English
新闻公告
More
化学进展 2022, Vol. 34 Issue (11): 2373-2385 DOI: 10.7536/PC220409 前一篇   后一篇

• 综述 •

MXene基单原子催化剂的制备及其在电催化中的应用

景远聚1, 康淳1, 林延欣2, 高杰3, 王新波1,4,*()   

  1. 1 山东大学环境科学与工程学院 青岛 266237
    2 青岛恒源热电有限公司 青岛 266510
    3 山东大学国际创新与转化学院 青岛 266237
    4 山东大学深圳研究生院 深圳 518000
  • 收稿日期:2022-04-11 修回日期:2022-07-24 出版日期:2022-11-24 发布日期:2022-09-19
  • 通讯作者: 王新波
  • 基金资助:
    国家自然科学基金项目(21908018); 国家自然科学基金项目(22078174); 广东省基础与应用基础研究(2022A1515011856); 山东省教育厅青年创新团队(2019KJD007); 大连理工大学精细化工重点实验室开放课题(KF2114)

MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis

Yuanju Jing1, Chun Kang1, Yanxin Lin2, Jie Gao3, Xinbo Wang1,4()   

  1. 1 School of Environmental Science and Engineering, Shandong University,Qingdao 266237, China
    2 Qingdao Hengyuan Thermoelectricity Co., Ltd,Qingdao 266510, China
    3 School of Innovation and Entrepreneurship, Shandong University,Qingdao 266237, China
    4 Shenzhen Graduate School of Shandong University,Shenzhen 518000, China
  • Received:2022-04-11 Revised:2022-07-24 Online:2022-11-24 Published:2022-09-19
  • Contact: Xinbo Wang
  • Supported by:
    National Natural Science Foundation of China(21908018); National Natural Science Foundation of China(22078174); Guangdong Basic and Applied Basic Research Foundation(2022A1515011856); Youth Innovation Program of Universities in Shandong Province(2019KJD007); State Key Laboratory of Fine Chemicals, Dalian University of Technology(KF2114)

单原子催化剂具有高原子利用率、高催化活性和高选择性等优点,兼具了均相催化剂“独立活性位点”和非均相催化剂“易循环利用”的特点,有效解决贵金属昂贵稀少的缺陷。其中载体不仅能影响单原子的稳定性,还影响其电子结构,从而影响催化性能。作为一种新型二维无机材料,MXene具有比表面积大、带隙可调、导电性好和螯合位丰富等特点,是制备单原子催化剂的理想载体材料。本文简要总结了MXene的结构特点,综述了MXene基单原子催化剂的制备策略,并着重介绍了MXene基单原子催化剂在电化学能源转换领域的应用,包括析氢反应、氧电极反应、氮还原反应、二氧化碳还原反应,以及在电池储能方面的应用。最后,总结了当前MXene基单原子催化剂在研究和实用方面所面临的挑战与机遇。

Single-atom catalysts (SACs) have been attracting ever-increasing interest in the fields of both fundamental research and industry applications, for their unique advantages such as high atomic utilization efficiency, high activity, and high selectivity. On the other hand, the preparation of SCAs is still quite challenging. A proper carrier of the active atoms is crucial for the preparation of SCAs, which affects the stability, electron structure, and thus reactivity. MXene, a novel series of two-dimensional inorganic materials with large specific surface area, adjustable bandgap, superior electronic conductivity, as well as abundant anchor sites have emerged as an ideal platform for confining single atoms. Herein, the structural superiority and synthetic strategies of MXene as SCAs support are reviewed. The unique structure and property of MXene based SACs make the material superior for electrochemical catalysis. Here the reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), nitrogen reduction reaction (NRR), carbon dioxide reduction reaction (CRR), as well as battery energy storage are highlighted. Finally, the challenges and opportunities of MXene based SACs in the fields of research and practical applications are summarized and prospected. It is hoped that this review article could provide insights for the development of advanced MXene-based SCAs.

