English
新闻公告
More
化学进展 2020, Vol. 32 Issue (7): 895-905 DOI: 10.7536/PC191226 前一篇   后一篇

• 综述 •

共价有机框架材料在固定化酶及模拟酶领域的应用

侯晨1,**(), 陈文强1, 付琳慧1, 张素风1, 梁辰2   

  1. 1. 陕西科技大学 轻工科学与工程学院 陕西省造纸技术及特种纸品开发重点实验室 中国轻工业纸基功能材料重点实验室 西安 710021
    2. 广西清洁化制浆造纸与污染控制重点实验室 南宁 530004
  • 收稿日期:2019-12-27 出版日期:2020-07-24 发布日期:2020-07-10
  • 通讯作者: 侯晨
  • 基金资助:
    广西清洁化制浆造纸与污染控制重点实验室开放基金项目(KF20171)

Covalent Organic Frameworks(COFs) Materials in Enzyme Immobilization and Mimic Enzymes

Chen Hou1,**(), Wenqiang Chen1, Linhui Fu1, Sufeng Zhang1, Chen Liang2   

  1. 1. College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an 710021, China
    2. Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
  • Received:2019-12-27 Online:2020-07-24 Published:2020-07-10
  • Contact: Chen Hou
  • About author:
  • Supported by:
    Guangxi Key Laboratory of Clean Pulping, Papermaking, and Pollution Control Opening Fund(KF20171)

共价有机框架(Covalent Organic Frameworks, COFs)是一类由轻质元素通过可逆共价键连接而成的晶型多孔有机材料。因具有高比表面积、低密度、规则的孔隙和易于功能化等独特的性能和结构,COFs在气体吸附、化学传感和非均相催化等领域有着广泛的应用前景。近年来,COFs逐渐显现出在固定化酶和模拟酶领域的应用潜力,由于可以轻松定制COF上的官能团以保持COF与酶之间的特定相互作用,因此COF成为有吸引力的酶固定基质。此外,COF的连续且封闭的开放通道为渗透酶提供了良好的微环境。同时,探索了COF模拟酶的特征,通过“从下到上”的方法或后修饰策略设计了COF模拟酶。这不仅扩展了固定化酶载体材料的研究和应用范围,还为模拟酶仿生催化提供了新的研究思路。本文综述了COFs固定化酶和作为纳米材料模拟酶(纳米酶)在生物催化领域的研究进展,详细讨论了COFs载体的合成和功能化策略、固定化酶方式,以及COFs纳米酶的设计理念、催化活性和选择性等内容。最后总结了目前COFs在酶催化领域所面临的挑战和未来发展的机遇。

Covalent organic frameworks(COFs) are a class of crystalline porous organic material, constructed with light elements by reversible covalent bonds. Due to their high surface area, low density, regular channel structure and facile functionalization, COFs have attracted much attention and shown high perspectives in gas adsorption, chemical sensing, heterogeneous catalysis, etc. Recently, COFs have shown potential applications in enzyme immobilization and mimic enzymes. COFs present an attractive category of enzyme immobilization matrix, because the functional groups on COFs can be readily tailored to hold specific interactions between COFs and enzymes. Moreover, the continuous and confined open channels of COFs provide a favorable micro-environment for infiltrating enzymes. Meanwhile, the mimic enzyme features of COFs are explored, COF mimic enzymes are designed either by “from bottom to top” method or post modification strategy. As a result, not only the carrier materials for enzyme immobilization are expanded, but also it provides new ideas for biomimetic catalysis of mimic enzymes. This review focuses on recent advances of COFs immobilized enzyme and COFs mimic enzymes(nanozyme) applied in biocatalysis. Special emphasis is placed on the deliberation of synthetic and functional strategies, immobilization methods of COFs carrier, as well as the design concept, catalytic activity and selectivity of COFs mimic enzymes. Finally, the remaining challenges of COFs in enzyme catalysis and prospects in this field are summarized.

