang T, RappÉ K G, Zhang Y H, Li J L, Wang L. ACS Appl. Nano Mater., 2019, 2(4): 2266.

doi: 10.1021/acsanm.9b00187     URL    
[41]
Gnanamani M K, Jacobs G, Shafer W D, Davis B H. Catal. Today, 2013, 215: 13.

doi: 10.1016/j.cattod.2013.03.004     URL    
[42]
Karaca H, Safonova O V, Chambrey S, Fongarland P, Roussel P, Griboval-Constant A, Lacroix M, Khodakov A Y. J. Catal., 2011, 277(1): 14.

doi: 10.1016/j.jcat.2010.10.007     URL    
[43]
Tsakoumis N E, Patanou E, Lögdberg S, Johnsen R E, Myrstad R, van Beek W, Rytter E, Blekkan E A. ACS Catal., 2019, 9(1): 511.

doi: 10.1021/acscatal.8b03549    
[44]
Liu J X, Su H Y, Sun D P, Zhang B Y, Li W X. J. Am. Chem. Soc., 2013, 135(44): 16284.

doi: 10.1021/ja408521w     URL    
[45]
Lyu S, Wang L, Zhang J H, Liu C, Sun J M, Peng B, Wang Y, RappÉ K G, Zhang Y H, Li J L, Nie L. ACS Catal., 2018, 8(9): 7787.

doi: 10.1021/acscatal.8b00834     URL    
[46]
Deng X, Yang D Z, Tan G G, Li X H, Zhang J W, Liu Q F, Zhang H L, Mellors N J, Xue D S, Peng Y. Nanoscale, 2014, 6(22): 13710.

doi: 10.1039/c4nr02287d     pmid: 25283083
[47]
Li X, Liu X W, Jiang D, Wen X D. Journal of Fuel Chemistry and Technology, 2018, 46(4): 459.
李啸, 刘兴武, 姜东, 温晓东. 燃料化学学报, 2018, 46(4): 459.).
[48]
Karaca H, Hong J P, Fongarland P, Roussel P, Griboval-Constant A, Lacroix M, Hortmann K, Safonova O V, Khodakov A Y. Chem. Commun., 2010, 46(5): 788.

doi: 10.1039/B920110F     URL    
[49]
Zhao Z A, Lu W, Yang R O, Zhu H J, Dong W D, Sun F F, Jiang Z, Lyu Y, Liu T, Du H, Ding Y J. ACS Catal., 2018, 8(1): 228.

doi: 10.1021/acscatal.7b02403     URL    
[50]
Pei Y P, Liu J X, Zhao Y H, Ding Y J, Liu T, Dong W D, Zhu H J, Su H Y, Yan L, Li J L, Li W X. ACS Catal., 2015, 5(6): 3620.

doi: 10.1021/acscatal.5b00791     URL    
[51]
Xiang Y Z, Kruse N. Nat. Commun., 2016, 7: 13058.

doi: 10.1038/ncomms13058     URL    
[52]
Zhang C, Li S G, Zhong L S, Sun Y H. J. Phys. Chem. C, 2021, 125(11): 6061.

doi: 10.1021/acs.jpcc.0c09164     URL    
[53]
Li Z J, Yu D M, Yang L Y, Cen J, Xiao K, Yao N, Li X N. ACS Catal., 2021, 11(5): 2746.

doi: 10.1021/acscatal.0c04504     URL    
[54]
Pardo-Tarifa F, Cabrera S, Sanchez-Dominguez M, Boutonnet M. Int. J. Hydrog. Energy, 2017, 42(15): 9754.

doi: 10.1016/j.ijhydene.2017.01.056     URL    
[55]
Bertella F, ConcepciÓn P, Martínez A. Catal. Today, 2017, 289: 181.

doi: 10.1016/j.cattod.2016.08.008     URL    
[56]
Wolf M, Fischer N, Claeys M. Chem Catal., 2021, 1(5): 1014.
[57]
Chen W Y, Ji J, Duan X Z, Qian G, Li P, Zhou X G, Chen D, Yuan W K. Chem. Commun., 2014, 50(17): 2142.

doi: 10.1039/c3cc48027e     URL    
[58]
Matsubu J C, Zhang S Y, DeRita L, Marinkovic N S, Chen J G, Graham G W, Pan X Q, Christopher P. Nat. Chem., 2017, 9(2): 120.

doi: 10.1038/nchem.2607     pmid: 28282057
[59]
Park H, Kim K Y, Youn D H, Choi Y H, Kim W Y, Lee J S. ChemCatChem, 2017, 9(21): 4098.

doi: 10.1002/cctc.201700613     URL    
[60]
Liu C C, He Y, Wei L, Zhang Y H, Zhao Y X, Hong J P, Chen S F, Wang L, Li J L. ACS Catal., 2018, 8(2): 1591.

doi: 10.1021/acscatal.7b03887     URL    
[61]
Hong J P, Wang B, Xiao G Q, Wang N, Zhang Y H, Khodakov A Y, Li J L. ACS Catal., 2020, 10(10): 5554.

