English
新闻公告
More
化学进展 2021, Vol. 33 Issue (10): 1706-1720 DOI: 10.7536/PC200813 前一篇   后一篇

• 综述 •

负载型BINAP-M类催化剂

杨文清1, 谢大乐1, 程俊1, 唐维克1, 汪若冰2, 冯乙巳1,*()   

  1. 1 安徽省先进催化材料与反应工程重点实验室 合肥工业大学化学与化工学院 合肥 230009
    2 桐城师范高等专科学校小学教育系 桐城 231400
  • 收稿日期:2020-08-05 修回日期:2020-12-22 出版日期:2021-10-20 发布日期:2021-03-04
  • 通讯作者: 冯乙巳
  • 基金资助:
    国家自然科学基金项目(21971050); 安徽省高校自然科学研究项目重点项目(KJ2019A1248)

Supported BINAP-M Catalysts

Wenqing Yang1, Dale Xie1, Jun Cheng1, Weike Tang1, Ruobing Wang2, Yisi Feng1()   

  1. 1 Anhui Province Key Laboratory of Advance Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
    2 Department of Primary Education of Tongcheng Normal College,Tongcheng 231400, China
  • Received:2020-08-05 Revised:2020-12-22 Online:2021-10-20 Published:2021-03-04
  • Contact: Yisi Feng
  • Supported by:
    National Natural Science Foundation of China(21971050); Key Projects of Natural Science Research Projects in Colleges and Universities of Anhui Province(KJ2019A1248)

1,1'-联萘-2,2'-双二苯膦与金属配位化合物(BINAP-M)作为最重要和著名的手性催化剂之一,过去的几十年中在工业和基础理论研究中受到广泛关注。虽然BINAP-M作为均相手性催化剂具有活性高和选择性好的特点,但存在价格昂贵、应用成本较高和难以回收利用等局限性,特别是催化剂残留在合成产物中,如药品中,限制了其在工业上的大规模应用。因此,寻求既能保持高催化活性,又能方便回收和循环应用的BINAP-M类催化剂成为重要研究课题。本文总结了近年来可回收BINAP-M催化剂研究进展,重点介绍了吸附负载型与共价负载型BINAP-M催化剂在可回收领域的研究成果,分析讨论了不同类型可回收的负载型BINAP-M催化剂的优缺点。在此基础上,本文还介绍了一种具有“柔性桥链”结构的共价负载BINAP-M催化剂,并分析了其在“拟均相”催化反应中的应用前景,为负载型催化剂的设计与制备提供了新的研究思路。

As one of the most important and well-known chiral catalysts, 1,1'-binapthyl-2,2'-bisdiphenylphosphine metal complexes(BINAP-M) have been widely concerned in industry and basic theoretical research in the past few decades. Although BINAP-M as a homogeneous chiral catalyst has the characteristics of high activity and good selectivity, it also has the limitations of high price, high application cost and difficult to recycle, especially the catalyst residues in synthesis products such as pharmaceutical products, which limits its large-scale application in industry. Therefore, it has become an important research topic to search for BINAP-M catalysts which can not only keep high catalytic activity, but also be easy to recover and recycle. In this paper, the research progress of recyclable BINAP-M catalysts in recent years is summarized. The research results of adsorption-supported and covalently-supported BINAP-M catalysts in the field of recyclability are mainly introduced. The advantages and disadvantages of different types of recyclable BINAP-M catalysts are analyzed and discussed. On this basis, a covalently-supported BINAP-M catalyst with “flexible bridge chain” structure is also introduced, and its application prospect in “quasi-homogeneous” catalytic reaction is analyzed, which provides a new research idea for the design and preparation of supported catalyst.