Contents

1 Introduction

2 Application of COFs materials in enzyme catalysis

2.1 COFs as immobilized enzyme carriers

2.2 COFs as mimic enzymes

3 Conclusion and outlook

()
图1 COF-ETTA-EDDA合成示意图[37]
Fig.1 The synthetic procedure for COF-ETTA- EDDA[37]
图2 CON(TpBD)合成示意图[41]
Fig.2 Synthesis of CON(TpBD)[41]
图3 (a)COF 1合成示意图;(b)COF 1共价固定手性生物分子示意图[47]
Fig.3 (a) Synthesis reaction of COF 1;(b) Illustration of the covalent strategy to bond various biomolecules with COFs[47]
图4 (a)SNW-1合成示意图;(b)cellulase@poly(GMA-EDMA-SNW-1)整体柱制备示意图[48]
Fig.4 (a) Preparation of SNW-1;(b) Fabrication of cellulase@poly(GMA-EDMA-SNW-1) capillary monolithic column[48]
表1 各种多孔材料结构参数及脂肪酶负载量[29]
Table 1 Textural parameters of various porous materials before and after loading of lipase PS as well as the corresponding loading capacity[29]
图5 ETTA-TPAL合成和GOD和MP-11自组装示意图[49]
Fig.5 Schematic illustration of ETTA-TPAL synthesis and the assembly of both GOD and MP-11 into the pores of COFETTA-TPAL[49]
图6 含铁卟啉的2D COF仿生氧化催化剂[51]
Fig.6 2D COFs containing iron porphyrin used as biomimetic oxidation catalyst[51]
表2 不同催化剂催化效率对比[51]
Table 2 Kinetic parameters for the oxidation of substrates by different catalysts[51]
图7 DCB通过微波增强高温离子热法合成CTF-1[35]
Fig.7 Illustration of the trimerization of DCB to yield CTF-1 by using a microwave-enhanced high-temperature ionothermal method[35]
表3 Fe-COF稳态动力学拟合参数V max和K m的比较[24]
Table 3 Comparison of the steady-state kinetic fitting parameters V max and K m[24]
图8 Fe-COF比色法检测葡萄糖[24]
Fig.8 Colorimetric sensor for glucose detection using the Fe-COF as the catalyst[24]
图9 PTAZo-Au比色检测Hg2+ [59]
Fig.9 PTAZo-Au for colorimetric detection of H2+ [59]
表4 PTAZo-Au和其他材料检测性能对比[59]
Table 4 Comparison of detection performances of PTAZo-Au and other materials[59]
图10 铜修饰的共价三嗪框架合成示意图[64]
Fig.10 Synthesis of the copper-modified covalent triazine framework(CCTF)[64]
表5 Cu2+比色检测效果对比[65]
Table 5 Comparison of several colorimetric methods for Cu2+detection[65]
图11 AuNPs@Tp-Bpy合成示意图[72]
Fig.11 Synthesis of AuNPs@Tp-Bpy[72]
[1]
丁慧敏(Ding H M), 喻娜(Yu N), 汪成(Wang C) . 中国科学:化学 (Scientia Sinica Chimica), 2016,46(7):625.
[2]
Ennaert T , Aelst J V , Dijkmans J , Clercq R D , Schutyser W , Dusselier M , Verboekend D , Sels B F . Chem. Soc. Rev., 2016,45:584. doi: 10.1039/c5cs00859j https://www.ncbi.nlm.nih.gov/pubmed/26691750

URL     pmid: 26691750
[3]
Cui Y J , Li B , He H J , Zhou W , Chen B L , Qian G D . Acc. Chem. Res., 2016,49:483. https://www.ncbi.nlm.nih.gov/pubmed/26878085

URL     pmid: 26878085
[4]
Das S , Heasman P , Ben T , Qiu S L . Chem. Rev., 2017,117:1515. https://www.ncbi.nlm.nih.gov/pubmed/28035812

