English
新闻公告
More
化学进展 2013, Vol. 25 Issue (06): 927-939 DOI: 10.7536/PC120854 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池用新型MV3O8(M=Li+ ,Na+ , NH4+) 嵌锂材料

王海燕*, 唐有根, 周东慧, 刘素琴, 张辉   

  1. 中南大学有色金属资源化学教育部重点实验室 化学化工学院 长沙 410083
  • 收稿日期:2012-08-01 修回日期:2012-12-01 出版日期:2013-06-25 发布日期:2013-05-02
  • 通讯作者: 王海燕 E-mail:wanghy419@126.com
  • 基金资助:

    国家自然科学基金项目(No. 20971129);中国博士后基金项目(No.2013M530356);有色金属资源化学教育部重点实验室开放基金项目(No.2012KF01)和中南大学科研启动基金资助

MV3O8(M=Li+, Na+, NH4+) as Novel Intercalated Materials for Li-Ion Batteries

Wang Haiyan*, Tang Yougen, Zhou Donghui, Liu Suqin, Zhang Hui   

  1. Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083
  • Received:2012-08-01 Revised:2012-12-01 Online:2013-06-25 Published:2013-05-02

本文详细综述了近年来国内外关于锂离子电池三钒酸盐嵌锂电极材料的研究进展, 重点对钒酸锂、钒酸钠和钒酸铵材料的晶体结构、充放电机制、合成及电化学性能研究等进行了介绍, 并结合我们课题组的研究情况, 对比分析了上述三种材料的优劣。钒酸锂是目前研究的热点, 近年来随着新型制备工艺的引入以及包括掺杂包覆改性手段的应用, 材料的循环性能得到明显改善, 但是相对较差的结构属性限制了其进一步的研究与应用;钒酸钠有较稳定的层状结构, 体现了优秀的循环稳定性能和倍率性能, 在高功率长寿命有机电解液锂电池正极材料以及水溶液锂电池负极材料的应用中有广阔的前景;相比于钒酸锂, 钒酸铵材料具有合成方法更简单、比容量相当、循环性能更优越的特点, 分子内氢键的存在使得层状结构更加稳定, 该材料有望成为钒系材料中新的研究热点。

Research progress of MV3O8 (M=Li+, Na+, NH4+) as lithium intercalated materials for lithium ion batteries in recent years are reviewed,especially with emphasis on their crystal structures, charge-discharge mechanisms, synthesis methods and electrochemical properties. The advantage and disadvantage of the involved three kinds of vanadium-related materials are well compared on the basis of our group's research. Till now, LiV3O8 has been widely studied and large progress has been made via employing the novel preparation strategies, effective doping or modification methods. However, the intrinsic inferior structure has become a big challenge for its further study and applications. Due to the relatively stable layered structure, NaV3O8 has good cycling stability and excellent rate capability, thus it exhibits a great potential to be used as a high-power and long-cycling life cathode material for non-aqueous lithium ion battery, as well as high performance anode material for aqueous lithium ion battery. In comparison with LiV3O8, NH4V3O8 shows comparable capacity, much easier preparation and better cycling stability probably due to its formation of intra molecular H-bond. It is believed that NH4V3O8 could become a new research topic in vanadates as intercalated materials for lithium ion batteries. Contents
1 Introduction
2 LiV3O8
2.1 Crystal structure
2.2 Charge-discharge mechanism of LiV3O8 used as cathode material for Li-ion battery
2.3 Synthesis methods
2.4 Effect factors of electrochemical performance
2.5 Modification studies
2.6 LiV3O8 as anode material for aqueous Li-ion battery
3 NaV3O8
3.1 Crystal structure
3.2 Charge-discharge mechanism of NaV3O8 used as cathode material for Li-ion battery
3.3 Synthesis and electrochemical performance
4 NH4V3O8
4.1 Crystal structure
4.2 Charge-discharge mechanism of NH4V3O8 used as cathode material for Li-ion battery
4.3 Synthesis and electrochemical performance
5 Conclusions and outlook