Contents

1 Introduction

2 BINAP directly supported catalyst

2.1 Oxide supporter loading

2.2 Magnetite nanoparticle supporter loading

2.3 Other supporter loading

3 Covalently loaded BINAP-M catalyst

3.1 Mesoporous silica covalent loading

3.2 Polymer supporter loading

3.2.1 Conventional polymer supporter

3.2.2 Dendrimer supporter

3.2.3 Porous polymer supporter

3.3 Other supporter loading

4 Conclusion and outlook

()
图式1 BINAP的结构式
Scheme 1 BINAP
图式2 水滑石[Cu(binap)I]2负载型催化剂(2)[21]
Scheme 2 [Cu(binap)I]2@Hydrotalcite supported catalyst(2)[21]
图式3 MK-10T-BINAP-Rh催化的苯乙烯硼氢化/氧化[22]
Scheme 3 Styrene hydroboration/oxidation catalyzed by MK-10T-BINAP-Rh[22]
图式4 HMS-Ru-BINAP 选择性催化氢化反应[23]
Scheme 4 Selective catalytic hydrogenation of HMS-Ru-BINAP[23]
图式5 Ru-(R-Binap)@C-FDU-12组装示意图(4)[25]
Scheme 5 Assembly diagram of Ru-(R-Binap)@C-FDU-12(4)[25]
图式6 磁性纳米颗粒BINAP-Ru负载型催化剂(Fe3O4-Ru-Cl-DPEN-BINAP)示意图(5,6)[27,28]
Scheme 6 Schematic diagram of magnetic nanoparticles BINAP-Ru supported catalysts (Fe3O4-Ru-Cl-DPEN-BINAP)(5 or 6)[27,28]
图式7 BINAP-FePd磁性纳米颗粒催化剂(FePd-(S)-BINAP)或(FePd-(R)-BINAP)组装示意图[29]
Scheme 7 Assembly diagram of BINAP-FePd magnetic nanoparticles catalysts(FePd-(S)-BINAP) or(FePd-(R)-BINAP)[29]
图式8 有序介孔二氧化硅BINAP-Ru催化剂(SBA15-Ru(BINAP-L1)(DMF)2Cl2)(8a)或(SBA15-Ru(BINAP-L2)(DMF)2Cl2)(8b)[34]
Scheme 8 Ordered mesoporous silica BINAP-Ru catalysts(SBA15-Ru(BINAP-L1)(DMF)2Cl2)(8a) or (SBA15-Ru(BINAP-L2)(DMF)2Cl2)(8b)[34]
图式9 介孔二氧化硅纳米球负载型BINAP-Ru催化剂(MSNs-BINAP-Ru)(9,10)[35]
Scheme 9 Mesoporous silica nanospheres supported BINAP-Ru catalysts(MSNs-BINAP-Ru)(9,10)[35]
图式10 介孔二氧化硅负载型BINAP-Ru催化剂(Ru-SB-EN-MCM-41/48)(11)和(Ru-SB-SDPEN-MCM-41/48)(12)[36]
Scheme 10 Mesoporous silica supported catalysts(Ru-SB-EN-MCM-41/48)(11) and(Ru-SB-SDPEN-MCM-41/48)(12)[36]
图式11 β-酮酯以及酰胺类底物和二氧化硅共价负载型催化剂(13)[37]
Scheme 11 β-ketoesters and amide substrates and covalently supported silica catalysts(13)[37]
图式12 有序介孔二氧化硅BINAP-Ru催化剂(Ru-PMO-BINAP)(14)[38]
Scheme 12 Ordered mesoporous silica BINAP-Ru catalyst(Ru-PMO-BINAP)(14)[38]
图式13 三类聚苯乙烯树脂BINAP-Ru催化剂(PS-BINAP-Ru)(R,RR)-15a,(R,RR)-15b,(R,SS)-16a结构示意图[42]
Scheme 13 Structure diagrams of three kinds of polystyrene resins catalysts (PS-BINAP-Ru)(R,RR)-15a,(R,RR)-15b,(R,SS)-16a[42]
图式14 聚苯乙烯树脂型Cu-PS-(S)-BINAP催化剂(17)结构示意图[43]
Scheme 14 Structure diagram of polystyrene resins catalysts (Cu-PS-(S)-BINAP)(17)[43]