Contents

1 Introduction

2 Advantages of MXene as carrier material

2.1 Easy preparation

2.2 Easily controllable electronic energy band and conductivity

3 Synthesis of MXene-based single-atom catalysts

3.1 Defect vacancy anchoring

3.2 Strong metal-support interaction

3.3 Selective atomic substitution

4 Application of MXene-based single-atom catalysts

4.1 Hydrogen evolution reaction

4.2 Oxygen electrode reaction

4.3 Nitrogen reduction reaction

4.4 Electrocatalytic reduction of carbon dioxide

4.5 Used as a battery electrode

5 Conclusion and outlook

()
图1 RuSA-Mo2CTx合成机制示意图[67]
Fig. 1 Schematic illustration of the fabrication mechanism of RuSA-Mo2CTx[67].Copyright 2020, Wiley-VCH
图2 (a)RuSA-N-S-Ti3C2Tx催化剂合成路线示意图; (b)RuSA-N-S-Ti3C2Tx的HAADF-STEM图像[75]
Fig.2 (a)Schematic illustration of the RuSA-N-S-Ti3C2Tx catalyst synthetic route; (b)HAADF-STEM image of RuSA-N-S-Ti3C2Tx[75]. Copyright ? 1999-2022 John Wiley & Sons, Inc.
图3 (a)Ti3C2Tx-PtSA的结构示意图;(b)Ti3C2Tx-PtSA与商业HER催化剂Pt/C的HER性能对比[81]
Fig. 3 (a)Schematic diagram of the structure of Ti3C2Tx-PtSA; (b)HER performance comparison of Ti3C2Tx-PtSA and commercial HER catalyst Pt/C[81]. Copyright ?2022, American Chemical Society
图4 (a)可充电锌空气电池示意图;(b)基于 Ti3C2Tx-CoBDC + Pt-C 和 IrO2 + Pt-C 配置的可充电锌空气电池的充电和放电极化曲线;(c)可充电锌空气电池在 0.8mA·cm -2电流密度下的充放电循环曲线;(d)由基于 Ti3C2Tx-CoBDC + Pt-C 对制造的锌空气电池供电的红色 LED 的照片[85]
Fig. 4 (a)Schematic illustration of a rechargeable Zn-air battery; (b)Charge and discharge polarization curves of the rechargeable Zn-air batteries based on the Ti3C2Tx-CoBDC + Pt-C and the IrO2 + Pt-C configurations.; (c)Charge and discharge cycling curves of the rechargeable Zn-air batteries at a current density of 0.8mA·cm-2; (d)Photograph of a red LED powered by the fabricated Zn-air battery based on the Ti3C2Tx-CoBDC + Pt-C pair[85]. Copyright ? 2017, American Chemical Society
图5 固定在 MXene 层(Zn-MXene)上用于锂成核和生长的单个锌原子的合成过程[94]
Fig. 5 Synthesis process of single zinc atoms immobilized on MXene layers (Zn-MXene)for the Li nucleation and growth.[94] Copyright ? 2022, American Chemical Society
[1]
Afewerki S, Cordova A. Topics in Current Chemistry, 2019, 377(6).
[2]
Dong X Q, Zhao Q Y, Li P, Chen C Y, Zhang X M. Org. Chem. Front., 2015, 2(10): 1425.

doi: 10.1039/C5QO00226E     URL    
[3]
Zhong C, Shi X D. Eur. J. Org. Chem., 2010, 2010(16): 2999.

doi: 10.1002/ejoc.201000004     URL    
[4]
Zhou W J, Zhang Y H, Gui Y Y, Sun L, Yu D G. Synthesis-Stuttgart, 2018, 50(17): 3359.

doi: 10.1055/s-0037-1610222     URL    
[5]
Dinesh S, Thirugnanam N, Anandan M, Barathan S, Anandhan N. J. Mater. Sci. Mater. Electron., 2016, 27(12): 12786.

