English
新闻公告
More
化学进展 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池聚阴离子型正极材料

王福庆1,2, 陈剑*1, 张锋1, 衣宝廉1   

  1. 1. 中国科学院大连化学物理研究所 先进二次电池研究组 大连 116023;
    2. 中国科学院研究生院 北京 100049
  • 收稿日期:2011-11-01 修回日期:2011-12-01 出版日期:2012-08-24 发布日期:2012-08-06
  • 通讯作者: 陈剑 E-mail:chenjian@dicp.ac.cn
  • 基金资助:

    辽宁省工业攻关计划项目(No.2010220034)和大连市科技基金项目(No.2010A17GX096)资助

Polyanion-Type Cathode Materials for Li-Ion Batteries

Wang Fuqing1,2, Chen Jian1, Zhang Feng1, Yi Baolian1   

  1. 1. Advanced Rechargeable Batteries Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
    2. Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
  • Received:2011-11-01 Revised:2011-12-01 Online:2012-08-24 Published:2012-08-06
聚阴离子型正极材料具有高安全性、低成本和环境友好等优点,是最具潜力的车用动力锂离子电池正极材料之一,但是较低的电子电导率和离子电导率以及较差的倍率性能和低温性能限制了这类材料的实际应用。近年来,通过对材料进行表面包覆电子良导体、体相掺杂以及制备纳米尺寸材料等,显著提升了部分聚阴离子型正极材料的电化学性能;同时,还实现了磷酸亚铁锂在车用动力电池中的实际应用。本文论述了近年来聚阴离子型正极材料研究领域中的研究热点及进展,特别是近几年重新成为研究热点的硅酸盐和硫酸盐正极材料,重点讨论了各种聚阴离子型正极材料的晶体结构、合成及改性方法、电化学性质、安全性以及实际应用所面临的技术瓶颈等,最后探讨了提升材料性能的可能途径。
Polyanion-type materials are considered as one of the most promising cathode materials for power batteries due to the good safety, low cost and environmental benign of the materials. However, the commercial application of this kind of material is hindered by the poor rate capability and low-temperature performance caused by the low electronic and ionic conductivity of the materials. Recently, the electrochemical performances of the materials have been improved to a certain extend by coating the material particles with carbon or conductive polymer, doping the compounds with foreign metal ions, and preparing the nano-structured materials. And the commercial applications of LiFePO4 in power batteries have been successfully achieved.In this paper, the recent progress on the polyanion-type cathode materials, including silicates and sulfates which have become the research focus again, are reviewed. The crystal structure, synthesis and modification process, electrochemical characteristics, safety of the material, as well as the technical bottlenecks in the actual applications are discussed. The possible approaches to improve the output performance of the materials and the development trends of the polyanion-type cathode materials are also discussed and prospected. Contents 1 Introduction
2 Crystal structure, preparation, and electrochemical characteristic of polyanion-type cathode materials
2.1 Phosphates
2.2 Silicates
2.3 Sulfates
3 Strategies to improve the electrochemical performance of polyanion-type cathode materials
4 Safety of polyanion-type cathode materials
5 Complex/blend cathode materials
6 Conclusion and prospects

中图分类号: 