图式15 PS-BINAP-M-2聚合方法:(A)交联聚合反应;(B)共聚反应[44]
Scheme 15 PS-BINAP-M-2 polymerization method.(A) Crosslinking polymerization;(B) copolymerization reaction[44]
图式16 (S)-poly-NAP的缩聚聚合物的反应和催化剂(S)-poly-NAP-Ru (19)[45]
Scheme 16 Polycondensation of(S)-poly-NAP and(S)-poly-NAP-Ru catalysts (19)[45]
图式17 聚脲类催化剂(20)[46]
Scheme 17 Polyurea catalyst(20)[46]
图式18 “FrÉchet”树枝状聚合物Ru-BINAP催化剂(21,22)[49]
Scheme 18 “FrÉchet” Ru-BINAP catalyst of dendrimer(21,22)[49]
图式19 树枝状高分子聚合物BINAP-Ru催化剂(Ru-poly(BINAP)s)(23)[51]
Scheme 19 Dendrimer polymer BINAP-Ru catalyst (Ru-poly(BINAP)s)(23)[51]
图式20 树枝状大分子聚合物((S)-GnDenBINAP-Ir(n=1~4))(24)[52]
Scheme 20 Dendrimer polymer ((S)-GnDenBINAP-Ir(n=1~4))(24)[52]
图式21 手性共轭共聚物P-2和Ru/Ir双金属树枝状聚合物催化剂25a~c[53]
Scheme 21 Chiral conjugated copolymer P-2 and Ru/Ir bimetal dendrimer catalyst 25a~c[53]
图式22 聚乙烯基亚胺BINAP-Cu催化剂 (Carbo-BINAP-Cu)(26)和Glutaroyl-AMINAP-Cu (27)[54]
Scheme 22 Polyethyleneimine BINAP-Cu catalysts (Carbo-BINAP-Cu)(26)and (Glutaroyl-AMINAP-Cu)(27)[54]
图式23 多孔手性聚合物BINAP-Ru催化剂(PCP-BINAP-Ru)(28)[55]
Scheme 23 Porous chiral polymer BINAP-Ru catalyst(PCP-BINAP-Ru)(28)[55]
图式24 多孔聚合物型BINAP-Ru催化剂(29)合成[56]
Scheme 24 The synthesis of porous polymer type BINAP-Ru catalyst (29)[56]
图式25 多孔有机聚合物催化剂(Ru-BINAP-POPs-1)(30)、(Ru-BINAP-POPs-2)(31)、(Ru-BINAP-POPs-3)(32)、(Ru-BINAP-POPs-4)(33)、(Ru-BINAP-POPs-5)(34)[57,58]
Scheme 25 Porous organic polymer Catalysts (Ru-BINAP-POPs-1)(30),(Ru-BINAP-POPs-2)(31),(Ru-BINAP-POPs-3)(32),(Ru-BINAP-POPs-4)(33)(Ru-BINAP-POPs-5)(34)[57,58]
图式26 多孔磷酸锆负载BINAP-Ru催化剂(Zr-Ru-BINAP-DMF)(35)[59]
Scheme 26 Porous zirconium phosphate supported BINAP-Ru catalyst(Zr-Ru-BINAP-DMF)(35)[59]
图式27 多孔磷酸锆负载BINAP催化剂(Zr-Ru-BINAP-DPEN)(36)[60]
Scheme 27 Porous zirconium phosphate supported BINAP catalyst(Zr-Ru-BINAP-DPEN)(36)[60]
图式28 手性BINAP-MOF催化剂(Ru-BINAP-MOF-1)(37)和(BINAP-MOF-2)(38)[61]
Scheme 28 Chiral BINAP-MOF catalyst(Rh-BINAP-MOF-1)(37)and (BINAP-MOF-2)(38)[61]
图式29 石墨烯共价负载型BINAP催化剂(Ru-DPEN-C-BINAP)(GO-C,39)和(Ru-DPEN-I-BINAP)(GO-I,40)[62]
Scheme 29 Graphene covalently supported BINAP catalysts (Ru-DPEN-C-BINAP)(GO-C,39)and (Ru-DPEN-I-BINAP)(GO-I,40)[62]
[1]
Bolm C, Beller M. Transition Metals for Organic Synthesis. Weinheim: Wiley-VCH, 2004.
[2]
Zhu S F, Zhou Q L. Privileged Chiral Ligands and Catalysts. Weinheim: Wiley-VCH Verlag GmbH & Co.KGaA, 2011. 137.
[3]
Carroll M P, Guiry P J. Chem. Soc. Rev., 2014, 43(3): 819.