doi: 10.1007/s10854-016-5411-7     URL    
[6]
Feng L L, Zhao W, Liu Y, Jiao L, Li X G. Acta Phys-Chim Sin, 2009, 25(7): 1347.

doi: 10.3866/PKU.WHXB20090707     URL    
[7]
Lang R, Xi W, Liu J C, Cui Y T, Li T B, Lee A F, Chen F, Chen Y, Li L, Li L, Lin J, Miao S, Liu X Y, Wang A Q, Wang X D, Luo J, Qiao B T, Li J, Zhang T. Nat Commun, 2019, 10: 10.

doi: 10.1038/s41467-018-07709-6     URL    
[8]
Cheng N C, Zhang L, Doyle-Davis K, Sun X L. Electrochem. Energy Rev., 2019, 2(4): 539.

doi: 10.1007/s41918-019-00050-6     URL    
[9]
Enterkin J A, Kennedy R M, Lu J L, Elam J W, Cook R E, Marks L D, Stair P C, Marshall C L, Poeppelmeier K R. Top. Catal., 2013, 56(18/20): 1829.

doi: 10.1007/s11244-013-0118-y     URL    
[10]
Huang M H, Madasu M. Nano Today, 2019, 28: 100768.

doi: 10.1016/j.nantod.2019.100768     URL    
[11]
Zhang M M, Lai C, Li B S, Liu S Y, Huang D L, Xu F H, Liu X G, Qin L, Fu Y K, Li L, Yi H, Chen L. Small, 2021, 17(29): 2007113.

doi: 10.1002/smll.202007113     URL    
[12]
Qiao B T, Wang A Q, Yang X F, Allard L F, Jiang Z, Cui Y T, Liu J Y, Li J, Zhang T. Nat. Chem., 2011, 3(8): 634.

doi: 10.1038/nchem.1095     URL    
[13]
Liang S X, Hao C, Shi Y T. ChemCatChem, 2015, 7(17): 2559.

doi: 10.1002/cctc.201500363     URL    
[14]
Wang Y, Mao J, Meng X G, Yu L, Deng D H, Bao X H. Chem. Rev., 2019, 119(3): 1806.

doi: 10.1021/acs.chemrev.8b00501     URL    
[15]
Chen Y J, Ji S F, Chen C, Peng Q, Wang D S, Li Y D. Joule, 2018, 2(7): 1242.

doi: 10.1016/j.joule.2018.06.019     URL    
[16]
Jeong H, Kwon O, Kim B S, Bae J, Shin S, Kim H E, Kim J, Lee H. Nat. Catal., 2020, 3(4): 368.

doi: 10.1038/s41929-020-0427-z     URL    
[17]
Wang H, Liu J X, Allard L F, Lee S, Liu J L, Li H, Wang J Q, Wang J, Oh S H, Li W, Flytzani-Stephanopoulos M, Shen M Q, Goldsmith B R, Yang M. Nat. Commun., 2019, 10: 3808.

doi: 10.1038/s41467-019-11856-9     pmid: 31444350
[18]
Yao Y G, Huang Z N, Xie P F, Wu L P, Ma L, Li T Y, Pang Z Q, Jiao M L, Liang Z Q, Gao J L, He Y, Kline D J, Zachariah M R, Wang C M, Lu J, Wu T P, Li T, Wang C, Shahbazian-Yassar R, Hu L B. Nat. Nanotechnol., 2019, 14(9): 851.

doi: 10.1038/s41565-019-0518-7     URL    
[19]
Zhang Z L, Zhu Y H, Asakura H, Zhang B, Zhang J G, Zhou M X, Han Y, Tanaka T, Wang A Q, Zhang T, Yan N. Nat. Commun., 2017, 8: 16100.

