English
新闻公告
More
化学进展 2019, Vol. 31 Issue (11): 1550-1559 DOI: 10.7536/PC190731 前一篇   后一篇

• •

光响应离子液体的结构与性能调控

李志勇, 冯莹, 王慧勇, 袁晓晴, 赵玉灵, 王键吉**()   

  1. 河南师范大学化学化工学院 绿色化学介质与反应教育部重点实验室 新乡 453007
  • 收稿日期:2019-07-25 出版日期:2019-11-15 发布日期:2019-10-23
  • 通讯作者: 王键吉
  • 基金资助:
    国家自然科学基金项目(21803017); 国家自然科学基金项目(21673068); 国家自然科学基金项目(U1704251); 国家重点研发计划(2017YFA0403101); 河南省高校重点科研项目(19A150027)

Structure and Performance Modulation of Photo-Responsive Ionic Liquids

Zhiyong Li, Ying Feng, Huiyong Wang, Xiaoqing Yuan, Yuling Zhao, Jianji Wang**()   

  1. Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
  • Received:2019-07-25 Online:2019-11-15 Published:2019-10-23
  • Contact: Jianji Wang
  • About author:
    ** E-mail:
  • Supported by:
    National Natural Science Foundation of China(21803017); National Natural Science Foundation of China(21673068); National Natural Science Foundation of China(U1704251); National Key Research and Development Program of China(2017YFA0403101); S&T Research Foundation of Education Department of Henan Province(19A150027)

光响应离子液体是一类兼具光刺激响应和离子液体双重特性的功能材料。在紫外/可见光照下,这类“智能型”离子液体的结构会发生变化,从而引起物理化学性质和相关体系性能的显著变化,以满足某些特定过程的需要。光刺激具有信号稳定、刺激部位精准、可快速切换、刺激过程不引入其他物质等优点,在刺激响应离子液体的结构与性质调控中具有独特的优势。本文以光响应离子液体的结构-性质-性能关系为主线,对光响应离子液体的光致异构化、物理化学性质调制、簇集行为调控、光致相转移及离子液体参与构筑的光响应乳液相行为调控等方面的研究进展进行了评述,分析了该领域研究中存在的主要问题,并对其发展前景进行了展望。

Light-responsive ionic liquids(ILs) are a class of functional materials that combine the characteristics of light stimuli responsive materials and ILs. Upon UV/vis light irradiation, the structure, property and performance of these “smart” ILs can be significantly changed, which are expected to have important applications in many practical processes. Light trigger is of great importance because of its superiority, such as stable optical signal, accurate stimulation spot, and ability to be rapidly switched in a clean and non-invasive manner. In this work, the photo-isomerization of ILs and light modulation of IL properties, aggregation behavior of ILs, phase transfer of ILs, and phase behavior of emulsions involving IL are critically reviewed based on the structure-property-performance relationship of photo-responsive ILs. Meanwhile, the main problems in this field have been analyzed, and the future development is discussed.

()
图1 常见光响应官能团的结构及其异构化
Fig. 1 Chemical structure and isomerization of the commonly used photo-responsive groups
图2 25.0 ℃下光照射时间对[C4AzoC2DMEA]Br紫外可见吸收光谱的影响[31]:a, 初始状态; b, 2 min; c, 4 min; d, 6 min; e, 8 min; f, 10 min; g, 15 min; h, 20 min; i, 40 min; j, 60 min
Fig. 2 Effect of irradiation time on UV-vis spectrum of aqueous [C4AzoC2DMEA]Br at 25.0 ℃[31]: a, initial state; b, 2 min; c, 4 min; d, 6 min; e, 8 min; f, 10 min; g, 15 min; h, 20 min; i, 40 min; j, 60 min. Copyright 2018, PCCP Owner Societies, The Royal Society of Chemistry.
图3 偶氮苯离子液体的化学结构[31, 36]
Fig. 3 Chemical structure of the azobenzene-based ionic liquids[31, 36]. Copyright 2018, PCCP Owner Societies, The Royal Society of Chemistry.
图4 肉桂酸酯类离子液体的结构[41]
Fig. 4 Chemical structure of cinnamate-based ionic liquids[41]
图5 疏水性偶氮苯类离子液体的化学结构[39]
Fig. 5 Chemical structure of hydrophobic azobenzene-based ionic liquids[39]
表1 紫外光照前后光响应离子液体的临界簇集浓度[34,35,36]
Table 1 CAC values of light responsive ionic liquids before and after UV irradiation[34,35,36]
表2 25.0 ℃紫外光照前后离子液体在水溶液中的ΔGm0和CAC值[31]
Table 2 ΔGm0 and CAC values of the ionic liquids in aqueous solutions at 25.0 ℃ before and after UV irradiation[31]
图6 光致[C16DMA-Azo]Br与α-环糊精修饰的纳米金形成的复合物在水相和甲苯相之间的可逆转移[57]
Fig. 6 Reversible phase transfer of α-CD-capped AuNPs by azo-ligands between water and toluene phases[57]. Copyright 2014, American Chemical Society.
图7 光致Azo-SEP在甲苯相和水相间的可逆转移[56]
Fig. 7 The reversible transfer of Azo-SEP between toluene and water phase induced by light irradiation[56]. Copyright 2013, American Chemical Society.
图8 偶氮苯离子液体在正辛醇和水相间的可逆转移[38]
Fig. 8 The reversible phase transfer of azobenzene-based ionic liquids between n-octanol and water[38]
图9 乳状液的光致破乳[59]
Fig. 9 Demulsification under light irradiation[59]. Copyright 2016, American Chemical Society.
[1]
Zhang S, Sun J, Zhang X, Xin J, Miao Q, Wang J . Chemical Society Reviews, 2014,43:7838. https://www.ncbi.nlm.nih.gov/pubmed/24553494