URL     pmid: 28035812
[5]
Tan L X , Tan B . Chem. Soc. Rev., 2017,46:3322. doi: 10.1039/c6cs00851h https://www.ncbi.nlm.nih.gov/pubmed/28224148

URL     pmid: 28224148
[6]
Bezzu C G , Carta M , Tonkins A , Jansen J C , Bernardo P , Bazzarelli F , McKeown N B . Adv. Mater., 2012,24:5930. doi: 10.1002/adma.201202393 https://www.ncbi.nlm.nih.gov/pubmed/22961917

URL     pmid: 22961917
[7]
Du R , Zheng Z , Mao N , Zhang N , Hu W P , Zhang J . Adv. Sci., 2015,2:1400006. doi: 10.1002/advs.201400006 http://doi.wiley.com/10.1002/advs.201400006
[8]
Ben T , Ren H , Ma S , Cao D , Lan J , Jing X , Wang W , Xu J , Deng F , Simmons J M , Qiu S , Zhu G . Angew. Chem. Int. Ed., 2009,48:9457. doi: 10.1002/anie.200904637 http://doi.wiley.com/10.1002/anie.200904637
[9]
Kuhn P , Antonietti M , Thomas A . Angew. Chem. Int. Ed., 2008,47:3450. doi: 10.1002/(ISSN)1521-3773 http://doi.wiley.com/10.1002/%28ISSN%291521-3773
[10]
Ding S Y , Wang W . Chem. Soc. Rev., 2013,42:548. doi: 10.1039/c2cs35072f https://www.ncbi.nlm.nih.gov/pubmed/23060270

URL     pmid: 23060270
[11]
Feng X , Ding X S , Jiang D L . Chem. Soc. Rev., 2012,41:6010. doi: 10.1039/c2cs35157a https://www.ncbi.nlm.nih.gov/pubmed/22821129

URL     pmid: 22821129
[12]
周婷(Zhou T), 龚祎凡(Gong Y F), 郭佳(Guo J) . 功能高分子学报 (Journal of Functional Polymers), 2018,31(3):189.
[13]
Côté A P , Benin A I , Ockwig N W , O’Keeffe M , Matzger A J , Yaghi O M . Science, 2005,310:1166. https://www.ncbi.nlm.nih.gov/pubmed/16293756

URL     pmid: 16293756
[14]
Nagai A , Guo Z Q , Feng X , Jin S B , Chen X , Ding X S , Jiang D L . Nat. Commun., 2011,2:536. doi: 10.1038/ncomms1542 https://www.ncbi.nlm.nih.gov/pubmed/22086337

URL     pmid: 22086337
[15]
Uribe-Romo F J , Hunt J R , Furukawa H , Klock C , O’Keeffe M , Yaghi O M . J. Am. Chem. Soc., 2009,131:4570. https://www.ncbi.nlm.nih.gov/pubmed/19281246

URL     pmid: 19281246
[16]
Chan-Thaw C E , Villa A , Prati L , Thomas A . Chem. Eur. J., 2011,17:1052. https://www.ncbi.nlm.nih.gov/pubmed/21226123

URL     pmid: 21226123
[17]
El-Kaderi H M , Hunt J R , Mendoza-Cortés J L , Côté A P , Taylor R E , O’Keeffe M , Yaghi O M . Science, 2007,316:268. doi: 10.1126/science.1139915 https://www.ncbi.nlm.nih.gov/pubmed/17431178

URL     pmid: 17431178
[18]
Ding S Y , Gao J , Wang Q , Zhang Y , Song W G , Su C Y , Wang W . J. Am. Chem. Soc., 2011,133:19816. doi: 10.1021/ja206846p 53aebe2e-129c-4963-95b4-c62a0c87a2d0 http://dx.doi.org/10.1021/ja206846p
[19]
Furukawa H , Yaghi O M . J. Am. Chem. Soc., 2009,131:8875. https://www.ncbi.nlm.nih.gov/pubmed/19496589