中图分类号: 

()

[1] Tarascon J M, Armand M. Nature, 2001, 414: 359-367
[2] Megahed S, Scrosati B. J. Power Sources, 1994, 51: 79-104
[3] Shlyakhtin O A, Yoon Y S, Choi S H, Oh Y J. Electrochimica Acta, 2004, 50: 505-509
[4] 唐爱东 (Tang A D), 王海燕(Wang H Y), 黄可龙(Huang K L), 谭斌 (Tan B), 王晓玲(Wang X L). 化学进展(Progress in Chemistry), 2007, 19: 1313-1321
[5] Leising R A, Palazzo M, Takeuchi J E S, Kenneth J T. J. Electrochem. Soc., 2001, 148: A838-A844
[6] Wang H Y, Tang A D, Huang K L. Chin. J. Chem., 2011, 29: 27-32
[7] Wang H Y, Tang A D, Huang K L. Chin. J. Chem., 2011, 29: 1583-1588
[8] Owen J R. Chem. Soc. Rev., 1997, 26: 259-267
[9] 王海燕(Wang H Y), 黄可龙(Huang K L), 刘素琴(Liu S Q), 罗燕(Luo Y). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2009, 25(12): 2090-2096
[10] Li H, Wang Z X, Chen L Q, Huang X J. Adv. Mater., 2009, 21: 4593-4607
[11] Wadsley A D. Acta Cryst., 1957, 10: 261-267
[12] Besenhard J O, Schöllhom R. J. Power Sources, 1977, 1(3): 267-276
[13] Ma H, Yuan Z Q, Cheng F Y. J. Alloy. Compd., 2011, 509: 6030-6035
[14] Yang H, Li J, Zhang X G, Jin Y L. J. Mater. Process. Technol., 2008, 207: 265-270
[15] Liu H M, Wang Y G, Wang K X, Wang Y R, Zhou H S. J. Power Sources, 2009, 192: 668-673
[16] Pan A Q, Zhang J G, Cao G Z, Liang S Q, Wang C M, Nie Z, Bruce W A, Xu W, Liu D, Xiao J, Li G S, Liu J. J. Mater. Chem., 2011, 21: 10077-10084
[17] Rozier P, Morcrette M, Martin P, Laffont L, Tarascon J M. Chem. Mater., 2005, 17 (5): 984-991
[18] Picciotto L A, Adendorff K T, Liles D C, Thackeray M M. Solid State Ionics, 1993, 62: 297-307
[19] Pistoia G, Panero S, Tocci M, Moshtev R V, Maner V. Solid State Ionics, 1984, 13: 311-318
[20] Pistoia G, Pasquali M, Tocci M, Moshtev R V, Maner V. J. Electrochem. Soc., 1985, 132: 281-284
[21] Kawakita J, Katayama Y, Miura T, Kishi T. Solid State Ionics, 1998, 107: 145-152
[22] Tossici R, Marassi R, Berrettoni M, Stizza S, Pistoia G. Solid State Ionics, 1992, 57: 227-234
[23] Wang G, Roos J, Brinkmann D, Pasquali M, Pistoia G. J. Phys. Chem. Solids, 1993, 54: 851-855
[24] Bonino F, Panero S, Pasquali M, Pistoia G. J. Power Sources, 1995, 56: 193-196
[25] Raistrick I D. Rev. Chim. Miner., 1984, 21: 456-461
[26] Kawakita J, Miura T, Kishi T. Solid State Ionics, 1999, 120: 109-116
[27] Kawakita J, Majima M, Miura T, Kishi T. J. Power Sources, 1997, 66: 135-139
[28] Kawakita J, Miura T, Kishi T. Solid State Ionics, 1999, 118: 141-147
[29] Kawakita J, Kato T, Katayama Y, Miura T, Kishi T. J. Power Sources, 1999, 81/82: 448-453
[30] Kawakita J, Katayama Y S, Miura T, Kishi T. Solid State Ionics, 1998, 110: 199-207
[31] 刘进(Liu J), 张泽志(Zhang Z Z), 兰尧中(Lan Y Z). 电源技术(Chin. J. Power Sources), 2006, 130: 552-554
[32] Liu Y M, Zhou X C, Guo Y L. Mater. Chem. Phys., 2009, 114: 915-919
[33] Yu A S, Kumagai N K, Liu Z L, Lee J Y. J. Power Sources, 1998, 74: 117-121
[34] Liu L, Jiao L F, Zhang Y H, Sun J L, Yang L, Miao Y L, Yuan H T, Wang Y M. Mater. Chem. Phys., 2008, 111: 565-569
[35] Zhou Y, Yue H F, Zhang X Y, Deng X Y. Solid State Ionics, 2008, 179: 1763-1767
[36] 李志友(Li Z Y), 黄伯云(Huang B Y), 汤春峰(Tan C F), 刘志坚(Liu Z J), 曲选辉(Qu X H). 功能材料(J. Funct. Mater.), 2001, 32: 181-183
[37] Yang G, Wang G, Hou W H. J. Phys. Chem. B, 2005, 109: 11186-11196
[38] Murugan A V, Muraliganth T, Manthiram T. J. Phys. Chem. C, 2008, 112 (37): 14665-14671
[39] Ju S H, Kang Y C. Electrochimica Acta, 2010, 55: 6088-6092
[40] West K, Skaarup S, Saidi Y. J. Electrochem. Soc., 143(3): 820-825
[41] Feng Y, Hou F, Li Y L. J. Power Sources, 2009, 192: 708-713
[42] Pan A Q, Liu J, Zhang J G, Cao G Z, Xu W, Nie Z, Jie X, Choi D, Bruce W A, Wang C, Liang S Q. J. Mater. Chem., 2011, 21: 1153-1161
[43] Xu H Y, Wang H, Song Z Q, Wang Y W, Yan H, Yoshimura M. Electrochim. Acta, 2004, 49: 349-353
[44] 杨辉(Yang H), 李娟(Li J). 应用化学(Chin. J. Appl. Chem.), 2009, 26(8): 989-992
[45] Liu H, Yang H, Huang T. Materials Science and Engineering B, 2007, 143: 60-63
[46] Wang H Y, Ren Y, Wang Y, Wang W J, Liu S Q. CrystEngComm, 2012, 14(8): 2831-2836
[47] Si Y C, Jiao L F, Yuan H T, Li H X, Wang Y M. J. Alloy. Compd., 2009, 486: 400-405
[48] Li H H, Yadegari H, Jabbari A. Mater. Chem. Phys., 2011, 126: 476-479
[49] Liu Q Y, Liu H W, Zhou X W, Cong C J, Zhang K L. Solid State Ionics, 2005, 176: 1549-1554
[50] Sun J L, Peng W X, Song D W, Wang Q H, Du L F, Jiao H M, Si Y C, Yuan H T. Mater. Chem. Phys., 2010, 124: 248-251
[51] Pasquali M, Pistoia G, Manev V, Moshtev V. J. Electrochem. Soc., 1986, 133: 2454-2458
[52] Liu L, Jiao L F, Sun J L, Zhang Y H, Zhao M, Yuan H T, Wang Y M. J. Alloy. Compd., 2009, 471(1/2): 352-356
[53] Xu J Q, Zhang H L, Zhang T, Pan Q Y, Gui Y H. J. Alloy. Compd., 2009, 467: 327 -331
[54] Kovalehuk E P, Reshetnyak O V, Kovalyshynya S, Bla ejowski J. J. Power Sources, 2002, 107: 61-66
[55] Gill B C, Shaekle D R, Andersen T N. J. Electrochem. Soc., 2000, 147(10): 3575 -3578
[56] Liu Y M, Zhou X C, Guo Y L. J. Power Sources, 2008, 184: 303-307
[57] 马胜林(Ma S L), 赵新兵(Zhao X B), 谢健(Xie J), 陈学军(Chen X J), 曹高劭(Cao G S), 朱铁军(Zhu T J). 电源技术(Chin. J. Power Sources), 2007, 131: 598-600
[58] Kumagai N, Yu A S. J. Electrochem. Soc., 1997, 144(3): 830-835
[59] Liu J, Liu W, Wan Y L, Ji S M, Wang J B, Zhou Y C. RSC Adv., 2012, 2: 10470-10474
[60] Manev V, Momchilov A, Nassalevska A. J. Power Sources, 1995, 54: 501-507
[61] Jouanneau S, La Salle A L, Verbaere A, Guyomard D. J. Electrochem. Soc., 2005, 152 (8): A1660-A1667
[62] Feng Y, Li Y L, Hou F. J. Power Sources, 2009, 187: 224-228
[63] Kumagai N, Yu A, West K. J. Appl. Electrochem., 1997, 27: 953 -958
[64] Pistoia G, Wang G, Zane D. Solid State Ionics, 1995, 76: 285-290
[65] Jouanneau S, La Salle A L, Verbaere A, Guyomard D, Lascaud S. J. New Mater. Electrochem. Syst., 2002, 5: 191-196
[66] Sun J L, Jiao L F, Yuan H T, Liu L, Wei X, Miao Y L, Yang L, Wang Y M. J. Alloy. Compd., 2009, 472: 363-366
[67] 司玉昌(Si Y C), 焦丽芳(Jiao L F), 李海霞(Li H X), 袁华堂(Yuan H T). 南开大学学报(自然科学版)(Acta Scientiarum Naturalium Universitatis Nakaiensis), 2008, 41: 70-73
[68] Jiao L F, Li H X, Yuan H T, Wang Y M. Mater. Lett., 2008, 62: 3937-3939
[69] Liu L, Jiao L F, Sun J L, Zhao M, Zhang Y H, Yuan H T, Wang Y M. Solid State Ionics, 2008, 178: 1756-1761
[70] Zhao M, Jiao L F, Yuan H T, Feng Y, Zhang M. Solid State Ionics, 2007, 178: 387-391
[71] Liu L, Jiao L F, Sun J L, Zhang Y H, Zhao M, Yuan H T, Wang Y M. Electrochimica Acta, 2008, 53: 7321-7325
[72] 吴俊莉(Wu J L), 童庆松(Tong Q S), 刘永梅(Liu Y H), 徐伟(Xu W). 云南大学学报(自然科学版)(Journal of Yunnan University (Natural Science)), 2006, 28 (6): 530-532
[73] Feng C Q, Huang L F, Guo Z P. J. Power Sources, 2007, 174: 548-551
[74] Wang H B, Zeng Y Q, Huang K L, Liu S Q, Chen L Q. Electrochimica Acta, 2007, 52: 5103 -5107
[75] Feng C Q, Chew S Y, Guo Z P, Wang J Z, Liu H K. J. Power Sources, 2007, 174: 1095-1099
[76] Jiao L F, Liu L, Sun J L, Zhang Y H, Yuan H T, Wang Y M, Zhou X D. J. Phys. Chem. C, 2008, 112: 18249-18254
[77] Idris N H, Rahman M M, Wang J Z, Chen Z X, Liu H K. Compos. Sci. Technol., 2011, 71: 343-349
[78] 王海波(Wang H B). 中南大学博士学位论文(Doctoral Dissertation of Central South University), 2008
[79] Köhler J, Makihara H, Uegaito H, Inoue H, Toki M. Electrochimica Acta, 2000, 46: 59-65
[80] Wang G J, Fu L J, Zhao N H, Yang L C, Wu Y P, Wu H Q. Angew. Chem. Int. Ed., 2007, 46: 295-297
[81] Wang G J, Fu L J, Wang B, Zhao N H, Wu Y P, Holze R. J. Appl. Electrochem., 2008, 38: 579-581
[82] Wang G J, Zhao N H, Yang L C, Wu Y P, Wu H Q, Holze R. Electrochimica Acta, 2007, 52: 4911-4915
[83] Wang G J, Qu Q T, Wang B, Shi Y, Tian S, Wu Y P, Holze R. J. Power Sources, 2008, 189: 503-506
[84] Wang H B, Huang K L, Zeng Y Q, Zhao F G, Chen L Q. Electrochem. Solid State Lett., 2007, 10 (9): A199-A203
[85] Wang Y G, Lou J Y, Wu W, Wang C X. J. Electrochem. Soc., 2007, 154 (3): A228-A234
[86] Wu L, Dahn J R, Wainwright D. Science, 1994, 264: 1115-1118
[87] Li H Q, Zhai T Y, He P, Wang Y G, Hosono E, Zhou H S. J. Mater. Chem., 2011, 21: 1780-1787
[88] Pasquali M, Pistoia G. Electrochim. Acta, 1991, 36: 1549-1553