doi: 10.1039/c3cs60409h     URL     pmid: 24553494
[2]
Petkovic M, Seddon K R, Rebelo L P N, Pereira C S . Chemical Society Reviews, 2011,40:1383. https://www.ncbi.nlm.nih.gov/pubmed/21116514

doi: 10.1039/c004968a     URL     pmid: 21116514
[3]
刘志敏(Liu Z M) . 物理化学学报(Acta Physico-Chimica Sinica), 2019,35:792.
[4]
龚燕燕(Gong Y Y), 刘海春(Liu H C), 张朵(Zhang D), 佟静(Tong J) . 物理化学学报(Acta Physico-Chimica Sinica), 2019,35:1224.
[5]
刘文巧(Liu W Q), 李臻(Li Z), 夏春谷(Xia C G) . 化学进展(Progress in Chemistry), 2018,30:1143.
[6]
Li Z, Li R, Yuan X, Pei Y, Zhao Y, Wang H, Wang J . Green Energy & Environment, 2019,4:131.
[7]
佟国宾(Tong G B), 鄂雷(E L), 徐州(Xu Z), 马春慧(Ma C H), 李伟(Li W), 刘守新(Liu S X) . 化学进展(Progress in Chemistry), 2019,31:1136.
[8]
Wang H, Gurau G, Rogers R D . Chemical Society Reviews, 2012,41:1519. https://www.ncbi.nlm.nih.gov/pubmed/22266483

doi: 10.1039/c2cs15311d     URL     pmid: 22266483
[9]
Ren S, Hou Y, Kai Z, Wu W . Green Energy & Environment, 2018,3:179.
[10]
郭家田(Guo J T), 卢玉超(Lu Y C), 毕晨(Bi C), 樊佳婷(Fan J T), 许国贺(Xu G H), 马晶军(Ma J J) . 化学进展(Progress in Chemistry), 2019,31:83.
[11]
Stuart M A C, Huck W T S, Genzer J, Mueller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S . Nature Materials, 2010,9:101. https://www.ncbi.nlm.nih.gov/pubmed/20094081

doi: 10.1038/nmat2614     URL     pmid: 20094081
[12]
Yan X, Wang F, Zheng B, Huang F . Chemical Society Reviews, 2012,41:6042. https://www.ncbi.nlm.nih.gov/pubmed/22618080

doi: 10.1039/c2cs35091b     URL     pmid: 22618080
[13]
潘明光(Pan M G), 赵永升(Zhao Y S), 曾小勤(Zeng X Q), 邹建新(Zou J X) . 物理化学学报(Acta Physico-Chimica Sinica), 2019,35:624.
[14]
Chu Z, Dreiss C A, Feng Y . Chemical Society Reviews, 2013,42:7174. https://www.ncbi.nlm.nih.gov/pubmed/23545844

doi: 10.1039/c3cs35490c     URL     pmid: 23545844
[15]
Qiao Y, Ma W, Theyssen N, Chen C, Hou Z . Chemical Reviews, 2017,117:6881. https://www.ncbi.nlm.nih.gov/pubmed/28358505

