English
新闻公告
More
化学进展 2015, Vol. 27 Issue (1): 27-37 DOI: 10.7536/PC140813 前一篇   后一篇

• 综述与评论 •

离子型膦配体及其离子型过渡金属配合物的合成和均相催化作用

王雪珠, 谭忱, 李永琪, 张恒, 刘晔*   

  1. 华东师范大学化学系 上海市绿色化学与化工过程绿色化重点实验室 上海 200062
  • 收稿日期:2014-08-01 修回日期:2014-10-01 出版日期:2015-01-15 发布日期:2014-11-24
  • 通讯作者: 刘晔 E-mail:yliu@chem.ecnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21273077)资助

Synthesis of Ionic Phosphines and Corresponding Ionic Transition Metal Complexes and Their Applications in Homogeneous Catalysis

Wang Xue, Tan Chen, Li Yongqi, Zhang Heng, Liu Ye*   

  1. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China
  • Received:2014-08-01 Revised:2014-10-01 Online:2015-01-15 Published:2014-11-24
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21273077).

与传统中性叔膦配体构建的过渡金属配合物相比,由离子型膦配体配位构建的过渡金属配合物具有典型的离子盐组成特点、独特的电子效应和几何构型。该类配合物中,不仅存在金属和配体间的配位作用,还存在正电荷的强吸电子效应和阴阳离子的静电作用,由此可以产生独特的催化性能。近年来,离子型过渡金属配合物的合成及其均相催化应用成为配位化学和均相催化研究中备受关注的领域。离子型过渡金属配合物的离子盐结构,使其在与室温离子液体溶剂结合使用时,离子型离子配体及其配合物能够严格被锁定在离子液体相,具有避免离子型离子配体及其配合物的流失、抑制其失活、并实现循环使用的优点,也成为均相催化固载化的绿色方法之一。本文综述了近十年发展的一类咪唑鎓基与膦配体中的磷原子毗邻的离子型膦配体的合成,及其相应Rh、Pd、Ru、Pt、Au、Ni、Cu等离子型配合物的构建,并介绍了它们在均相催化反应中的应用。

Compared to the traditional neutral phosphine-ligated transition metal complexes (PTMCs), the ionic phosphine-ligated ones as the ionic salts are composed with the ion-pairs with unusual electronic effect and varied structural configurations. In these ionic PTMCs, not only the coordinating interaction but also the strong electron-withdrawing effect of the positive-charge and the electrostatic interaction between cations and anion are involved which correspond to the unique catalytic performance. In recent decade, the study on the ionic PTMCs has been concerned as a hot topic in coordination chemistry and homogeneous catalysis. In addition, when the ionic PTMCs are used as the catalysts in combination with the room temperature ionic liquids (RTILs, as the solvents) for catalytic reactions, the advantages such as the available recovery and recyclability of the catalysts, and the avoided catalyst leaching are evidently observed, which endows theses ionic transition metal complexes great potential applications in green chemistry. In this review, the syntheses of the ionic phosphines and the corresponding ionic PTMC (M=Rh, Pd, Ru, Pt, Au, Ni, Cu) and their applications for homogeneous catalysis, which have been developed in the past ten years, are summarized.

Contents
1 Introduction
2 Syntheses of imidazolium-phosphorous neighbored ionic phosphines
3 Syntheses of ionic transition metal complexes and their applications in homogeneous catalysis
3.1 Ionic Rh-complexes
3.2 Ionic Pd-complexes
3.3 Ionic Ru-complexes
3.4 Ionic Pt-complexes
3.5 Ionic Au-complexes
3.6 Ionic Ni-complexes
3.7 Ionic Cu-complexes
4 Conclusion and outlook

中图分类号: 

()