doi: 10.1039/C3CS60302D     URL    
[4]
(a) Noyori R, Takaya H. Acc. Chem. Res., 1990, 23: 345;

doi: 10.1021/ar00178a005     URL    
(b) Yamamoto T. Current Topics in Flavours and Fragrances. Dordrecht: Springer, 1999. 33;
(c) Magano J, Dunetz J R. Chem. Rev., 2011, 111: 2177.
[5]
(a) Miyashita A, Yasuda A, Takaya H, Toriumi K, Ito T, Souchi T, Noyori R. J. Am. Chem. Soc., 1980, 102: 7932;

doi: 10.1021/ja00547a020     URL    
(b) Zhang Y L, Zhang R, Chang H H, Wei W L, Li X. Prog. Chem., 2014, 26: 1492.
( 张永丽, 张瑞, 常宏宏, 魏文珑, 李兴. 化学进展 2014, 26: 1492.).

doi: 10.7536/PC140319    
[6]
(a) Noyori R, Ohkuma T. Angew. Chem., Int. Ed., 2001, 40: 40;
(b) Noyori R. Angew. Chem. Int. Ed., 2002, 41: 2008;

doi: 10.1002/1521-3773(20020617)41:12【-逻*辑*与-】#x00026;lt;2008::AID-ANIE2008【-逻*辑*与-】#x00026;gt;3.0.CO;2-4     URL    
(c) Yamakawa M, Yamada I, Noyori R. Angew. Chem. Int. Ed., 2001, 40: 2818;

doi: 10.1002/(ISSN)1521-3773     URL    
(d) Giustra Z X, Ishibashi J S A, Liu S Y. Coordin. Chem. Rev., 2016, 314: 134;

doi: 10.1016/j.ccr.2015.11.006     URL    
(e) Chaloner P A, Esteruelas M A, Oro L A. Homogeneous Hydrogenation. Dordrecht: Springer, 1994. 119.
[7]
Mc Cartney D, Guiry P J. Chem. Soc. Rev., 2011, 40(10): 5122.

doi: 10.1039/c1cs15101k     pmid: 21677934
[8]
Patil N T, Kavthe R D, Shinde V S. Tetrahedron, 2012, 68(39): 8079.
[9]
Yoshimura T, Maeda S, Taketsugu T, Sawamura M, Morokuma K, Mori S. Chem. Sci., 2017, 8(6): 4475.

doi: 10.1039/C7SC00401J     URL    
[10]
Tamura M, Fujihara H. J. Am. Chem. Soc., 2003, 125(51): 15742.

doi: 10.1021/ja0369055     URL    
[11]
Sawai K, Tatumi R, Nakahodo T, Fujihara H. Angew. Chem. Int. Ed., 2008, 47(36): 6917.

doi: 10.1002/anie.v47:36     URL    
[12]
Vural Gürsel I, Noël T, Wang Q, Hessel V. Green Chem., 2015, 17(4): 2012.

doi: 10.1039/C4GC02160F     URL    
[13]
Li J, Gao S, Xi Z. Chin. J. Catal., 2010, 31: 895.
[14]
(a) Jin X, Kong F F, Yang Z Q, Cui F F. J. Mol. Catal. A: Chem., 2013, 374: 22;
(b) Nair D, Wong H T, Han S, Vankelecom I F J, White L S, Livingston A C, Boam A T. Org. Process Res. Dev., 2009, 13: 863.

doi: 10.1021/op900056s     URL    
[15]
Hope E G, Stuart A M, West A J. Green Chem., 2004, 6(7): 345.

doi: 10.1039/b404824e     URL    
[16]
(a) Horn J, Bannwarth W. Eur. J. Org. Chem., 2007, 13: 2058;
(b) Berthod M, Mignani G, Lemaire M. Tetrahedron: Asymmetry, 2004, 15: 1121.
[17]
Zamboulis A, Moitra N, Moreau J J E, Cattoën X, Wong Chi Man M. J. Mater. Chem., 2010, 20(42): 9322.

doi: 10.1039/c000334d     URL    
[18]
Heitbaum M, Glorius F, Escher I. Angew. Chem. Int. Ed., 2006, 45(29): 4732.