doi: 10.1021/acs.chemrev.6b00652     URL     pmid: 28358505
[16]
Nobuoka K, Kitaoka S, Yamauchi T, Harran T, Ishikawa Y . Chemistry Letters, 2016,45:433. http://www.journal.csj.jp/doi/10.1246/cl.160048

doi: 10.1246/cl.160048     URL    
[17]
Shi Y, Xiong D, Wang H, Zhao Y, Wang J . Langmuir, 2016,32:6895. https://www.ncbi.nlm.nih.gov/pubmed/27315131

doi: 10.1021/acs.langmuir.6b01167     URL     pmid: 27315131
[18]
Wang H, Tan B, Wang J, Li Z, Zhang S . Langmuir, 2014,30:3971. https://www.ncbi.nlm.nih.gov/pubmed/24673329

doi: 10.1021/la500030k     URL     pmid: 24673329
[19]
Fiorentini E F, Escudero L B, Wuilloud R G . Analytical and Bioanalytical Chemistry, 2018,410:4715. https://www.ncbi.nlm.nih.gov/pubmed/29675708

doi: 10.1007/s00216-018-1050-6     URL     pmid: 29675708
[20]
王平(Wang P), 杨巧凤(Yang Q F), 赵传壮(Zhao C Z) . 化学进展(Progress in Chemistry), 2017,29:750.
[21]
Chen Y, Li Z, Wang H, Pei Y, Shi Y, Wang J . Langmuir, 2018,34:2784. https://www.ncbi.nlm.nih.gov/pubmed/29382203

doi: 10.1021/acs.langmuir.7b03822     URL     pmid: 29382203
[22]
Yam V W W, Lee J K W, Ko C C, Zhu N . Journal of the American Chemical Society, 2009,131:912. https://www.ncbi.nlm.nih.gov/pubmed/19119819

doi: 10.1021/ja808791e     URL     pmid: 19119819
[23]
Soomro S A, Benmouna R, Berger R, Meier H . European Journal of Organic Chemistry, 2005,2005:3586. http://doi.wiley.com/10.1002/%28ISSN%291099-0690

doi: 10.1002/(ISSN)1099-0690     URL    
[24]
Saji T, Hoshino K, Ishii Y, Goto M . Journal of the American Chemical Society, 1991,113:450. https://pubs.acs.org/doi/abs/10.1021/ja00002a011

doi: 10.1021/ja00002a011     URL    
[25]
Chen Z, Zhou L, Bing W, Zhang Z, Li Z, Ren J, Qu X . Journal of the American Chemical Society, 2014,136:7498. bc619035-cbb4-4bff-9fdf-2b6437dbc82ehttp://dx.doi.org/10.1021/ja503123m

doi: 10.1021/ja503123m     URL    
[26]
Ketner A M, Kumar R, Davies T S, Elder P W, Raghavan S R . Journal of the American Chemical Society, 2007,129:1553. https://www.ncbi.nlm.nih.gov/pubmed/17243676

doi: 10.1021/ja065053g     URL     pmid: 17243676
[27]
Eastoe J, Vesperinas A . Soft Matter, 2005,1:338. http://xlink.rsc.org/?DOI=b510877m

doi: 10.1039/b510877m     URL    
[28]
Yang J, Wang H, Wang J, Zhang Y, Guo Z . Chemical Communications, 2014,50:14979. https://www.ncbi.nlm.nih.gov/pubmed/25328142

doi: 10.1039/c4cc04274c     URL     pmid: 25328142
[29]
Bandara H M D, Burdette S C . Chemical Society Reviews, 2012,41:1809. https://www.ncbi.nlm.nih.gov/pubmed/22008710

doi: 10.1039/c1cs15179g     URL     pmid: 22008710
[30]
Lowik D W P M, Leunissen E H P, van den Heuvel M, Hansen M B, van Hest J C M . Chemical Society Reviews, 2010,39:3394. https://www.ncbi.nlm.nih.gov/pubmed/20523948

doi: 10.1039/b914342b     URL     pmid: 20523948
[31]
Li Z, Yuan X, Feng Y, Chen Y, Zhao Y, Wang H, Xu Q, Wang J . Physical Chemistry Chemical Physics, 2018,20:12808. https://www.ncbi.nlm.nih.gov/pubmed/29700535

doi: 10.1039/c8cp01617h     URL     pmid: 29700535
[32]
Wang Y, Ma N, Wang Z, Zhang X . Angewandte Chemie-International Edition, 2007,46:2823. https://www.ncbi.nlm.nih.gov/pubmed/17348049