URL     pmid: 19496589
[20]
Wan S , Guo J , Kim J , Ihee H , Jiang D L . Angew. Chem. Int. Ed., 2009,48:5439. doi: 10.1002/anie.v48:30 http://doi.wiley.com/10.1002/anie.v48%3A30
[21]
Schmid A , Dordick J S , Hauer B , Kiener A , Wubbolts M , Witholt B . Nature, 2001,409:258. https://www.ncbi.nlm.nih.gov/pubmed/11196655

URL     pmid: 11196655
[22]
Mohamad N R , Marzuki N H C , Buang N A , Huyop F, Wahab R A . Biotechnol Biotec Eq., 2015,29:205. doi: 10.1080/13102818.2015.1008192 http://www.tandfonline.com/doi/abs/10.1080/13102818.2015.1008192
[23]
Wang Q Q , Wei H , Zhang Z Q , Wang E , Dong S J . Trac-Trend. Anal. Chem., 2018,105:218. doi: 10.1016/j.trac.2018.05.012 https://linkinghub.elsevier.com/retrieve/pii/S0165993617304752
[24]
Wang J N , Yang X , Wei T X , Bao J C , Zhu Q S , Dai Z H . ACS Appl. Bio Mater., 2018,1:382. doi: 10.1021/acsabm.8b00104 https://pubs.acs.org/doi/10.1021/acsabm.8b00104
[25]
Mateo C , Palomo J M , Fernandez-Lorente G , Guisan J M , Fernandez-Lafuente R . Enzyme Microb. Tech., 2007,40:1451. doi: 10.1016/j.enzmictec.2007.01.018 https://linkinghub.elsevier.com/retrieve/pii/S0141022907000506
[26]
Rodrigues R C , Ortiz C , Berenguer-Murcia A , Torres R , Fernandez-Lafuente R . Chem. Soc. Rev., 2013,42:6290. https://www.ncbi.nlm.nih.gov/pubmed/23059445

URL     pmid: 23059445
[27]
Vinu A , Murugesan V , Tangermann O , Hartmann M . Chem. Mater., 2004,16:3056. doi: 10.1021/cm049718u https://pubs.acs.org/doi/10.1021/cm049718u
[28]
Song Y P , Sun Q , Aguila B , Ma S Q . Adv. Sci., 2018,10:1002.
[29]
Sun Q , Fu C W , Aguila B , Perman J , Wang S , Huang H Y , Xiao S F , Ma S Q . J. Am. Chem. Soc., 2018,140:984. doi: 10.1021/jacs.7b10642 https://www.ncbi.nlm.nih.gov/pubmed/29275637

URL     pmid: 29275637
[30]
Gao L Z , Zhuang J , Nie L , Zhang J B , Zhang Y , Gu N , Wang T H , Feng J , Yang D L , Perrett S , Yan X Y . Nat. Nanotechnol., 2007,2:577. https://www.ncbi.nlm.nih.gov/pubmed/18654371

URL     pmid: 18654371
[31]
Wang S , Chen W , Liu A L , Hong L , Deng H H , Lin X H . ChemPhysChem, 2012,13:1199. https://www.ncbi.nlm.nih.gov/pubmed/22383315

URL     pmid: 22383315
[32]
Lin Y H , Ren J S , Qu X G . Adv. Mater., 2014,26:4200. doi: 10.1002/adma.201400238 ce451c9f-9fa9-47ab-98ae-686650e61518 http://dx.doi.org/10.1002/adma.201400238
[33]
Song Y J , Qu K G , Zhao C , Ren J S , Qu X G . Adv. Mater., 2010,22:2206. doi: 10.1002/adma.200903783 https://www.ncbi.nlm.nih.gov/pubmed/20564257