doi: 10.1038/ncomms16100     URL    
[20]
Lang R, Du X R, Huang Y K, Jiang X Z, Zhang Q, Guo Y L, Liu K P, Qiao B T, Wang A Q, Zhang T. Chem. Rev., 2020, 120(21): 11986.

doi: 10.1021/acs.chemrev.0c00797     pmid: 33112599
[21]
Fu J W, Wang S D, Wang Z H, Liu K, Li H, Liu H, Hu J H, Xu X W, Li H M, Liu M. Front. Phys., 2020, 15(3): 33201.

doi: 10.1007/s11467-019-0950-z     URL    
[22]
Dhanasekaran S, Gnanamoorthy R. Mater. Des., 2007, 28(4): 1135.

doi: 10.1016/j.matdes.2006.01.030     URL    
[23]
Dong X Y, Si Y N, Wang Q Y, Wang S, Zang S Q. Adv. Mater., 2021, 33(33): 2101568.

doi: 10.1002/adma.202101568     URL    
[24]
Fu Q, Draxl C. Phys. Rev. Lett., 2019, 122(4): 046101.

doi: 10.1103/PhysRevLett.122.046101     URL    
[25]
Wang X B, Ling E A P, Guan C, Zhang Q G, Wu W T, Liu P X, Zheng N F, Zhang D L, Lopatin S, Lai Z P, Huang K W. ChemSusChem, 2018, 11(20): 3543.

doi: 10.1002/cssc.201802327     URL    
[26]
Wang X B, Min S X, Das S K, Fan W, Huang K W, Lai Z P. J. Catal., 2017, 355: 101.

doi: 10.1016/j.jcat.2017.08.030     URL    
[27]
He T, Chen S M, Ni B, Gong Y, Wu Z, Song L, Gu L, Hu W P, Wang X. Angew. Chem. Int. Ed., 2018, 57(13): 3493.

doi: 10.1002/anie.201800817     URL    
[28]
Song Q Q, Li J Q, Wang L, Qin Y, Pang L Y, Liu H. J. Catal., 2019, 370: 176.

doi: 10.1016/j.jcat.2018.12.021     URL    
[29]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.

doi: 10.1002/adma.201102306     URL    
[30]
Li J, Li X, van der Bruggen B. Environ. Sci.: Nano, 2020, 7(5): 1289.
[31]
Liu A M, Liang X Y, Ren X F, Guan W X, Gao M F, Yang Y N, Yang Q Y, Gao L G, Li Y Q, Ma T L. Adv. Funct. Mater., 2020, 30(38): 2003437.

doi: 10.1002/adfm.202003437     URL    
[32]
Im J K, Sohn E J, Kim S, Jang M, Son A, Zoh K D, Yoon Y. Chemosphere, 2021, 270: 129478.

doi: 10.1016/j.chemosphere.2020.129478     URL    
[33]
LÓpez-Polín G, GÓmez-Navarro C, Parente V, Guinea F, Katsnelson M I, Pérez-Murano F, GÓmez-Herrero J. Nat. Phys., 2015, 11(1): 26.

doi: 10.1038/nphys3183     URL    
[34]
Vicarelli L, Heerema S J, Dekker C, Zandbergen H W. ACS Nano, 2015, 9(4): 3428.

doi: 10.1021/acsnano.5b01762     pmid: 25864552
[35]
Bourrellier R, Meuret S, Tararan A, Stéphan O, Kociak M, Tizei L H G, Zobelli A. Nano Lett., 2016, 16(7): 4317.

doi: 10.1021/acs.nanolett.6b01368     pmid: 27299915
[36]
Liu Y Y, Zou X L, Yakobson B I. ACS Nano, 2012, 6(8): 7053.

doi: 10.1021/nn302099q     URL    
[37]
Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C. Nano Lett., 2013, 13(6): 2615.