doi: 10.1002/anie.200604982     URL     pmid: 17348049
[33]
Asaka T, Akai N, Kawai A, Shibuya K . Journal of Photochemistry and Photobiology A: Chemistry, 2010,209:12. https://linkinghub.elsevier.com/retrieve/pii/S1010603009003955

doi: 10.1016/j.jphotochem.2009.10.002     URL    
[34]
Wu A, Lu F, Sun P, Gao X, Shi L, Zheng L Q . Langmuir, 2016,32:8163. https://www.ncbi.nlm.nih.gov/pubmed/27445115

doi: 10.1021/acs.langmuir.6b01937     URL     pmid: 27445115
[35]
Shi S X, Yin T X, Tao X Y, Shen W G . RSC Advances, 2015,5:75806. http://xlink.rsc.org/?DOI=C5RA12047K

doi: 10.1039/C5RA12047K     URL    
[36]
Li Z, Wang H, Chu M, Guan P, Zhao Y, Zhao Y, Wang J . RSC Advances, 2017,7:44688. http://xlink.rsc.org/?DOI=C7RA08419F

doi: 10.1039/C7RA08419F     URL    
[37]
Crecca C R, Roitberg A E . Journal of Physical Chemistry A, 2006,110:8188. https://pubs.acs.org/doi/10.1021/jp057413c

doi: 10.1021/jp057413c     URL    
[38]
Li Z, Feng Y, Yuan X, Wang H, Zhao Y, Wang J . International journal of molecular sciences, 2019,20:1685. https://www.mdpi.com/1422-0067/20/7/1685

doi: 10.3390/ijms20071685     URL    
[39]
Zhang S G, Liu S, Zhang Q, Deng Y . Chemical Communications, 2011,47:6641. https://www.ncbi.nlm.nih.gov/pubmed/21566803

doi: 10.1039/c1cc11924a     URL     pmid: 21566803
[40]
Tamura H, Shinohara Y, Arai T . Chemistry Letters, 2010,39:240. http://www.journal.csj.jp/doi/10.1246/cl.2010.240

doi: 10.1246/cl.2010.240     URL    
[41]
Avó J, Cunha-Silva L, Lima J C, Jorge Parola A . Organic Letters, 2014,16:2582. https://www.ncbi.nlm.nih.gov/pubmed/24787141

doi: 10.1021/ol501111d     URL     pmid: 24787141
[42]
Seddon K R, Stark A, Torres M J . Pure & Applied Chemistry, 2000,72:2275.
[43]
Gao N, He Y, Tao X, Xu X Q, Wu X, Wang Y . Nature Communications, 2019,10:547 https://www.ncbi.nlm.nih.gov/pubmed/30710100

doi: 10.1038/s41467-019-08433-5     URL     pmid: 30710100
[44]
Mochizuki H, Nabeshima Y, Kitsunai T, Kanazawa A, Shiono T, Ikeda T, Hiyama T, Maruyama T, Yamamoto T, Koide N . J. Mater. Chem., 1999,9:2215. http://xlink.rsc.org/?DOI=a902596k

doi: 10.1039/a902596k     URL    
[45]
Wang H, Liu M, Zhao Y, Xuan X, Zhao Y, Wang J . Science China-Chemistry, 2017,60:970. http://link.springer.com/10.1007/s11426-016-0389-4

doi: 10.1007/s11426-016-0389-4     URL    
[46]
Lv Y, Wu J, Zhang J, Niu Y, Liu C Y, He J, Zhang J . Polymer, 2012,53:2524. baed83b6-e39c-4704-bcbe-581eb82ac111http://dx.doi.org/10.1016/j.polymer.2012.03.037

doi: 10.1016/j.polymer.2012.03.037     URL    
[47]
Yang J, Wang H Y, Wang J J, Guo X J, Pei X Y . Langmuir, 2016,32:66. https://www.ncbi.nlm.nih.gov/pubmed/26675640

doi: 10.1021/acs.langmuir.5b03854     URL     pmid: 26675640
[48]
Sakai H, Orihara Y, Kodashima H, Matsumura A, Ohkubo T, Tsuchiya K, Abe M . Journal of the American Chemical Society, 2005,127:13454. https://www.ncbi.nlm.nih.gov/pubmed/16190682

doi: 10.1021/ja053323+     URL     pmid: 16190682
[49]
Yang J, Wang H, Wang J, Guo X, Zhang Y . RSC Advances, 2015,5:96305. http://xlink.rsc.org/?DOI=C5RA20772J