URL     pmid: 20564257
[34]
Ai L H , Li L L , Zhang C H , Fu J , Jiang J . Chem. Eur. J., 2013,19:15105. doi: 10.1002/chem.201303051 https://www.ncbi.nlm.nih.gov/pubmed/24150880

URL     pmid: 24150880
[35]
He J , Xu F J , Hu J , Wang S L , Hou X D , Long Z . Microchem. J., 2017,135:91. doi: 10.1016/j.microc.2017.08.009 https://linkinghub.elsevier.com/retrieve/pii/S0026265X17307701
[36]
Kandambeth S , Venkatesh V , Shinde D B , Kumari S , Halder A , Verma S , Banerjee R . Nat. Commun., 2015,6:6786. doi: 10.1038/ncomms7786 https://www.ncbi.nlm.nih.gov/pubmed/25858416

URL     pmid: 25858416
[37]
Sun Q , Aguila B , Lan P C , Ma S Q . Adv. Mater., 2019,31:1900008. doi: 10.1002/adma.v31.19 https://onlinelibrary.wiley.com/toc/15214095/31/19
[38]
Su D , Feng B , Xu P , Zeng Q , Shan B , Song Y G . Anal. Methods., 2018,10:4320. doi: 10.1039/C8AY01386A http://xlink.rsc.org/?DOI=C8AY01386A
[39]
Ni T H , Zhang D W , Wang J , Wang S , Liu H L , Sun B G . Sensor. Actuat. B-Chem., 2018,269:340. doi: 10.1016/j.snb.2018.04.172 https://linkinghub.elsevier.com/retrieve/pii/S0925400518308864
[40]
Li Z , Yang Y W . J. Mater. Chem. B, 2017,5:9278. doi: 10.1039/c7tb02647a https://www.ncbi.nlm.nih.gov/pubmed/32264531

URL     pmid: 32264531
[41]
Kong W F , Wan J X , Namuangruk S , Guo J , Wang C C . Sci. Rep., 2018,8:5529. doi: 10.1038/s41598-018-23744-1 https://www.ncbi.nlm.nih.gov/pubmed/29615680

URL     pmid: 29615680
[42]
Su L J , Zhang Z , Xiong Y H . Nanoscale, 2018,10:20120. https://www.ncbi.nlm.nih.gov/pubmed/30376033

URL     pmid: 30376033
[43]
Wang H P , Jiao F L , Gao F Y , Zhao X Y , Zhao Y , Shen Y H , Zhang Y J , Qian X H . Anal. Bioanal. Chem., 2017,409:2179. doi: 10.1007/s00216-016-0163-z https://www.ncbi.nlm.nih.gov/pubmed/28078417

URL     pmid: 28078417
[44]
Shi C , Deng C , Li Y , Zhang X , Yang P . Proteomics., 2014,14:1457. doi: 10.1002/pmic.201300487 https://www.ncbi.nlm.nih.gov/pubmed/24723515

URL     pmid: 24723515
[45]
Zhao M , Zhang X , Deng C . Chem. Commun., 2015,51:8116. doi: 10.1039/C5CC01908G http://xlink.rsc.org/?DOI=C5CC01908G
[46]
Cheng G , Chen P , Wang Z G , Sui X J , Zhang J L , Ni J Z . Anal. Chim. Acta, 2014,812:65. doi: 10.1016/j.aca.2013.12.035 https://www.ncbi.nlm.nih.gov/pubmed/24491766

URL     pmid: 24491766
[47]
Zhang S N , Zheng Y L , An H D , Aguila B , Yang C X , Dong Y Y , Xie W , Cheng P , Zhang Z J , Chen Y , Ma S Q . Angew. Chem. Int. Ed., 2018,57:16754. doi: 10.1002/anie.v57.51 https://onlinelibrary.wiley.com/toc/15213773/57/51
[48]
Xu S J , Wang Y Y , Li W , Ji Y B . J. Chromatogr. A, 2019,1602:481. https://www.ncbi.nlm.nih.gov/pubmed/31230876