doi: 10.1021/nl4007479     pmid: 23659662
[38]
Luo J C, Gao S J, Luo H, Wang L, Huang X W, Guo Z, Lai X J, Lin L W, Li R K Y, Gao J F. Chem. Eng. J., 2021, 406: 126898.

doi: 10.1016/j.cej.2020.126898     URL    
[39]
Wu X Y, Han B Y, Zhang H B, Xie X, Tu T X, Zhang Y, Dai Y, Yang R, Yu Z Z. Chem. Eng. J., 2020, 381: 122622.

doi: 10.1016/j.cej.2019.122622     URL    
[40]
Zhong Q, Li Y, Zhang G K. Chem. Eng. J., 2021, 409: 128099.

doi: 10.1016/j.cej.2020.128099     URL    
[41]
Oral A, Grimble R A, Özer H Ö, Pethica J B. Rev. Sci. Instrum., 2003, 74(8): 3656.

doi: 10.1063/1.1593786     URL    
[42]
Yu R, Hu L H, Cheng Z Y, Li Y D, Ye H Q, Zhu J. Phys. Rev. Lett., 2010, 105(22): 226101.

doi: 10.1103/PhysRevLett.105.226101     URL    
[43]
Giannozzi P, Andreussi O, Brumme T, Bunau O, Buongiorno Nardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, dal Corso A, de Gironcoli S, Delugas P, DiStasio R A, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko H Y, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen N L, Nguyen H V, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen A P, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S. J. Phys.: Condens. Matter, 2017, 29(46): 465901.
[44]
Kim M C, Sim E, Burke K. Phys. Rev. Lett., 2013, 111(7): 073003.

doi: 10.1103/PhysRevLett.111.073003     URL    
[45]
Fu B, Sun J X, Wang C, Shang C, Xu L J, Li J B, Zhang H. Small, 2021, 17(11): 2170048.

doi: 10.1002/smll.202170048     URL    
[46]
Wei Y, Zhang P, Soomro R A, Zhu Q Z, Xu B. Adv. Mater., 2021, 33(39): 2103148.

doi: 10.1002/adma.202103148     URL    
[47]
Shi H H, Zhang P P, Liu Z C, Park S, Lohe M R, Wu Y P, Shaygan Nia A, Yang S, Feng X L. Angew. Chem. Int. Ed., 2021, 60(16): 8689.

doi: 10.1002/anie.202015627     URL    
[48]
Maleski K, Mochalin V N, Gogotsi Y. Chem Mat, 2017, 29(4): 1632.

doi: 10.1021/acs.chemmater.6b04830     URL    
[49]
Khazaei M, Ranjbar A, Arai M, Sasaki T, Yunoki S. J Mater Chem C, 2017, 5(10): 2488.

doi: 10.1039/C7TC00140A     URL    
[50]
Huang K, Li Z J, Lin J, Han G, Huang P. Chem. Soc. Rev., 2018, 47(14): 5109.

doi: 10.1039/c7cs00838d     pmid: 29667670
[51]
Anasori B, Xie Y, Beidaghi M, Lu J, Hosler B C, Hultman L, Kent P R C, Gogotsi Y, Barsoum M W. ACS Nano, 2015, 9(10): 9507.

doi: 10.1021/acsnano.5b03591     pmid: 26208121
[52]
Anasori B, Shi C Y, Moon E J, Xie Y, Voigt C A, Kent P R C, May S J, Billinge S J L, Barsoum M W, Gogotsi Y. Nanoscale Horiz, 2016, 1(3): 227.

doi: 10.1039/c5nh00125k     pmid: 32260625
[53]
Bu F X, Zagho M M, Ibrahim Y, Ma B, Elzatahry A, Zhao D Y. Nano Today, 2020, 30: 100803.

doi: 10.1016/j.nantod.2019.100803     URL    
[54]
Zhang C J, Kim S J, Ghidiu M, Zhao M Q, Barsoum M W, Nicolosi V, Gogotsi Y. Adv. Funct. Mater., 2016, 26(23): 4143.