doi: 10.1021/acscatal.0c01121     URL    
[62]
Cheng K, Subramanian V, Carvalho A, Ordomsky V V, Wang Y, Khodakov A Y. J. Catal., 2016, 337: 260.

doi: 10.1016/j.jcat.2016.02.019     URL    
[63]
Lyu S S, Cheng Q P, Liu Y H, Tian Y, Ding T, Jiang Z, Zhang J, Gao F, Dong L, Bao J, Ma Q X, Yang Q H, Li X G. Appl. Catal. B Environ., 2020, 278: 119261.

doi: 10.1016/j.apcatb.2020.119261     URL    
[64]
Li S, Yao N, Zhao F D, Li X N. Catal. Sci. Technol., 2016, 6(7): 2188.

doi: 10.1039/C5CY00854A     URL    
[65]
Han Q, Yao N, Shi Y M, Ma H F, Li X N. Catal. Commun., 2012, 22: 52.

doi: 10.1016/j.catcom.2012.02.022     URL    
[66]
Ma C C, Yao N, Han Q, Li X N. Chem. Eng. J., 2012, 191: 534.

doi: 10.1016/j.cej.2012.03.024     URL    
[67]
Yao M, Yao N, Shao Y, Han Q, Ma C C, Yuan C K, Li C G, Li X N. Chem. Eng. J., 2014, 239: 408.

doi: 10.1016/j.cej.2013.11.050     URL    
[68]
Wang J, Yao N, Liu B, Cen J, Li X N. Chem. Eng. J., 2017, 322: 339.

doi: 10.1016/j.cej.2017.04.025     URL    
[69]
Yuan C K, Yao N, Wang X D, Wang J G, Lv D Y, Li X N. Chem. Eng. J., 2015, 260: 1.

doi: 10.1016/j.cej.2014.08.079     URL    
[70]
Liu B, Yao N, Li S, Wang J, Lv D Y, Li X N. Chem. Eng. J., 2016, 304: 476.

doi: 10.1016/j.cej.2016.06.113     URL    
[71]
Dai H J. Surf. Sci., 2002, 500(1/3): 218.

doi: 10.1016/S0039-6028(01)01558-8     URL    
[72]
Stein A, Wang Z Y, Fierke M A. Adv. Mater., 2009, 21(3): 265.

doi: 10.1002/adma.200801492     URL    
[73]
Lin Q W, Zhang J, Lv W, Ma J B, He Y B, Kang F Y, Yang Q H. Small, 2020, 16(15): 1902603.

doi: 10.1002/smll.201902603     URL    
[74]
Cheng Q P, Zhao N, Lyu S S, Tian Y, Gao F, Dong L, Jiang Z, Zhang J, Tsubaki N, Li X G. Appl. Catal. B Environ., 2019, 248: 73.

doi: 10.1016/j.apcatb.2019.02.024     URL    
[75]
Dlamini M W, Phaahlamohlaka T N, Kumi D O, Forbes R, Jewell L L, Coville N J. Catal. Today, 2020, 342: 99.

doi: 10.1016/j.cattod.2019.01.070     URL    
[76]
Li X Y, Pan X L, Yu L, Ren P J, Wu X, Sun L T, Jiao F, Bao X H. Nat. Commun., 2014, 5: 3688.

doi: 10.1038/ncomms4688     URL    
[77]
Lu J Z, Yang L J, Xu B L, Wu Q, Zhang D, Yuan S J, Zhai Y, Wang X Z, Fan Y N, Hu Z. ACS Catal., 2014, 4(2): 613.

doi: 10.1021/cs400931z     URL    
[78]
Vosoughi V, Badoga S, Dalai A K, Abatzoglou N. Ind. Eng. Chem. Res., 2016, 55(21): 6049.

doi: 10.1021/acs.iecr.5b04381     URL    
[79]
Zhang H, Lancelot C, Chu W, Hong J P, Khodakov A Y, Chernavskii P A, Zheng J, Tong D G. J. Mater. Chem., 2009, 19(48): 9241.

doi: 10.1039/b911355j     URL    
[80]
Cheng K, Ordomsky V V, Legras B, Virginie M, Paul S, Wang Y, Khodakov A Y. Appl. Catal. A Gen., 2015, 502: 204.

doi: 10.1016/j.apcata.2015.06.010     URL    
[81]
Kang J C, Zhang S L, Zhang Q H, Wang Y. Angew. Chem. Int. Ed., 2009, 48(14): 2565.

doi: 10.1002/anie.200805715     URL    
[82]
Qin C, Hou B, Wang J G, Wang G, Ma Z Y, Jia L T, Li D B. ACS Appl. Mater. Interfaces, 2019, 11(37): 33886.

doi: 10.1021/acsami.9b10174     URL    
[83]
Zeng B, Hou B, Jia L T, Li D B, Sun Y H. J. Mol. Catal. A Chem., 2013, 379: 263.