URL     pmid: 31230876
[49]
Wang L , Liang H H , Xu M L , Wang L Y , Xie Y , Song Y H . Sensor. Actuat. B-Chem., 2019,298:126859. doi: 10.1016/j.snb.2019.126859 https://linkinghub.elsevier.com/retrieve/pii/S0925400519310585
[50]
Wang K , Qi D D , Li Y L , Wang T Y , Liu H B , Jiang J Z . Coordin. Chem. Rev., 2017,378:188. doi: 10.1016/j.ccr.2017.08.023 https://linkinghub.elsevier.com/retrieve/pii/S0010854517304010
[51]
Wang X S , Chrzanowski M , Yuan D Q , Sweeting B S , Ma S Q . Chem. Mater., 2014,26:1639. doi: 10.1021/cm403860t https://pubs.acs.org/doi/10.1021/cm403860t
[52]
Xue T , Jiang S , Qu Y , Su Q , Cheng R , Dubin S , Chiu C Y , Kaner R , Huang Y , Duan X . Angew. Chem. Int. Ed., 2012,51:3822. doi: 10.1002/anie.v51.16 http://doi.wiley.com/10.1002/anie.v51.16
[53]
Feng D , Gu Z Y , Li J R , Jiang H L , Wei Z , Zhou H C . Angew. Chem. Int. Ed., 2012,51:10307. doi: 10.1002/anie.201204475 http://doi.wiley.com/10.1002/anie.201204475
[54]
Kuhn P , Antonietti M , Thomas A . Angew. Chem. Int. Ed., 2008,47:3450. doi: 10.1002/(ISSN)1521-3773 http://doi.wiley.com/10.1002/%28ISSN%291521-3773
[55]
Artz J . ChemCatChem., 2018,10:1753. doi: 10.1002/cctc.v10.8 http://doi.wiley.com/10.1002/cctc.v10.8
[56]
Dong, Y M , Zhang J J , Jiang P P , Wang G L , Wu X M , Zhao H , Zhang C . New J. Chem., 2015,39:4141. doi: 10.1039/C5NJ00012B http://xlink.rsc.org/?DOI=C5NJ00012B
[57]
Wu Y Z , Ma Y J , Xu G H , Wei F D , Ma Y S , Song Q , Wang X , Tang T , Song Y Y , Shi M L , Xu X M , Hu Q . Sensor. Actuat. B-Chem., 2017,249:195. doi: 10.1016/j.snb.2017.03.145 https://linkinghub.elsevier.com/retrieve/pii/S0925400517305737
[58]
Tan H L , Ma C J , Gao L , Li Q , Song Y H , Xu F G , Wang T , Wang L . Chem. Eur. J., 2014,20:16377. https://www.ncbi.nlm.nih.gov/pubmed/25332148

URL     pmid: 25332148
[59]
Li W , Li Y , Qian H L , Zhao X , Yang C X , Yan X P . Talanta, 2019,204:224. doi: 10.1016/j.talanta.2019.05.086 https://www.ncbi.nlm.nih.gov/pubmed/31357286

URL     pmid: 31357286
[60]
Zhang Y A , Guo S , Jiang Z R , Mao G B , Ji X H , He Z K . Anal. Chem., 2018,90:9796. doi: 10.1021/acs.analchem.8b01574 https://www.ncbi.nlm.nih.gov/pubmed/30014694

URL     pmid: 30014694
[61]
Miao Y M , Sun X J , Lv J Z , Yan G Q . Anal. Chem., 2019,91:5036. doi: 10.1021/acs.analchem.8b05099 https://www.ncbi.nlm.nih.gov/pubmed/30919612