doi: 10.1002/adfm.201600682     URL    
[55]
Enyashin A N, Ivanovskii A L. J. Phys. Chem. C, 2013, 117(26): 13637.

doi: 10.1021/jp401820b     URL    
[56]
Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, Näslund L Å, May S J, Hultman L, Gogotsi Y, Eklund P, Barsoum M W. Chem. Mater., 2014, 26(7): 2374.

doi: 10.1021/cm500641a     URL    
[57]
Le T A, Bui Q V, Tran N Q, Cho Y, Hong Y, Kawazoe Y, Lee H. ACS Sustainable Chem. Eng., 2019, 7(19): 16879.

doi: 10.1021/acssuschemeng.9b04470     URL    
[58]
Hart J L, Hantanasirisakul K, Lang A C, Anasori B, Pinto D, Pivak Y, van Omme J T, May S J, Gogotsi Y, Taheri M L. Nat. Commun., 2019, 10: 522.

doi: 10.1038/s41467-018-08169-8     URL    
[59]
Hu T, Zhang H, Wang J M, Li Z J, Hu M M, Tan J, Hou P X, Li F, Wang X H. Sci. Rep., 2015, 5: 16329.

doi: 10.1038/srep16329     URL    
[60]
Zhang X, Zhao X D, Wu D H, Jing Y, Zhou Z. Nanoscale, 2015, 7(38): 16020.

doi: 10.1039/c5nr04717j     pmid: 26370829
[61]
Liu L C, Corma A. Nat. Rev. Mater., 2021, 6(3): 244.

doi: 10.1038/s41578-020-00250-3     URL    
[62]
Xing J, Chen J F, Li Y H, Yuan W T, Zhou Y, Zheng L R, Wang H F, Hu P, Wang Y, Zhao H J, Wang Y, Yang H G. Chem. Eur. J., 2014, 20(8): 2138.

doi: 10.1002/chem.201303366     URL    
[63]
Liu J C, Wang Y G, Li J. J. Am. Chem. Soc., 2017, 139(17): 6190.

doi: 10.1021/jacs.7b01602     URL    
[64]
Tang N F, Cong Y, Shang Q H, Wu C T, Xu G L, Wang X D. ACS Catal., 2017, 7(9): 5987.

doi: 10.1021/acscatal.7b01816     URL    
[65]
Wan J W, Chen W X, Jia C Y, Zheng L R, Dong J C, Zheng X S, Wang Y, Yan W S, Chen C, Peng Q, Wang D S, Li Y D. Adv. Mater., 2018, 30(11): 1705369.

doi: 10.1002/adma.201705369     URL    
[66]
Zhang J, Wu X, Cheong W C, Chen W X, Lin R, Li J, Zheng L R, Yan W S, Gu L, Chen C, Peng Q, Wang D S, Li Y D. Nat. Commun., 2018, 9: 1002.

doi: 10.1038/s41467-018-03380-z     pmid: 29520021
[67]
Peng W, Luo M, Xu X D, Jiang K, Peng M, Chen D C, Chan T S, Tan Y W. Adv. Energy Mater., 2020, 10(25): 2070110.

doi: 10.1002/aenm.202070110     URL    
[68]
Zhao D, Chen Z, Yang W J, Liu S J, Zhang X, Yu Y, Cheong W C, Zheng L R, Ren F Q, Ying G B, Cao X, Wang D S, Peng Q, Wang G X, Chen C. J Am Chem Soc, 2019, 141(9): 4086.

doi: 10.1021/jacs.8b13579     pmid: 30699294
[69]
Zhang J Q, Zhao Y F, Guo X, Chen C, Dong C L, Liu R S, Han C P, Li Y D, Gogotsi Y, Wang G X. Nat. Catal., 2018, 1(12): 985.

doi: 10.1038/s41929-018-0195-1     URL    
[70]
Tauster S J, Fung S C, Garten R L. J. Am. Chem. Soc., 1978, 100(1): 170.