doi: 10.1016/j.molcata.2013.08.008     URL    
[84]
Yang F, Deng D H, Pan X L, Fu Q, Bao X H. Natl. Sci. Rev., 2015, 2(2): 183.

doi: 10.1093/nsr/nwv024     URL    
[85]
Guan J, Pan X L, Liu X, Bao X H. J. Phys. Chem. C, 2009, 113(52): 21687.

doi: 10.1021/jp906092c     URL    
[86]
Tavasoli A, TrÉpanier M, Dalai A K, Abatzoglou N. J. Chem. Eng. Data, 2010, 55(8): 2757.

doi: 10.1021/je900984c     URL    
[87]
Xie W, Zhang Y H, Liew K, Li J L. Sci. China Chem., 2012, 55(9): 1811.

doi: 10.1007/s11426-012-4727-2     URL    
[88]
Akbarzadeh O, Mohd Zabidi N, Abdul Wahab Y, Hamizi N, Chowdhury Z, Merican Aljunid Merican Z, Ab Rahman M, Akhter S, Rasouli E, Johan M. Symmetry, 2018, 10(11): 572.

doi: 10.3390/sym10110572     URL    
[89]
Bao J, Yang G H, Yoneyama Y, Tsubaki N. ACS Catal., 2019, 9(4): 3026.

doi: 10.1021/acscatal.8b03924     URL    
[90]
Yang W P, Li X X, Li Y, Zhu R M, Pang H. Adv. Mater., 2018: 1804740.
[91]
Wezendonk T A, Santos V P, Nasalevich M A, Warringa Q S E, Dugulan A I, Chojecki A, Koeken A C J, Ruitenbeek M, Meima G, Islam H U, Sankar G, Makkee M, Kapteijn F, Gascon J. ACS Catal., 2016, 6(5): 3236.

doi: 10.1021/acscatal.6b00426     URL    
[92]
An B, Cheng K, Wang C, Wang Y, Lin W B. ACS Catal., 2016, 6(6): 3610.

doi: 10.1021/acscatal.6b00464     URL    
[93]
Qiu B, Yang C, Guo W H, Xu Y, Liang Z B, Ma D, Zou R Q. J. Mater. Chem. A, 2017, 5(17): 8081.

doi: 10.1039/C7TA02128C     URL    
[94]
Pei Y P, Li Z, Li Y W. Aiche J., 2017, 63(7): 2935.

doi: 10.1002/aic.15677     URL    
[95]
Zhang C H, Guo X X, Yuan Q C, Zhang R L, Chang Q, Li K, Xiao B, Liu S Y, Ma C P, Liu X, Xu Y Q, Wen X D, Yang Y, Li Y W. ACS Catal., 2018, 8(8): 7120.

doi: 10.1021/acscatal.8b01691     URL    
[96]
Sun X H, Suarez A I O, Meijerink M, van Deelen T, Ould-Chikh S, Zecevic J, de Jong K P, Kapteijn F, Gascon J. Nat. Commun., 2017, 8: 1680.

doi: 10.1038/s41467-017-01910-9     URL    
[97]
Isaeva V I, Eliseev O L, Kazantsev R V, Chernyshev V V, Davydov P E, Saifutdinov B R, Lapidus A L, Kustov L M. Dalton Trans., 2016, 45(30): 12006.

doi: 10.1039/c6dt01394e     pmid: 27389315
[98]
Isaeva V I, Eliseev O L, Kazantsev R V, Chernyshev V V, Tarasov A L, Davydov P E, Lapidus A L, Kustov L M. Polyhedron, 2019, 157: 389.

doi: 10.1016/j.poly.2018.10.001    
[1] 王晶, 姚楠*. 适用于合成气制甲烷的Ni基催化剂[J]. 化学进展, 2017, 29(12): 1509-1517.
[2] 薛丽君, 张迪, 魏杰, 刘欣梅. 催化剂的孔道限域效应[J]. 化学进展, 2016, 28(4): 450-458.
[3] 王周君, 傅强, 包信和. 新型催化剂载体碳化硅的研究现状[J]. 化学进展, 2014, 26(04): 502-511.
[4] 邵燕 姚楠 卢春山 吕德义 刘化章 李小年. 用于选择性合成清洁液体燃料的钴基F-T合成催化剂*[J]. 化学进展, 2010, 22(10): 1911-1920.
[5] 石玉梅 姚楠 卢春山 范洋波 刘化章 李小年. 用于费-托合成的高分散型钴基催化剂*[J]. 化学进展, 2009, 21(10): 2044-2052.
[6] 张辉,储伟. 贵金属助剂对费-托合成用钴基催化剂的促进作用*[J]. 化学进展, 2009, 21(04): 622-628.
[7] 周玮,房克功,陈建刚,孙予罕. 水对钴基Fischer-Tropsch合成的影响[J]. 化学进展, 2006, 18(01): 45-50.