doi: 10.1039/C5RA20772J     URL    
[50]
Song S L, Han Y, Hao W, Lu J, Qian Y . Tenside Surfactants Detergents, 2017,54:45. http://www.hanser-elibrary.com/doi/10.3139/113.110479

doi: 10.3139/113.110479     URL    
[51]
Song S L, Hao W, Yang D, Tain Q, Lu J . Tenside Surfactants Detergents, 2018,55:226. http://www.hanser-elibrary.com/doi/10.3139/113.110558

doi: 10.3139/113.110558     URL    
[52]
Yang J, Lee J Y, Ying J Y . Chemical Society Reviews, 2011,40:1672. c4ffa66b-9f78-4cea-b504-577fbb58c465http://dx.doi.org/10.1039/b916790k

doi: 10.1039/b916790k     URL    
[53]
Wei Y, Yang J, Ying J Y . Chemical Communications, 2010,46:3179. https://www.ncbi.nlm.nih.gov/pubmed/20424766

doi: 10.1039/b926194j     URL     pmid: 20424766
[54]
Stocco A, Chanana M, Su G, Cernoch P, Binks B P, Wang D . Angewandte Chemie-International Edition, 2012,51:9647. https://www.ncbi.nlm.nih.gov/pubmed/22907698

doi: 10.1002/anie.201203493     URL     pmid: 22907698
[55]
Liu G, Wang J . Angewandte Chemie International Edition, 2010,49:4425. https://www.ncbi.nlm.nih.gov/pubmed/20461741

doi: 10.1002/anie.200906034     URL     pmid: 20461741
[56]
Yang Y, Zhang B, Wang Y, Yue L, Li W, Wu L X . Journal of the American Chemical Society, 2013,135:14500. https://www.ncbi.nlm.nih.gov/pubmed/24041266

doi: 10.1021/ja4057882     URL     pmid: 24041266
[57]
Peng L, You M, Wu C, Han D, Ocsoy I, Chen T, Chen Z, Tan W H . ACS Nano, 2014,8:2555. https://www.ncbi.nlm.nih.gov/pubmed/24524295

doi: 10.1021/nn4061385     URL     pmid: 24524295
[58]
Takahashi Y, Fukuyasu K, Horiuchi T, Kondo Y, Stroeve P . Langmuir, 2014,30:41. https://www.ncbi.nlm.nih.gov/pubmed/24354334

doi: 10.1021/la4034782     URL     pmid: 24354334
[59]
Takahashi Y, Koizumi N, Kondo Y . Langmuir, 2016,32:683. https://www.ncbi.nlm.nih.gov/pubmed/26731043

doi: 10.1021/acs.langmuir.5b03912     URL     pmid: 26731043
[60]
Yuan X, Li Z, Feng Y, Pei Y, Wang H, Liu D, Wang D, Wang J . Journal of Molecular Liquids, 2019,277:805. https://linkinghub.elsevier.com/retrieve/pii/S0167732218353807

doi: 10.1016/j.molliq.2019.01.017     URL    
[1] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[2] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[3] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[4] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[5] 杨爽, 杨贤鹏, 王宝俊, 王蕾. 基于核酸的纸基荧光生物传感器的设计及应用[J]. 化学进展, 2021, 33(12): 2309-2315.
[6] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[7] 顾婷婷, 顾坚, 张喻, 任华. 金属硼氢化物基固态储氢体系[J]. 化学进展, 2020, 32(5): 665-686.
[8] 刘风国, 王博, 章莲玉, 刘爱民, 王兆文, 石忠宁. 离子液体在电沉积铝及铝合金中的应用[J]. 化学进展, 2020, 32(12): 2004-2012.
[9] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[10] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[11] 王平, 杨巧凤, 赵传壮*. 光响应性微凝胶的分子设计和智能材料构筑[J]. 化学进展, 2017, 29(7): 750-756.
[12] 程海东, 陈双俊*. 功能化离子液体在聚酯PET降解与合成中的应用[J]. 化学进展, 2017, 29(4): 443-449.
[13] 宋河远, 康美荣, 靳荣华, 金福祥, 陈静. 离子液体在羰基化反应中的应用[J]. 化学进展, 2016, 28(9): 1313-1327.
[14] 杨许召, 王军, 方云. 双阳离子液体的合成、性能及应用[J]. 化学进展, 2016, 28(2/3): 269-283.
[15] 李超, 范美强, 陈海潮, 陈达, 田光磊, 舒康颖. Li-Mg-N-H体系储氢材料的热力学和动力学调控[J]. 化学进展, 2016, 28(12): 1788-1797.