[1] Kuhn N, Fahl J. Z. Anorg. Allg. Chem., 1999, 625: 729.
[2] Kuhn N, Göhner M. Z. Anorg. Allg. Chem., 1999, 625: 1415.
[3] Kuhn N, Göhner M, Steimann M. Z. Anorg. Allg. Chem., 1999, 628: 896.
[4] Azouri M, Andrieu J, Picquet M, Cattey H. Inorg. Chem., 2009, 48 : 1236.
[5] Brunet J J, Chauvin R, Commenges G, Donnadieu B, Leglaye P. Organometallics, 1996, 15 : 1752.
[6] Cadierno V, Francos J, Gimeno J. Chem. Eur. J., 2008, 22 : 6601.
[7] Chauvin R. Eur. J. Inorg. Chem., 2000, 577.
[8] Brauer D J, Kottsieper K W, Liek C, Stelzer O, Waffenschmidt H, Wasserscheid P. J. Organomet. Chem., 2001, 630: 177.
[9] 尤洪星(You H X), 王永勇(Wang Y Y), 王雪珠(Wang X Z), 刘 晔(Liu Y). 化学进展(Progress in Chemistry), 2013, 25(10):1656.
[10] Miao W, Chan T H. Acc. Chem. Res., 2006, 39 (12): 897.
[11] Wu X F, Neumann H, Beller M. Chem. Rev., 2013, 113 (1): 1.
[12] Vougioukalakis G C, Grubbs R H. Chem. Rev., 2010, 110 (3): 1746.
[13] Colby D A, Bergman R G, Ellman J A. Chem. Rev., 2010, 110 (2): 624.
[14] Li Z, Brouwer C, He C. Chem. Rev., 2008, 108 (8): 3239.
[15] Abdellah I, Lepetit C, Canac Y, Duhayon C, Chauvin R. Chem. Eur. J., 2010, 16: 13095.
[16] Franke R, Selent D, Börner A. Chem. Rev., 2012, 112: 5675.
[17] Sakai N, Mano S, Nozaki K, Takaya H. J. Am. Chem. Soc., 1993, 115: 7033.
[18] Fielder S S, Osborne M C, Lever A B P, Pietro W J. J. Am. Chem. Soc., 1995, 117: 6990.
[19] Yan Y, Chi Y, Zhang X. Tetrahedron: Asymm., 2004, 15: 2173.
[20] Tricas H, Diebolt O, van Leeuwen P W N M. J. Catal., 2013, 298: 198.
[21] Ellis B D, Ragogna P J, Macdonald C L B. Inorg. Chem., 2004, 43: 7857.
[22] Bronger R P J, Silva S M, Kamer P C J, van Leeuwen P W N M. Dalton Trans. 2004, 1590.
[23] Andrieu J, Azouri M. Inorg. Chim. Acta, 2007, 360: 131.
[24] Tolmachev A A, Yurchenko A A, Merculov A S, Semenova M G, Zarudnitskii E V, Ivanov V V, Pinchuk A M. Heteroatom Chem., 1999, 10: 585.
[25] Jalil M A, Yamada T, Fujinami S, Honjo T, Nishikawa H. Polyhedron, 2001, 20: 627.
[26] Li J, Peng J, Bai Y, Zhang G, Lai G, Li X. J. Organomet. Chem., 2010, 695(3): 431.
[27] Azouri M, Andrieu J, Picquet M, Richard P, Hanquet B, Tkatchenko I. Eur. J. Inorg. Chem., 2007, 4877.
[28] Debono N, Canac Y, Duhayon C, Chauvin R. Eur. J. Inorg. Chem., 2008, 2991.
[29] Canac Y, Debono N, Vendier L, Chauvin R. Inorg. Chem., 2009, 48(12): 5562.
[30] Barthes C, Lepetit C, Canac Y, Duhayon C, Zargarian D, Chauvin R. Inorg. Chem., 2013, 52: 48.
[31] Maaliki C, Lepetit C, Canac Y, Bijani C, Duhayon C, Chauvin R. Chem. Eur. J., 2012, 18(25): 7705.
[32] Andrieu J, Azouri M, Richard P. Inorg. Chem. Commun., 2008, 11: 1401.
[33] Moloy K G, Petersen J L. J. Am. Chem. Soc., 1995, 117: 7696.
[34] Wu M L, Desmond M J, Drago R S. Inorg. Chem., 1979, 18: 679.
[35] Andrieu J, Camus J M, Richard P, Poli R, Gonsalvi L, Vizza F, Peruzzini M. Eur. J. Inorg. Chem., 2006, 51.
[36] Dunbar K R, Haefner S C. Inorg. Chem., 1992, 31 (17): 3676.
[37] Boyd S E, Field L D, Hambley T W, Partridge M G. Organometallics, 1993, 12: 1720.
[38] Chen S, Wang Y, Yao W, Zhao X, VO-Thanh G, Liu Y. J. Mol. Catal. A, 2013, 378: 293.
[39] You H, Wang Y, Zhao X, Chen S, Liu Y. Organometallics, 2013, 32: 2698.
[40] Brink A, Roodt A, Steyl G, Visser H G. Dalton Trans., 2010, 39: 5572.
[41] Bennett M J, Donaldson P B. Inorg. Chem., 1977, 16: 655.
[42] Christoph G G, Halperk J, Khare G P, Koh Y B, Romanowski C. Inorg. Chem., 1981, 20: 3029.
[43] Burgess K, van der Donk W A, Westcott S A, Marder T B, Baker R T, Calabrese J C. J. Am. Chem. Soc., 1992, 114: 9350.
[44] Marion N, Navarro O, Mei J, Stevens E D, Scott N M, Nolan S P. J. Am. Chem. Soc., 2006, 128: 4101.
[45] Fitton P, Johnson M P, McKeon J E. J. Chem. Soc. Chem. Commun., 1968, 6.
[46] Canac Y, Debono N, Lepetit C, Duhayon C, Chauvin R. Inorg. Chem., 2011, 50 (21): 10810.
[47] Zhang J, ?akovi D? M, Popovi D? Z, Wu H, Liu Y. Catal. Commun., 2012, 17: 160.
[48] Zhou C, Zhang J, Aakovic M, Popovic Z, Zhao X, Liu Y. Eur. J. Inorg. Chem., 2012, 3435.
[49] Saleh S, Fayad E, Azouri M, Hierso J C, Andrieu J, Picquet M. Adv. Synth. Catal., 2009, 351: 1621.
[50] Wang X, Wang Y, Zhang J, Zhao X, Liu Y. J. Organomet. Chem., 2014, 762: 40.
[51] Baenziger N C, Bennett W E, Soborofe D M. Acta Crystallogr., 1976, 32: 962.
[52] Digard E, Andrieu J, Cattey H. Inorg. Chem. Commun., 2012, 25: 39.