doi: 10.1002/(ISSN)1521-3773     URL    
[19]
Shimazu S, Ro K, Sento T, Ichikuni N, Uematsu T. J. Mol. Catal. A: Chem., 1996, 107(1/3): 297.

doi: 10.1016/1381-1169(95)00271-5     URL    
[20]
Xu Z J, Yu X L, Sang X X, Wang D W. Green Chem., 2018, 20(11): 2571.
[21]
Zhang Q H, Wang H B, Hu W K, Xu X Q, Xu Z J, Chen C, Wang D W. J. Chem. Technol. Biotechnol., 2020, 95(7): 2027.
[22]
Segarra A M, Guerrero R, Claver C, Fernández E. Chem. Eur. J., 2003, 9(1): 191.

doi: 10.1002/chem.200390012     URL    
[23]
Jamis J, Anderson J R, Dickson R S, Campi E M, Jackson W R. J. Organomet. Chem., 2000, 603(1): 80.

doi: 10.1016/S0022-328X(00)00127-3     URL    
[24]
Fan J, Yu C Z, Gao F, Lei J, Tian B Z, Wang L M, Luo Q, Tu B, Zhou W Z, Zhao D Y. Angew. Chem. Int. Ed., 2003, 42(27): 3146.

doi: 10.1002/anie.200351027     URL    
[25]
Peng J, Wang X F, Zhang X M, Bai S Y, Zhao Y P, Li C, Yang Q H. Catal. Sci. Technol., 2015, 5(2): 666.

doi: 10.1039/C4CY00228H     URL    
[26]
Gawande M B, Branco P S, Varma R S. Chem. Soc. Rev., 2013, 42(8): 3371.

doi: 10.1039/c3cs35480f     pmid: 23420127
[27]
Hu A G, Yee G T, Lin W B. J. Am. Chem. Soc., 2005, 127(36): 12486.
[28]
Hu A G, Liu S, Lin W B. RSC Adv., 2012, 2(6): 2576.

doi: 10.1039/c2ra01073a     URL    
[29]
Mori K, Kondo Y, Yamashita H. Phys. Chem. Chem. Phys., 2009, 11(39): 8949.

doi: 10.1039/b910069e     URL    
[30]
Tamura M, Fujihara H. J. Am. Chem. Soc., 2003, 125(51): 15742.

doi: 10.1021/ja0369055     URL    
[31]
Song C E. Annu. Rep. Prog. Chem., Sect. C, 2005, 101: 143.
[32]
McMorn P, Hutchings G J. Chem. Soc. Rev., 2004, 33(2): 108.

pmid: 14767506
[33]
Cheng T Y, Zhao Q K, Zhang D C, Liu G H. Green Chem., 2015, 17(4): 2100.

doi: 10.1039/C4GC02204A     URL    
[34]
Kesanli B, Lin W B. Chem. Commun., 2004(20): 2284.
[35]
Mihalcik D, Lin W B. ChemCatChem, 2009, 1(3): 406.

doi: 10.1002/cctc.v1:3     URL    
[36]
Ghosh A, Kumar R. J. Catal., 2004, 228(2): 386.
[37]
McDonald A R, Müller C, Vogt D, van Klink G P M, van Koten G. Green Chem., 2008, 10(4): 424.

doi: 10.1039/b714189k     URL    
[38]
Seki T, McEleney K, Crudden C M. Chem. Commun., 2012, 48(51): 6369.

doi: 10.1039/c2cc31247f     URL    
[39]
Fan Q H, Wang R, Chan A S C. Bioorg. Med. Chem. Lett., 2002, 12(14): 1867.
[40]
Fan Q H, Ren C Y, Yeung C H, Hu W H, Chan A S C. J. Am. Chem. Soc., 1999, 121(32): 7407.

doi: 10.1021/ja9837497     URL    
[41]
Fan Q H, Li Y M, Chan A S C. Chem. Rev., 2002, 102(10): 3385.
[42]
Ohkuma T, Takeno H, Honda Y, Noyori R. Adv. Synth. Catal., 2001, 343(4): 369.