doi: 10.1021/ja00469a029     URL    
[71]
Han B, Guo Y L, Huang Y K, Xi W, Xu J, Luo J, Qi H F, Ren Y J, Liu X Y, Qiao B T, Zhang T. Angew. Chem. Int. Ed., 2020, 59(29): 11824.

doi: 10.1002/anie.202003208     URL    
[72]
Dong J H, Fu Q, Jiang Z, Mei B B, Bao X H. J. Am. Chem. Soc., 2018, 140(42): 13808.

doi: 10.1021/jacs.8b08246     URL    
[73]
Li Z, Cui Y R, Wu Z W, Milligan C, Zhou L, Mitchell G, Xu B, Shi E Z, Miller J T, Ribeiro F H, Wu Y. Nat. Catal., 2018, 1(5): 349.

doi: 10.1038/s41929-018-0067-8     URL    
[74]
Li Z, Xiao Y, Chowdhury P R, Wu Z W, Ma T, Chen J Z, Wan G, Kim T H, Jing D P, He P L, Potdar P J, Zhou L, Zeng Z H, Ruan X L, Miller J T, Greeley J P, Wu Y, Varma A. Nat. Catal., 2021, 4(10): 882.

doi: 10.1038/s41929-021-00686-y     URL    
[75]
Ramalingam V, Varadhan P, Fu H C, Kim H, Zhang D L, Chen S M, Song L, Ma D, Wang Y, Alshareef H N, He J H. Adv. Mater., 2019, 31(48): 1903841.

doi: 10.1002/adma.201903841     URL    
[76]
Kuznetsov D A, Chen Z X, Kumar P V, Tsoukalou A, Kierzkowska A, Abdala P M, Safonova O V, Fedorov A, Müller C R. J. Am. Chem. Soc., 2019, 141(44): 17809.

doi: 10.1021/jacs.9b08897     pmid: 31540549
[77]
Kuznetsov D A, Chen Z X, Abdala P M, Safonova O V, Fedorov A, Müller C R. J. Am. Chem. Soc., 2021, 143(15): 5771.

doi: 10.1021/jacs.1c00504     URL    
[78]
Kan D X, Wang D S, Zhang X L, Lian R Q, Xu J, Chen G, Wei Y J. J. Mater. Chem. A, 2020, 8(6): 3097.

doi: 10.1039/C9TA12255A     URL    
[79]
Chen G, Ding M M, Zhang K, Shen Z, Wang Y T, Ma J, Wang A, Li Y P, Xu H. ChemSusChem, 2022, 15(3): e202200040.
[80]
Wang L, Sofer Z, Pumera M. Nanoscale, 2019, 11(23): 11083.

doi: 10.1039/c9nr03557e     pmid: 31144694
[81]
Zhang J J, Wang E Q, Cui S Q, Yang S B, Zou X L, Gong Y J. Nano Lett., 2022, 22(3): 1398.

doi: 10.1021/acs.nanolett.1c04809     URL    
[82]
Lin W J, Lu Y R, Peng W, Luo M, Chan T S, Tan Y W. J. Mater. Chem. A, 2022, 10(18): 9878.

doi: 10.1039/D2TA00550F     URL    
[83]
Shang H S, Sun W M, Sui R, Pei J J, Zheng L R, Dong J C, Jiang Z L, Zhou D N, Zhuang Z B, Chen W X, Zhang J T, Wang D S, Li Y D. Nano Lett., 2020, 20(7): 5443.

doi: 10.1021/acs.nanolett.0c01925     URL    
[84]
Zhang J T, Zhang T, Ma J, Wang Z, Liu J H, Gong X Z. Carbon, 2021, 172: 556.