[1] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[2] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[3] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[4] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[5] 魏雪梅, 马占伟, 慕新元, 鲁金芝, 胡斌. 乙炔羰基化反应催化剂:由均相到多相[J]. 化学进展, 2021, 33(2): 243-253.
[6] 杨文清, 谢大乐, 程俊, 唐维克, 汪若冰, 冯乙巳. 负载型BINAP-M类催化剂[J]. 化学进展, 2021, 33(10): 1706-1720.
[7] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[8] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[9] 刘风国, 王博, 章莲玉, 刘爱民, 王兆文, 石忠宁. 离子液体在电沉积铝及铝合金中的应用[J]. 化学进展, 2020, 32(12): 2004-2012.
[10] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[11] 李志勇, 冯莹, 王慧勇, 袁晓晴, 赵玉灵, 王键吉. 光响应离子液体的结构与性能调控[J]. 化学进展, 2019, 31(11): 1550-1559.
[12] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[13] 程海东, 陈双俊*. 功能化离子液体在聚酯PET降解与合成中的应用[J]. 化学进展, 2017, 29(4): 443-449.
[14] 宋河远, 康美荣, 靳荣华, 金福祥, 陈静. 离子液体在羰基化反应中的应用[J]. 化学进展, 2016, 28(9): 1313-1327.
[15] 刘莹, 何宏平, 吴德礼, 张亚雷. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120.