()
[1] Yamada A, Chung S C, Hinokuma K. J. Electrochem. Soc., 2001, 148 (3): A224-A229
[2] Nanjundaswamy K S, Padhi A K, Goodenough J B, Okada S, Ohtsuka H, Arai H, Yamaki J. Solid State Ionics, 1996, 92: 1-10
[3] Sadi M Y, Barker J, Huang H, Swoyer J L, Adamson G. Electrochem. Solid-State Lett., 2002, 5 (7): A149-A151
[4] Dominko R. J. Power Sources, 2008, 184 (2): 462-468
[5] Tarascon J M, Armand M. Nature, 2001, 414: 359-367
[6] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144(4): 1188-1194
[7] Whittingham M S. Chem. Rev., 2004, 104: 4271-4301
[8] Konarova M, Taniguchi L. Powder Technol., 2009, 191: 111-116
[9] Kang B W, Ceder G. Nature, 2009, 458: 190-193
[10] Huang Y H, Ren H B, Peng Z H, Zhou Y H. Electrochim. Acta, 2009, 55: 311-315
[11] Sun C S, Zhou Z, Xu Z G, Wang D G, Wei J P, Bian X K, Yan J. J. Power Sources, 2009, 193: 841-845
[12] Zou H L, Zhang G H, Shen P K. Mater. Res. Bull., 2010, 45: 149-152
[13] Yang S L, Zhou X F, Zhang J G, Liu Z P. J. Mater. Chem., 2010, 20: 8086-8091
[14] Kuwahara A, Suzuki S, Miyayama M. J. Electroceram., 2010, 24: 69-75
[15] Ni J F, Morishita M, Kawabe Y, Watada M, Takeichi N, Sakai T. J. Power Sources, 2010, 195: 2877-2882
[16] Xu Z H, Xu L, Lai Q Y, Ji X Y. Mater. Res. Bull., 2007, 42: 883-891
[17] Liu Y Y, Cao C B, Li J. Electrochim. Acta, 2010, 55: 3921-3926
[18] Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P. Electrochem. Commun., 2010, 12: 10-13
[19] Wu L, Li X H, Wang Z X, Li L J, Zheng J C, Guo H J, Hu Q Y, Fang J. J. Power Sources, 2009, 189: 681-684
[20] 朱先军(Zhu X J), 刘云霞(Liu Y X), 耿良梅(Geng L M), 程龙兵(Cheng L B). 电池(Battery Bimonthly), 2007, 37(5): 390-393
[21] Zhong S K, Liu L T, Liu J Q, Wang J, Yang J W. Solid State Commun., 2009, 149: 1679-1683
[22] Huang J S, Yang L, Liu K Y, Tang Y F. Electrochim. Acta, 2010, 195: 5013-5018
[23] Gaubicher J, Wurm C, Goward G, Masquelier C, Nazar L. Chem. Mater., 2000, 12: 3240-3242
[24] Yin S C, Grondey H, Strobel P, Huang H, Nazar L F. J. Am. Chem. Soc., 2003, 125: 326-327
[25] Huang H, Yin S C, Kerr T, Talyor N, Nazar L F. Adv. Mater., 2002, 14: 1525-1528
[26] Chang X Y, Wang Z X, Li X H, Zhang L, Guo H J, Peng W J. Mater. Res. Bull., 2005, 40: 1513-1520
[27] Martha S K, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners J H, Exnar I, Kay A, Markovsky B, Aurbach D. Angew. Chem. Int. Ed., 2009, 48: 8559-8563
[28] Kwon N H, Drezen T, Exnar I, Teerlinck I, Isono M, Graetzel M. Electrochem. Solid-State Lett., 2006, 9(6): A277-A280
[29] Xu J, Chen G, Li H J, Lv Z S. J. Appl. Electrochem., 2010, 40: 575-580
[30] Bakenov Z, Taniguchi I. Electrochem. Commun., 2010, 12: 75-78
[31] Yamada A, Hosoya M, Chung S C, Kudo Y, Hinokuma K, Liu K Y, Nishi Y. J. Power Sources, 2003, 119/121: 232-238
[32] Lee J W, Park M S, Anass B, Park J H, Paik M S, Doo S G. Electrochim. Acta, 2010, 55: 4162-4169
[33] Zhou F, Cococcioni M, Kang K, Ceder G. Electrochem. Commun., 2004, 6: 1144-1148
[34] Li G H, Azuma H, Tohda M. Electrochem. Solid-State Lett., 2002, 5(6): A135-A137
[35] Okada S, Sawa S, Egashira M, Yamaki J I, Tabuchi M, Kageyama H, Konishi T, Yoshino A. J. Power Sources, 2001, 97/98: 430-432
[36] Amine K, Yasuda H, Yamachi M. Electrochem. Solid-State Lett., 2000, 3(4): 178-179
[37] Yang J S, Xu J J. J. Electrochem. Soc., 2006, 153(4): A716-A723
[38] Li H H, Jin J, Wei J P, Zhou Z, Yan J. Electrochem. Commun., 2009, 11: 95-98
[39] Zhao Y S, Wang S J, Zhao C S, Xia D G. Rare Metals, 2009, 28(2): 117-121
[40] Barker J, Saidi M Y, Swoyer J L. J. Electrochem. Soc., 2003, 153(10): A1394-A1398
[41] Reddy M V, Rao G V S, Chowdari B V R. J. Power Sources, 2010, 195: 5768-5774
[42] Wu S Q, Zhu Z Z, Yang Y, Hou Z F. Comput. Mater. Sci., 2009, 44: 1243-1251
[43] Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas J O. Electrochem. Commun., 2005, 7: 156-160
[44] Politaev V V, Petrenko A A, Nalbandyan V B, Medvedev B S, Shvetsova E S. J. Solid State Electrochem., 2007, 180: 1045-1050
[45] Nishimura S I, Hayase S, Kanno R, Yashima M, Nakayama N, Yamada A. J. Am. Chem. Soc., 2008, 130: 13212-13213
[46] Nytén A, Kamali S, Häggström L, Gustafsson T, Thomas J O. J. Mater. Chem., 2006, 16: 2266-2272