doi: 10.1016/j.carbon.2020.10.075     URL    
[85]
Zhao L, Dong B L, Li S Z, Zhou L J, Lai L F, Wang Z W, Zhao S L, Han M, Gao K, Lu M, Xie X J, Chen B, Liu Z D, Wang X J, Zhang H, Li H, Liu J Q, Zhang H, Huang X, Huang W. ACS Nano, 2017, 11(6): 5800.

doi: 10.1021/acsnano.7b01409     pmid: 28514161
[86]
Ma N G, Wang Y H, Zhang Y Q, Liang B C, Zhao J, Fan J. Appl. Surf. Sci., 2022, 596: 153574.

doi: 10.1016/j.apsusc.2022.153574     URL    
[87]
Li L, Wang X Y, Guo H R, Yao G, Yu H B, Tian Z Q, Li B H, Chen L. Small Methods, 2019, 3(11): 1900337.

doi: 10.1002/smtd.201900337     URL    
[88]
Huang B, Li N, Ong W J, Zhou N G. J. Mater. Chem. A, 2019, 7(48): 27620.

doi: 10.1039/c9ta09776g    
[89]
Niu K F, Chi L F, Rosen J, Björk J. J. Phys. Chem. Lett., 2022, 13(12): 2800.

doi: 10.1021/acs.jpclett.2c00195     URL    
[90]
Li Z D, Attanayake N H, Blackburn J L, Miller E M. Energy Environ. Sci., 2021, 14(12): 6242.

doi: 10.1039/D1EE03211A     URL    
[91]
Posada-Pérez S, Ramírez P J, Gutiérrez R A, Stacchiola D J, Viñes F, Liu P, Illas F, Rodriguez J A. Catal. Sci. Technol., 2016, 6(18): 6766.

doi: 10.1039/C5CY02143J     URL    
[92]
Zhao Q, Zhang C, Hu R M, Du Z G, Gu J N, Cui Y, Chen X, Xu W J, Cheng Z J, Li S M, Li B, Liu Y F, Chen W H, Liu C T, Shang J X, Song L, Yang S B. ACS Nano, 2021, 15(3): 4927.

doi: 10.1021/acsnano.0c09755     pmid: 33617242
[93]
Li N, Peng J H, Shi Z H, Zhang P, Li X. Chin. J. Catal., 2022, 43(7): 1906.

doi: 10.1016/S1872-2067(21)64018-4     URL    
[94]
Gu J N, Zhu Q, Shi Y Z, Chen H, Zhang D, Du Z G, Yang S B. ACS Nano, 2020, 14(1): 891.

doi: 10.1021/acsnano.9b08141     URL    
[95]
Zhang K, Chen Z X, Ning R Q, Xi S B, Tang W, Du Y H, Liu C B, Ren Z Y, Chi X, Bai M H, Shen C, Li X, Wang X W, Zhao X X, Leng K, Pennycook S J, Li H P, Xu H, Loh K P, Xie K Y. ACS Appl Mater Interfaces, 2019, 11(28): 25147.

doi: 10.1021/acsami.9b05628     URL    
[96]
Zhang D, Wang S, Hu R M, Gu J N, Cui Y, Li B, Chen W H, Liu C T, Shang J X, Yang S B. Adv. Funct. Mater., 2020, 30(30): 2002471.

doi: 10.1002/adfm.202002471     URL    
[97]
Guo X, Gao H, Wang S J, Yang G, Zhang X Y, Zhang J Q, Liu H, Wang G X. Nano Lett., 2022, 22(3): 1225.

doi: 10.1021/acs.nanolett.1c04389     URL    
[98]
Aamir I, Junpyo H, Tae Y K, Chong M K. Nano Convergene, 2021, 8(1): 1.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 李兴龙, 傅尧. 糠醛氧化合成糠酸[J]. 化学进展, 2022, 34(6): 1263-1274.
[3] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[4] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[5] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[6] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[7] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[8] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[9] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
[10] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[11] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[12] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[13] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[14] 曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
[15] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.