English
新闻公告
More
化学进展 2016, Vol. 28 Issue (9): 1313-1327 DOI: 10.7536/PC160213 前一篇   后一篇

• 综述与评论 •

离子液体在羰基化反应中的应用

宋河远1,2, 康美荣1, 靳荣华1, 金福祥1, 陈静1*   

  1. 1. 中国科学院兰州化学物理研究所 羰基合成与选择氧化国家重点实验室 兰州 730000;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2016-02-01 修回日期:2016-07-01 出版日期:2016-09-15 发布日期:2016-08-16
  • 通讯作者: 陈静 E-mail:chenj@licp.cas.cn
  • 基金资助:
    国家自然科学基金项目(No.21473225)资助

Application of Ionic Liquids to the Carbonylation Reactions

Song Heyuan1,2, Kang Meirong1, Jin Ronghua1, Jin Fuxiang1, Chen Jing1*   

  1. 1. State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-02-01 Revised:2016-07-01 Online:2016-09-15 Published:2016-08-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21473225).
离子液体由于具有良好的溶解能力、配位能力、热及化学稳定性、结构及性质可调、环境友好等特点,被认为是传统非环保型、有毒、污染严重的溶剂和催化剂潜在的替代品,已被广泛应用于有机合成及催化领域。本文综述了近年来离子液体在羰基化反应中的应用及催化反应机理研究进展,包括烯烃、醇类化合物、芳烃、胺/胺醇、卤代芳烃及甲醛的羰基化反应,羰基源主要包括CO、CO2和碳酸二甲酯,涉及到了酸性离子液体、碱性离子液体、金属类离子液体、负载型离子液体等多种类型的功能化及非功能化离子液体。在上述反应中离子液体不仅可以提高反应活性和选择性,而且简化了催化剂分离过程,在部分反应中实现了回收和循环使用。并对羰基化反应的发展及应用前景进行了展望。
Ionic liquids have been widely applied as an alternative reaction medium as well as environmentally benign catalysts of chemical transformations due to their favorable properties of excellent solubility, strong complexing activity, good thermal and chemical stability over a wide temperature range, modifiable, low corrosion and environment-friendly. Ionic liquids also possess the advantageous characteristics of both homogenous and heterogeneous catalyst system, such as uniform catalytic active centers, easy separation and recyclability. In this review, the latest achievements in the carbonylation reactions and catalytic reaction mechanism in ionic liquids are summarized,mainly including the carbonylation of alkene, alcohol, arene, amines/amino alcohols, halogeno-arenes, and formaldehyde with CO, CO2, and dimethyl carbonate as carbonyl source. As for the type of task-specific ionic liquids, the review focuses on acidic ionic liquids, basic ionic liquids, organometallic ionic liquids, supported ionic liquids and so on. The previous progress show that there are several merits for the application of ionic liquids in the carbonylation reactions, which not only improved the catalytic activity and selectivity of reaction, but also simplified the work-up, and facilitated the separation and reuse of traditional catalyst. Furthermore, the prospective to the development and application of ionic liquids in the carbonylation reactions is also discussed.

Contents
1 Introduction
2 Application of ionic liquids in the carbonylation reactions
2.1 Carbonylation of alkenes
2.2 Carbonylation of alcohol compounds
2.3 Carbonylation of arenes
2.4 Carbonylation of N-containing compounds
2.5 Carbonylation of halogeno-arenes
2.6 Carbonylation of formaldehyde
3 Conclusion

中图分类号: 