doi: 10.1002/(ISSN)1615-4169     URL    
[43]
Liu X, Zhou W Q, Xu L Q. Chirality, 2017, 29(9): 541.

doi: 10.1002/chir.v29.9     URL    
[44]
Takahashi M, Haraguchi N, Itsuno S. Tetrahedron: Asymmetry, 2008, 19(1): 60.
[45]
ter Halle R, Colasson B, Schulz E, Spagnol M, Lemaire M. Tetrahedron Lett., 2000, 41(5): 643.
[46]
Saluzzo C, Lamouille T, Le Guyader F, Lemaire M. Tetrahedron: Asymmetry, 2002, 13(11): 1141.
[47]
Brunner H, Fürst J. Tetrahedron, 1994, 50(15): 4303.

doi: 10.1016/S0040-4020(01)89367-4     URL    
[48]
Brunner H, Janura M, Stefaniak S. Synthesis, 1998, 1998(12): 1742.

doi: 10.1055/s-1998-2226     URL    
[49]
Deng G J, Fan Q H, Chen X M, Liu D S, Chan A S C. Chem. Commun., 2002, (15): 1570.
[50]
Hawker C J, Frechet J M J. J. Am. Chem. Soc., 1990, 112(21): 7638.

doi: 10.1021/ja00177a027     URL    
[51]
Deng G J, Yi B, Huang Y Y, Tang W J, He Y M, Fan Q H. Adv. Synth. Catal., 2004, 346(12): 1440.
[52]
Wang Z J, Deng G J, Li Y, He Y M, Tang W J, Fan Q H. Org. Lett., 2007, 9(7): 1243.

doi: 10.1021/ol0631410     URL    
[53]
Huang Y Y, Yang X, Feng Y, Verpoort F, Fan Q H. J. Mol. Catal. A: Chem., 2014, 393: 150.

doi: 10.1016/j.molcata.2014.06.013     URL    
[54]
Kassube J, Wadepohl H, Gade L. Adv. Synth. Catal., 2009, 351(4): 607.

doi: 10.1002/adsc.v351:4     URL    
[55]
Sun Q, Meng X J, Liu X, Zhang X M, Yang Y, Yang Q H, Xiao F S. Chem. Commun., 2012, 48(85): 10505.

doi: 10.1039/c2cc35192g     URL    
[56]
Wang T, Lyu Y, Chen X K, Li C Y, Jiang M, Song X G, Ding Y J. RSC Adv., 2016, 6(34): 28447.

doi: 10.1039/C5RA23597A     URL    
[57]
Wang T, Wang W L, Lyu Y, Xiong K, Li C Y, Zhang H, Zhan Z P, Jiang Z, Ding Y J. Chin. J. Catal., 2017, 38(4): 691.

doi: 10.1016/S1872-2067(17)62790-6     URL    
[58]
Wang T, Lyu Y, Xiong K, Wang W L, Zhang H, Zhan Z P, Jiang Z, Ding Y J. Chin. J. Catal., 2017, 38(5): 890.

doi: 10.1016/S1872-2067(17)62826-2     URL    
[59]
Hu A G, Ngo H L, Lin W B. Angew. Chem. Int. Ed., 2003, 42(48): 6000.

doi: 10.1002/(ISSN)1521-3773     URL    
[60]
Hu A G, Ngo H L, Lin W B. J. Am. Chem. Soc., 2003, 125(38): 11490.

doi: 10.1021/ja0348344     URL    
[61]
Falkowski J M, Sawano T, Zhang T, Tsun G, Chen Y, Lockard J V, Lin W B. J. Am. Chem. Soc., 2014, 136(14): 5213.

doi: 10.1021/ja500090y     pmid: 24684238
[62]
Dongil A B, Bachiller-Baeza B, Guerrero-Ruiz A, Rodríguez-Ramos I. Catal. Commun., 2012, 26: 149.

doi: 10.1016/j.catcom.2012.05.015     URL    
[63]
(a) Heitbaum M, Glorius F, Escher I. Angew. Chem. Int. Ed., 2006, 45: 4732;
(b) Choplin A, Quignard F. Coordin. Chem. Rev., 1998, 178: 1679.
No related articles found!
阅读次数
全文


摘要