[47] Gong Z L, Li Y X, He G N, Li J, Yang Y. Electrochem. Solid-State Lett., 2008, 11(5): A60-A63
[48] Deng C, Zhang S, Fu B L, Yang S Y, Ma L. Mater. Chem. Phys., 2010, 120: 14-17
[49] Zhong G H, Li Y L, Yan P, Liu Z, Xie M H, Lin H Q. J. Phys. Chem. C, 2010, 114: 3693-3700
[50] Zhang S, Deng C, Yang S Y. Electrochem. Solid-State Lett., 2009, 12(7): A136-A139
[51] Muraliganth T, Stroukoff K R, Manthiram A. Chem. Mater., 2010, 22: 5754-5761
[52] Dominko R, Bele M, Gaber ek M, Meden A, Remkar M, Jamnik J. Electrochem. Commun., 2006, 8: 217-222
[53] Liu W G, Xu Y H, Yang R. J. Alloys Compd., 2009, 480: L1-L4
[54] Li Y X, Gong Z L, Yang Y. J. Power Sources, 2007, 174: 528-532
[55] Gong Z L, Li Y X, Yang Y. Electrochem. Solid-State Lett., 2006, 9(12): A542-A544
[56] Belharouak I, Abouimrane A, Amine K. J. Phys. Chem. C, 2009, 113: 20733-20737
[57] Deng C, Zhang S, Yang S Y. J. Alloys Compd., 2009, 487: L18-L23
[58] Kokalj A, Dominko R, Mali G, Meden A, Gaberscek M, Jamnik J. Chem. Mater., 2007, 19: 3633-3640
[59] Martha S K, Markovsky B, Grinblat J, Gofer Y, Haik O, Zinigrad E, Aurbach D, Drezen T, Wang D, Deghenghi G, Exnar I. J. Electrochem. Soc., 2009, 156(7): A541-A552
[60] Lyness C, Delobel B, Armstrong A R, Bruce P G. Chem. Commun., 2007, 4890-4892
[61] Okada S, Yamaki J I. J. Ind. Eng. Chem., 2004, 10(7): A1104-A1113
[62] Nanjundaswamy K S, Padhi A K, Goodenough J B, Okada S, Ohtsuka H, Arai H, Yamaki J. Solid State Ionics, 1996, 92: 1-10
[63] Recham N, Chotard J N, Dupont L, Delacourt C, Walker W, Armand M, Tarascon J M. Nature Materials, 2010, 9: 68-74
[64] Barpanda P, Recham N, Chotard J N, Djellab K, Walker W, Armand M, Tarascon J M. J. Mater. Chem., 2010, 20: 1659-1668
[65] Gabrish H, Wilcox J D, Doeff M M. Electrochem. Solid-State Lett., 2006, 9(7): A360-A363
[66] Fu P, Zhao Y M, An X N, Dong Y Z, Hou X M. Electrochim. Acta, 2007, 52: 5281-5285
[67] Chung S Y, Bloking J, Chiang Y M. Nature Materials, 2002, 1: 123-128
[68] 王兆翔(Wang Z X), 陈立泉(Chen L Q). 电源技术(Chinese Journal of Power Sources), 2008, 132(5): 287-292
[69] Islam M S, Driscoll D J, Fisher C A J, Slater P R. Chem. Mater., 2005, 17: 5085-5092
[70] Herle P S, Ellis B, Coombs N, Nazar L F. Nature Materials, 2004, 3: 147-152
[71] Li H, Shi L H, Wang Q, Chen L Q, Huang X J. Solid State Ionics, 2002, 148: 247-258
[72] Wang F Q, Chen J, Wu M H, Yi B L. Ionics, DOI: 10.1007/s11581-012-0780-2
[73] Qian J F, Zhou M, Cao Y L, Ai X P, Yang H X. J. Phys. Chem. C, 2010, 114: 3477-3482
[74] Chen G Y, Richardson T J. J. Power Sources, 2010, 195: 1221-1224
[75] Joachin H, Kaun T D, Zaghib K, Prakash J. J. Electrochem. Soc., 2009, 156(6): A401-A406
[76] Xiang H F, Wang H, Chen C H, Ge X W, Guo S, Sun J H, Hu W Q. J. Power Sources, 2009, 191: 575-581
[77] Sadi M Y, Barker J, Huang H, Swover J L, Adamson G. J. Power Sources, 2003, 119/121: 266-272
[78] Gover R K B, Burns P, Bryan A, Saidi M Y, Swoyer J L, Barker J. Solid State Ionics, 2006, 177: 2635-2638
[79] MacNeil D D, Lu Z H, Chen Z H, Dahn J R. J. Power Sources, 2002, 108: 8-14
[80] Wang H, Zhang W D, Zhu L Y, Chen M C. Solid State Ionics, 2007, 178: 131-136
[81] Kim W S, Kim S B, Jang I C, Lim H H, Lee Y S. J. Alloys Compd., 2010, 492: L87-L90
[82] 高旭光(Gao X G), 胡国荣(Hu G R), 彭忠东(Peng Z D), 万烨(Wan Y), 杜柯(Du K), 刘艳君(Liu Y J). 电源技术(Chinese Journal of Power Sources), 2007, 131: 881-884
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[4] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[5] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[6] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[7] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[8] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[9] 刘佳, 史俊, 付坤, 丁超, 龚思成, 邓慧萍. 多相催化过硫酸盐工艺处理水环境中有机污染物的非自由基过程[J]. 化学进展, 2021, 33(8): 1311-1322.
[10] 韩文亮, 董林洋. 基于硫酸根自由基的先进氧化活化方法及其在有机污染物降解上的应用[J]. 化学进展, 2021, 33(8): 1426-1439.
[11] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[12] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[13] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[14] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[15] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
阅读次数
全文


摘要

锂离子电池聚阴离子型正极材料