English
新闻公告
More
化学进展 2011, Vol. 23 Issue (10): 2045-2054 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池3d 过渡金属氧化物负极微/纳米材料

陈欣1, 张乃庆2,3, 孙克宁2,3*   

  1. 1. 哈尔滨工业大学化学系 哈尔滨 150001;
    2. 哈尔滨工业大学基础与交叉科学研究院理学中心 哈尔滨 150001;
    3. 哈尔滨工业大学城市水资源与水环境国家重点实验室 哈尔滨 150090
  • 收稿日期:2011-01-01 修回日期:2011-03-01 出版日期:2011-10-24 发布日期:2011-09-15
  • 作者简介:e-mail:sunkn@hit.edu.cn
  • 基金资助:

    国家创新研究群体基金项目(No.50821002)资助

3d Transition-Metal Oxides as Anode Micro/Nano-Materials for Lithium Ion Batteries

Chen Xin1, Zhang Naiqing2,3, Sun Kening2,3*   

  1. 1. Department of Chemistry, Harbin Institute of Technology, Harbin 150001, China;
    2. Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150001, China;
    3. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
  • Received:2011-01-01 Revised:2011-03-01 Online:2011-10-24 Published:2011-09-15

与传统的碳材料相比,锂离子电池3d 过渡金属氧化物(MxOy,M = Co、Fe、Cu、Ni) 负极材料具有更高的容量、倍率及安全性能,更适于锂离子电池在移动电子设备、电动汽车、备用储能和智能电网等领域的应用,因此备受关注。本文介绍了MxOy 负极材料的充放电机理,并以零维、一维、二维、三维等纳米结构及空心、核壳等多种微/纳米结构为出发点,详细讨论了过渡金属氧化物电极材料的电化学性能与结构特征之间的关系,分析了具有不同结构特征的负极材料的合成方法;展望了3d 过渡金属氧化物负极微/纳米材料的研究趋势和发展前景。

Compared with the traditional carbon materials for lithium-ion batteries, 3d transition-metal oxides (MxOy, where M is Co, Fe, Cu or Ni) as anode materials have been attracting intensive attention in recent years due to their higher energy capacity, higher recharging rates and safety to meet the ever-going demand for lithium-ion batteries with energy density, power density, cyclability and safety to be more suitable for its new applications in many fields, which include portable electronic consumer devices, electric vehicles, large-scale electricity storage in smart or intelligent grids, etc. In this review, firstly a general introduction is given to the charge-discharge mechanism of 3d MxOy anode materials. Then, a discussion in detail is made to the relationship between the electrochemical properties and a variety of structural characteristics of 3d MxOy and composite anode materials, in light of the structural characteristics of 0 dimensional (0 D), 1D, 2D, 3D nano-structures, hollow, core/shell, micro/nano-structures, and so on. More over, some analyses are focused mainly on various strategies used to fabricate different 3d MxOy anode materials. Finally, it is highlighted to the future trends and prospects in the development of 3d MxOy anode micro/nano- materials.

Contents
1 Introduction
2 Mechanisms of Li-storage
3 Nano-structures
3.1 0 D structures
3.2 1 D structures
3.3 2 D structures
3.4 3D porous structures
4 Micro/nano-structures
4.1 Single micro/nano-structures
4.2 Multi micro/nano-structures
5 Special structures
5.1 Hollow structures
5.2 Core/shell structures
6 Summary and prospects

中图分类号: 

()

[1] Armand M, Tarascon J M. Nature, 2008, 451: 652-657
[2] Tarascon J M, Armand M. Nature, 2001, 414(6861): 359-367
[3] Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J M. Nature, 2000, 407: 496-499
[4] Débart A, Dupont L, Poizot P, Leriche J B, Tarascon J M. J. Electrochem. Soc., 2001, 148(11): A1266-A1274
[5] Dedryvère R, Laruelle S, Grugeon P, Poizot P, Gonbeau D, Tarascon J M. Chem. Mater., 2004, 16(6): 1056-1061
[6] Larcher D, Masqelier C, Bonnin D, Chabre Y, Masson V, Leriche J B, Tarascon J M. J. Electrochem. Soc., 2003, 150(l): A133-A139
[7] Chen C H, Ding N, Wang L, Yu Y, Lieberwith I. J. Power Sources, 2009, 189: 552-556
[8] Grugeon S, Laruelle S, Dupont L, Tarascon J M. Solid State Sci., 2003, 5: 895-904
[9] Choi H C, Lee S Y, Kim S B. J. Phys. Chem. B, 2002, 106: 9252-9260
[10] Choi H C, Lee S Y, Kim S B. J. Phys. Chem. B, 2003, 107: 5806-5811
[11] Aric Q A S, Bruce P, Scrosati B, Tarascon J M, Schalkwijk W V. Nat. Mater., 2005, 4: 366-377
[12] Jiang C H, Hosono E, Zhou H S. Nanotoday, 2006, 1(4): 28-33
[13] Bruce P G, Scrosati B, Tarascon J M. Angew. Chem. Int. Ed., 2008, 47: 2930-2946
[14] Liu C, Li F, Ma L P, Cheng H M. Adv. Mater., 2010, 22: E28-E62
[15] Oh S W, Bang H J, Bae Y C, Sun Y K. J. Power Sources, 2007, 173: 502-509
[16] Chen C H, Hwang B J, Do J S, Weng J H, Venkateswarlu M, Cheng M Y, Santhanam R, Ragavendran K, Lee J F, Chen J M, Liu D G. Electrochem. Commun., 2010, 12: 496-498
[17] Wu X L, Guo Y G, Wan L J, Hu C W. J. Phys. Chem. C, 2008, 112: 16824-16829
[18] Huang X H, Tu J P, Yang Y Z, Xiang J Y. Electrochem. Commun., 2008, 10: 16-19
[19] Kang Y M, Kim K T, Kim J H, Kim H S, Lee P S, Lee J Y, Liu H K, Dou S X. J. Power Sources, 2004, 133: 252-259
[20] Nam K T, Kim D W, Yoo P J, Chiang C Y, Meethong N, Hammond P T, Chiang Y M, Belcher A M. Science, 2006, 312: 885-888
[21] Chen J, Xu L, Li W Y, Gou X L. Adv. Mater., 2005, 17: 582-585
[22] Zeng S Y, Tang K B, Li T W. J. Colloid Interf. Sci., 2007, 312: 513-521
[23] Gao X P, Bao J L, Pan G L, Zhu H Y, Huang P X, Wu F, Song D Y. J. Phys. Chem. B, 2004, 108: 5547-5551
[24] Chen L B, Lu N, Xu C M, Yu H C, Wang T H. Electrochim. Acta, 2009, 54: 4198-4201
[25] Lou X W, Deng D, Lee J Y, Feng J, Archer L A. Adv. Mater., 2008, 20: 258-262
[26] Li W Y, Xu L N, Chen J. Adv. Funct. Mater., 2005, 15: 851-857
[27] Wu C Z, Yin P, Zhu X, Yang C O, Xie Y. J. Phys. Chem. B, 2006, 110: 17806-17812
[28] Du N, Zhang H, Chen B D, Wu J B, Ma X Y, Liu Z H, Zhang Y Q, Yang D R, Huang X H, Tu J P. Adv. Mater., 2007, 19: 4505-4509
[29] Tian L, Zou H L, