English
新闻公告
More
化学进展 2016, Vol. 28 Issue (7): 1112-1120 DOI: 10.7536/PC160118 前一篇   

• 综述与评论 •

非均相催化臭氧氧化反应机制

刘莹, 何宏平, 吴德礼*, 张亚雷   

  1. 同济大学环境科学与工程学院 污染控制与资源化研究国家重点实验室 上海 200092
  • 收稿日期:2016-01-01 修回日期:2016-03-01 出版日期:2016-07-15 发布日期:2016-05-17
  • 通讯作者: 吴德礼 E-mail:wudeli@tongji.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.51102178)、国家重点技术支撑项目(No.2015BAE01B03)、中国技术创新基金项目(No.14C26211200298)、天津技术创新基金项目(No.14ZXCXGX00776)和中国教育部长江学者和创新研究团队项目(No.IRT13084)资助

Heterogeneous Catalytic Ozonation Reaction Mechanism

Liu Ying, He Hongping, Wu Deli*, Zhang Yalei   

  1. State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science & Engineering, Tongji University, Shanghai 200092, China
  • Received:2016-01-01 Revised:2016-03-01 Online:2016-07-15 Published:2016-05-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51102178),the National Key Technology Support Program (No.2015BAE01B03),the Innovation Fund for Technology of China (No.14C26211200298),the Innovation Fund for Technology of Tianjin (No.14ZXCXGX00776),the Chang-jiang Scholars and Innovative Research Team in University of Ministry of Education of China (No.IRT13084).
臭氧催化氧化作为高级氧化技术是目前水处理领域研究的热点,其中非均相臭氧催化氧化技术因其氧化能力强、降低臭氧投加量特别是能显著提高有机物矿化率等优点而备受关注。非均相催化臭氧氧化领域不断研究新的催化剂,但是其反应过程及机制更加复杂。催化臭氧氧化的性能很大程度上取决于催化剂及其表面性质。污染物在催化剂表面形成络合物,或者臭氧在催化剂表面分解产生不同的含氧物种如表面氧原子、过氧化物和羟基自由基等。本文评述了非均相臭氧催化氧化反应中存在的多种机理,主要是自由基理论、氧空位理论、表面原子氧理论、表面络合物理论和臭氧直接氧化理论。催化剂表面的羟基基团是主要的催化活性中心,本文探讨了表面羟基基团催化反应机制,得出催化剂表面性质决定其表面活性位点的特性及含量,对诱导臭氧分解产生含氧活性物种起了关键作用;概述了催化剂改性后的结构形态、比表面积及其性能和作用机制;并讨论了非均相臭氧催化氧化反应催化剂未来的发展趋势,为催化臭氧氧化污水处理技术提供了理论参考。
As one of advanced oxidation processes(AOPs), catalytic ozonation has recently gained significant attention in the field of wastewater treatment. Heterogeneous catalytic ozonation have notable advantages of strong oxidation, less ozone dosage and especially its potentially greater effectiveness in the mineralization of organic matter. New catalysts have been studied world widely, but the reaction process and mechanisms are much more complicated. The efficiency of catalytic ozonation process depends to a great extent on the catalyst and its surface properties. On the surface active sites of catalyst,pollutants adsorbed form surface complexes or ozone decomposes to various reactive oxygen species such as surface atomic oxygen (*O), surface peroxide (O2·-), hydroxyl radical (·OH). Thus the main mechanisms of heterogeneous catalytic ozonation are reviewed, including radical mechanism, oxygen vacancies theory, surface atomic oxygen mechanism, surface complexes theory and direct ozonation mechanism. The hydroxyl groups on the surface of catalyst are mainly catalytic active centers. The catalytic reaction mechanisms by hydroxyl groups are introduced in this paper. Surface properties of the catalysts determine the properties of the surface active sites and its amount, which play a key role in ozone decomposition. The structure and morphology, the specially surface area, the catalytic performance as well as reaction mechanisms of modified catalysts are reviewed. The future development of heterogeneous catalysts are also discussed to provide a theoretical reference of heterogeneous catalytic ozonation.

Contents
1 Introduction
2 Mechanism of heterogeneous catalytic ozonation
2.1 Radical mechanism
2.2 Oxygen vacancies mechanism
2.3 Surface atomic oxygen mechanism
2.4 Surface complexes mechanism
2.5 Direct ozonation mechanism
3 Catalytic reaction mechanisms by hydroxyl groups on the surface of catalyst
4 Heterogeneous catalytic ozonation mechanism after modification of the catalysts
4.1 Catalytic performance of modified catalysts
4.2 Reaction mechanism of modified catalysts
5 Conclusion and outlook

中图分类号: 

()
[1] Sánchez-Polo M, Rivera-Utrilla J, Gunten U. Water Research, 2006, 40(18):3375.
[2] Schwarzenbach R P, Escher B I, Fenner K. Science, 2006, 313:1072.
[3] Andreozzi R., Insola A, Caprio V, Marotta R, Tufano V. Applied Catalysis A:General, 1996, 138:75.
[4] Addamo M, Augugliaro V, García-López E, Loddo V, Marcì G, Palmisano L. Catalysis Today, 2005, 107/108:612.
[5] Cooper C, Burch R. Water Research, 1999, 33:3695.
[6] Sui M, Sheng L, Lu K, Tian F. Applied Catalysis B:Environmental, 2010, 96:94.
[7] Martins R C, Quinta-Ferreira R M. Industrial & Engineering Chemistry Research, 2009, 48:1196.
[8] Rodríguez J L,Valenzuela M A,Tiznado H,Poznyak T,Flores E. Journal of Molecular Catalysis A:Chemical, 2014, 392:39.
[9] Leitner N K V, Fu H. Topics in Catalysis, 2005, 33:249.
[10] Fu H., Leitner N K V, Legube B. New Journal of Chemistry, 2002, 26:1662.
[11] Carbajo M, Rivas F J, Beltrán F J, Medina P A F. Ozone:Science and Engineering, 2006, 28:229.
[12] Zhang J, Lee K H, Cui L, Jeong T S. Journal of Industrial and Engineering Chemistry, 2009, 15:185.
[13] Azrague K, Osterhus S W, Biomorgi J G. Water Science and Technology, 2009, 59:1209.
[14] McKay G, McAleavey G. Chemical Engineering Research & Design, 1988, 66:531.
[15] Oyama S T. Catalysis Reviews:Science and Engineering, 2000, 42:279.
[16] Kamm S, Möhler O, Naumann K H, Saathoff H, Schurath U. Atmospheric Environment, 1999, 33(28):4651.
[17] Dhandapani B, Oyama S T. Applied Catalysis B:Environmental, 1997, 11(2):129.
[18] Heisig C, Zhang W, Oyama S T. Applied Catalysis B:Environmental, 1997, 14(1/2):117.
[19] Alebi?-Jureti?, Cvitaš T, Klasinc L. Chemosphere, 2000, 41(5):667.
[20] Bulanin K M, Lavalley J C, Tsyganenko A A. Colloids Surfaces A,1995, 101(2/3):153.
[21] Naydenov A, Stoyanova R, Mehandjiev D. Journal Molecular Catalysis A, 1995, 98(1):9.
[22] Li W, Gibbs G V, Oyama S T. Journal of American Chemical Society, 1998, 120(35):9041.
[23] Bulanin K M, Lavalley J C, Tsyganenko A A. Journal of Physical Chemistry, 1995, 99:10294.
[24] Dhandapani B, Oyama S T. Applied Catalysis B:Environmental, 1997, 11:129.
[25] Faria P C C, Orfao J J M, Pereira M F R. Catalysis Communications, 2008,9(11/12):2121.
[26] Ikhlaq A, Brown D R., Kasprzyk-Hordern B. Applied Catalysis B:Environmental, 2015, 165:408.
[27] Liu X, Zhou Z M, Jing G H, Fang J H. Separation and Purification Technology, 2013, 115:129.
[28] Zhang T, Ma J. Journal of Molecular Catalysis A:Chemical, 2008, 279:82.
[29] Faria P C C, Orfao J J M, Pereira M F R. Applied Catalysis B:Environmental, 2008, 83:150.
[30] Zhao L, Sun Zhi Z, Ma J. Environmental Science & Technology, 2009, 43:4157.
[31] Zhao L Ma J, Sun Zhi Z, Liu H L. Applied Catalysis B:Environmental, 2009, 89(3/4):326.
[32] Zhang X, Li X, Qin W. Chemical Physics Letters, 2009, 479(4):310.
[33] Orge C A, Órfão J J M, Pereira M F R, Farias A M D D, Neto R C R, Fraga M A. Applied Catalysis B:Environmental, 2011, 103:190.
[34] Orge C A, Órfão J J M, Pereira M F R, Farias A M D D, Fraga M A.Chemical Engineering Journal, 2012, 200/202:499.
[35] Mathew D S, Juang R S. Chemical Engineering Journal, 2007, 129:51.
[36] Liu C, Zou B, Rondinone A.J, Zhang Z J. Journal of Physical Chemistry B, 2000, 104:1143.
[37] Ren Y M, Dong Q, Feng J. Journal of Colloid and Interface Science, 2012, 382:90.
[38] Bonapasta A A, Filippone F, Mattioli G, Alippi P. Catalysis Today, 2009, 144:177.
[39] Song S, Liu Z W, He Z Q, Zhang A L, Chen J M. Environmental Science & Technology, 2010, 44:3913.
[40] Zhang T, Li W W, Croue J P. Environmental Science & Technology, 2011, 45:9339.
[41] Bing J S, Hu C, Nie Y L, Yang M, Qu J H. Environmental Science & Technology, 2015, 49:1690.
[42] Rodríguez J L, Poznyak T, Valenzuela M A, Tiznado H, Chairez I. Chemical Engineering Journal, 2013, 222:426.
[43] Liu Z Q, Ma J, Cui Y H., Zhang B P. Applied Catalysis B:Environmental, 2009, 92:301.
[44] Nawrocki J, Kasprzyk-Horden B. Applied Catalysis B:Environmental, 2010, 99:27.
[45] Kasprzyk-Hordern B, Ziólek M, Nawrocki J. Applied Catalysis B:Environmental, 2003, 46:639.
[46] Beltrán F J, Rivas F J, Montero-de-Espinosa R. Water Research, 2005, 39:3553.
[47] Park J S, Choi H C, Cho J W. Water Research, 2004, 38:2285.
[48] Tong S P, Liu W P, Leng W H, Zhang Q Q. Chemosphere, 2003, 50:1359.
[49] Faria P C C, Orfao J J M, Pereira M F R. Applied Catalysis B:Environmental, 2008, 83:150.
[50] Zhang T, Li W W, Croue J P. Applied Catalysis B:Environmental, 2012, 121/122:88.
[51] Dong Y M, He K, Zhao B. Catalysis Communications, 2007, 8:1599.
[52] Takahashl H, Umemura J, Takenaka T. Journal of Physical Chemistry, 1982, 86:4660
[53] Joseph Y, Ranke W, Weiss W. Journal of Physical Chemistry B, 2000, 104:3224.
[54] Ernst M, Lurot F, Schrotter J C. Applied Catalysis B:Environmental, 2004, 47:15.
[55] Sui M, Sheng L, Lu K, Tian F. Applied Catalysis B:Environmental, 2010, 96:94.
[56] Yang L, Hu C, Nie Y L, Qu J H. Environmental Science & Technology, 2009, 43:2525.
[57] Qi F, Xu B, Chen Z, Ma J, Sun D, Zhang L. Separation and Purification Technology, 2009, 66:405.
[58] Qi F, Chen Z, Xu B, Shen J, Ma J, Joll C, Heitz A. Applied Catalysis B:Environmental, 2008, 84:684.
[59] Zhao L, Ma J, Sun Z Z, Zhai X D. Applied Catalysis B:Environmental, 2008, 83:256.
[60] Zhang T, Ma J. Journal of Physical Chemistry A, 2007, 279:82.
[61] Sui M H, Sheng L, Lu K X, Tian F. Applied Catalysis B:Environmental, 2010, 26:94.
[62] Xing L L, Xie Y B, Minakata D. Journal of Environmental Science, 2014, 26:2095.
[63] Huang Y X, Cui C C, Zhang D F, Li L. Chemosphere, 2015, 119:295.
[64] Akhtar J, Amin N A S, Aris A. Chemical Engineering Journal, 2011, 170(1):136.
[65] Jans U, HoignéJ. Ozone:Science and Engineering, 1998, 20:67.
[66] Park C, Keane M A. Journal of Colloid and Interface Science, 2003, 266:183.
[67] Matheswaran M, Balaji S, Chung S J, Moon I S. Catalysis Communications, 2007, 8:1497.
[68] Bing J H, Hu C, Nie Y L, Yang M, Qu J H. Environmental Science & Technology, 2015, 49:1690.
[69] Lan B Y, Huang R L, Li L S, Yan H H Liao G Z, Wang X, Zhang Q Y. Chemical Engineering Journal, 2013, 219:346.
[70] Qi F, Chu W, Xu B B. Chemical Engineering Journal, 2015, 262:552.
[71] Zhang L, Su Z Z, Ma J, Liu H L. Environmental Science & Technology, 2009, 43:2047.
[72] Delanoë F, Karpel A N, Leitner V, Legube B. Applied Catalysis B:Enviromental, 2001, 29(4):315.
[73] Fan X L, Restivo J,Órfão J J M, Pereira M F R, Lapkin A A. Chemical Engineering Journal, 2014, 241:66.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[12] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[13] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[14] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[15] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
阅读次数
全文


摘要

非均相催化臭氧氧化反应机制