()
[1] Sneeden R P A, Tkatchenko I, Villeurbanne C N R S. In:Wilkinson G, Stone F G A, Abel E W, ed. Comprehensive Organometallic Chemistry, vo1. 8. New York:Pergamon, 1982. 1.
[2] Roelen O. DE 849548, 1938.
[3] 刘建华(Liu J H),陈静(Chen J),孙伟(Sun W),夏春谷(Xia C G). 催化学报(Chin. Catal.), 2010, 31(1):1.
[4] Lapidus A L, Eliseev O L, Stepin N N, Bondarenko T N. Russ. Chem. Bull., 2004, 53:(11):2564.
[5] Eliseev O L, Stepin N N, Bondarenko T N, Lapidus A L. Dokl. Chem., 2005, 401(2):59.
[6] Lapidus A, Eliseev O, Bondarenko T, Stepin N. J. Mol. Catal. A:Chem., 2006, 252:245.
[7] Zim D, de Souza R F, Dupont J, Monteiro A L. Tetrahedron Lett., 1998, 39:7071.
[8] Rangits G, Kollár L. J. Mol. Catal. A:Chem., 2006, 246:59.
[9] Lapidus A, Eliseev O, Bondarenko T, Stepin N. J. Mol. Catal. A:Chem., 2006, 252:245.
[10] Lapidus A L, Eliseev O L. Solid Fuel Chem., 2010, 44(3):60.
[11] Qiao K, Yokoyama C. Catal. Commun., 2006, 7(7):450.
[12] 乔焜(Qiao K),邓友全(Deng Y Q). 化学学报(Acta Chim. Sinica), 2002, 60(6):996.
[13] Jiang T, Han B X, Zhao G Y, Chang Y H, Gao L, Zhang J M, Yang G Y. J. Chem. Res., 2003, 29:549.
[14] Dong W S, Zhou X S, Xin C S, Liu C L, Liu Z T. Appl. Catal. A:Gen., 2008, 334(1/2):100.
[15] Wang H, Wang B, Liu C L, Dong W S. Microporous Mesoporous Mater., 2010, 134(1/3):51.
[16] Schneider M J, Haumann M, Stricker M, Sundermeyer J, Wasserscheid P. J. Catal., 2014, 309:71.
[17] De C Y, Lu B, Lv H, Yu Y Y, Bai Y, Cai Q H. Catal. Lett., 2009,128(3):459.
[18] 肖丽平(Xiao L P), 张贵荣(Zhang G R), 张丽(Zhang L), 钮东方(Niu D F),陆嘉星(Lu J X). 催化学报(Chin. J. Catal.), 2009, 30(1):43.
[19] Consorti C S, Ebeling G, Dupont J. Tetrahedron Lett., 2002, 43(5):753.
[20] Zhang Q H, Shi F, Gu Y L, Yang J, Deng Y Q. Tetrahedron Lett., 2005, 46(35):5907.
[21] Knifton J F. US 4554383, 1985.
[22] Yanni S R. WO 00/15594, 2000.
[23] Brausch N, Metlen A, Wasserscheid P. Chem. Commun., 2004(13), 1552.
[24] Angueira E J, White M G. J. Mol. Catal. A:Chem., 2005, 238:163.
[25] 章维超(Zhang W C), 赵卫娟(Zhao W J), 卓广澜(Zhuo G L), 姜玄珍(Jiang X Z). 催化学报(Chin. J. Catal.), 2006, 27(1):36.
[26] Angueira E J, White M G. J. Mol. Catal. A:Chem., 2007, 277:164.
[27] 金云(Jin Y), 辛忠(Xin Z). 应用化工(Appl. Chem. Industry), 2009, 38(3):421.
[28] Zhao W J, Jiang X Z. Catal. Lett., 2006, 107(1/2):123.
[29] Shi F, He Y D, Li D M, Ma Y B, Zhang Q H, Deng Y Q. J. Mol. Catal. A:Chem., 2006, 244:64.
[30] Peng X G, Li F W, Hu X X, Xia C G, Christian A S. Chin. J. Catal., 2008, 29(7):638.
[31] Fu X L, Zhang Z, Li C M, Wang L B, Ji H Y, Yang Y, Zou T, Gao G H. Catal. Commoun., 2009, 10:665.