[89] Wang H Y, Wang W J, Ren Y, Huang K L, Liu S Q. J. Power Sources, 2012, 199: 263-269

[90] Wang H Y, Liu S Q, Ren Y, Wang W J, Tang A D. Energy & Environmental Science, 2012, 5: 6173- 6179

[91] Spahr M E, Novák P, Scheifele W, Haas O. J. Electrochem. Soc., 1998, 145: 421-427

[92] Kawakita J, Miura T, Kishi T. Solid State Ionics, 1999, 124: 21-28

[93] Xu J J, Zhang X T, Wang D J, Du Z L, Li T J. Chem. Lett., 2005, 34: 838-839

[94] Channu V S R, Holze R, Yeo I H, Mho S, Kalluru R R. Appl. Phys. A, 2011, 104: 707-711

[95] Yuan C, Li C, Ma B Q, Li X, Cao X Y. Mater. Sci., 2011, 17: 65-68

[96] Kawakita J, Miura T, Kishi T. Solid State Ionics, 1999, 124: 29-35

[97] Zhou G T, Wang X C, Yu J C. Cryst. Growth Des., 2005, 5: 969-974

[98] Yu J G, Yu J C, Ho W K, Wu L, Wang X C. J. Am. Chem. Soc., 2004, 126: 3422-3423

[99] Zhou D H, Liu S Q, Wang H Y, Yan G Q. Journal of Power Sources, 2013, 227: 111-117

[100] Rui X H, Zhu J X, Sim D H, Xu C, Zeng Y, Hng H H, Lim T M, Yan Q Y. Nanoscale, 2011, 3: 4752 -4758

[101] Hu Y S, Liu X, Müller J O, Schlgl R, Maier J, Su D S. Angew. Chem. Int. Ed., 2009, 48: 210-214

[102] Lin B Z, Liu S X. Acta Cryst., 1999, C55: 1961-1963

[103] Huang S D, Shan Y K. Chem. Commun., 1998, 1069-1070

[104] Wang H Y, Huang K L, Liu S Q, Huang C H, Wang W J, Ren Y. J. Power Sources, 2011, 196: 788-792

[105] Mai L Q, Lao C S, Hu B, Zhou J, Qi Y Y, Chen W, Gu Y D, Wang Z L. J. Phys. Chem. B, 2006, 110: 18138-18141

[106] Torardi C C, Miao C R. Chem. Mater. , 2002, 14: 4430-4433

[107] 王海燕(Wang H Y). 中南大学博士学位论文(Doctoral Dissertation of Central South University), 2012

[108] Wang H Y, Huang K L, Ren Y, Huang X B, Liu S Q, Wang W J. J. Power Sources, 2011, 196: 9786-9792

[109] Wang H Y, Ren Y, Wang W J, Huang X B, Huang K L, Wang Y. J. Power Sources, 2012, 199: 315-321

[110] Wang H Y, Huang K L, Huang C H, Liu S Q, Ren Y, Huang X B. J. Power Sources, 2011, 196: 5645 -5650

[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[5] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[6] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[7] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[8] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[9] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[10] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[11] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[12] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[13] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[14] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[15] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.