URL     pmid: 30919612
[62]
Long Y J , Li Y F , Liu Y , Zheng J J , Tang J , Huang C Z . Chem. Commun., 2011,47:11939. doi: 10.1039/c1cc14294a http://xlink.rsc.org/?DOI=c1cc14294a
[63]
Ding S Y , Dong M , Wang Y W , Chen Y T , Wang H Z , Su C Y , Wang W . J. Am. Chem. Soc., 2016,138:3031. doi: 10.1021/jacs.5b10754 https://www.ncbi.nlm.nih.gov/pubmed/26878337

URL     pmid: 26878337
[64]
Xiong Y H , Qin Y M , Su L J , Ye F G . Chem. Eur. J., 2017,23:11037. doi: 10.1002/chem.201701513 https://www.ncbi.nlm.nih.gov/pubmed/28516466

URL     pmid: 28516466
[65]
Xiong Y H , Su L J , He X G , Duan Z H , Zhang Z , Chen Z L , Xie W , Zhu D J , Luo Y H . Sensor. Actuat. B-Chem., 2017,253:384. doi: 10.1016/j.snb.2017.06.167 https://linkinghub.elsevier.com/retrieve/pii/S0925400517311863
[66]
Zhang Y F , Li R , Xue Q W , Li H B , Liu J F . Microchimi. Acta, 2015,182:1677.
[67]
Sadollahkhani A , Hatamie A , Nur O , Willander M , Zargar B , Kazeminezhad I . ACS Appl. Mater. Interfaces., 2014,6:17694. doi: 10.1021/am505480y https://www.ncbi.nlm.nih.gov/pubmed/25275616

URL     pmid: 25275616
[68]
Pan N , Zhu Y , Wu L , Xie Z , Xue F , Peng C . Anal. Methods., 2016,8:7531. doi: 10.1039/C6AY01789D http://xlink.rsc.org/?DOI=C6AY01789D
[69]
Khalil M M H , Shahat A , Radwan A , El-Shahat M F . Sensor. Actuat. B-Chem., 2016,233:272. doi: 10.1016/j.snb.2016.04.079 https://linkinghub.elsevier.com/retrieve/pii/S0925400516305615
[70]
Li J , Ji C , Hou C , Huo D , Zhang S , Luo X , Yang M , Fa H , Deng B . Sensor. Actuat. B-Chem., 2016,223:853. doi: 10.1016/j.snb.2015.10.017 https://linkinghub.elsevier.com/retrieve/pii/S0925400515304822
[71]
Ma X H , Li S H , Pang C H , Xiong Y H , Li J P . Microchim. Acta., 2018,185:546.
[72]
Cui W R , Zhang C R , Jiang W , Liang R P , Wen S H , Peng D , Qiu J D . ACS Sustainable Chem. Eng., 2019,7:9408.
[1] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[2] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[3] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[4] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[5] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[6] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[7] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[8] 贾航, 乔越, 张玉, 孟庆鑫, 刘程, 蹇锡高. 玄武岩纤维增强树脂基复合材料界面改性策略[J]. 化学进展, 2020, 32(9): 1307-1315.
[9] 张志, 邹晨涛, 杨水金. 基于钨(钼)酸铋半导体复合材料的合成及其在光催化降解中的应用[J]. 化学进展, 2020, 32(9): 1427-1436.
[10] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[11] 郭华, 张蕾, 董旭, 申刚义, 尹俊发. 固定化多酶级联反应器[J]. 化学进展, 2020, 32(4): 392-405.
[12] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[13] 黄晚秋, 高苗苗, 窦红静. 聚吡咯及其纳米复合材料在光热治疗领域的应用[J]. 化学进展, 2020, 32(4): 371-380.
[14] 赵苏艳, 刘畅, 徐浩, 杨晓博. 二维共价有机框架光催化剂[J]. 化学进展, 2020, 32(2/3): 274-285.
[15] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
阅读次数
全文


摘要