[32] Choi Y S, Shim Y N, Lee J, Yoon J H, Hong C S, Cheong M, Kim H S, Jang H G, Lee J S. Appl. Catal. A:Gen., 2011, 404:87.
[33] Wang X F, Li P, Yuan X H, Liu S W. J. Mol. Catal. A:Chem., 2006, 255:25.
[34] 金德宽(Jin D K). 精细化工(Fine Chem.), 2011, 28(2):191.
[35] 刘长春(Liu C C). 化学世界(Chem. World), 2013, 4:223.
[36] Gaddge S T, Kusumawati E N, Harada K, Sasaki T, Nishio-Hamane D, Bhanage B M. J. Mol. Catal. A:Chem., 2015, 400:170.
[37] Mizushima E, Hayashi T, Tanaka M. Green Chem., 2001, 3:76.
[38] Calò V, Giannoccaro P, Nacci A, Monopoli A. J. Organomet. Chem., 2002, 645:152.
[39] Wojtków W, Trzeciak A M, Choukroun R, Pellegatta J L. J. Mol. Catal. A:Chem., 2004, 224:81.
[40] Lin Q, Yang C F, Jiang W D, Chen H, Li X J. J. Mol. Catal. A:Chem., 2007, 264:17.
[41] McNulty J, Nair J J, Robertson A. Org. Lett., 2007, 9(22):4575.
[42] Müller E, Péczely G, Skoda-FÖldes R, Takács E, Kokotos G, Bellis E, Kollrár L. Tetrahedron, 2005, 61(4):797.
[43] 张欣(Zhang X), 杨彩玲(Yang C L), 宋伟伟(Song W W), 张远丽(Zhang Y L),刘建明(Liu J M),卓克垒(Zhuo K L). 分子催化(J. Mol. Catal. (China)), 2014, 28(4):312.
[44] Khedkar M V, Sasaki T, Bhanage B M. ACS Catal., 2013, 3(3):287.
[45] Khedkar M V, Shinde A R, Sasaki T, Bhanage B M. J. Mol. Catal. A:Chem., 2014, 385:91.
[46] 李涛(Li T), 李光兴(Li G X), 谭猗升(Tan Y S), 徐强(Xu Q). 石油化工(Petrochemical Technology), 2004, 33(增刊):297.
[47] Li T, Souma Y, Xu Q. Catal. Today, 2006, 111:288.
[48] Song H Y, Jing F X, Jin R H, Li Z, Chen J. Catal. Lett., 2012, 144:711.
[49] Song H Y, Li Z, Chen J, Xia C G. Catal. Lett., 2012, 142:81.
[1] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[2] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[3] 孙思敏, 许家喜. 磺酰氯与不饱和化合物的反应[J]. 化学进展, 2022, 34(6): 1275-1289.
[4] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[5] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[6] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
[7] 曾滴, 刘雪晨, 周沅逸, 王海鹏, 张玲, 王文中. 催化转化呋喃类生物质制备芳香烃化合物的研究[J]. 化学进展, 2022, 34(1): 131-141.
[8] 田少鹏, 任花萍, 陈明淑, 苗宗成, 谭猗生. 非计量Zn-Cr尖晶石中离子占位对催化合成气合成异丁醇中的关键作用[J]. 化学进展, 2022, 34(1): 155-167.
[9] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[10] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[11] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
[12] 曾小珊, 单传家, 孙铭第, 何陶宏, 荣少鹏. 二氧化锰催化分解室内空气中甲醛的研究[J]. 化学进展, 2021, 33(12): 2245-2258.
[13] 田景晨, 吴功德, 刘雁军, 万杰, 王晓丽, 邓琳. 负载型廉价金属催化剂在低温催化氧化甲醛中的应用[J]. 化学进展, 2021, 33(11): 2069-2084.
[14] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[15] 孙连伟, 孙中鹤, 王雪, 徐林, 冯岸超, 张立群. 可控/“活性”自由基聚合制备聚乙烯及聚卤代烯烃[J]. 化学进展, 2020, 32(6): 727-737.
阅读次数
全文


摘要

离子液体在羰基化反应中的应用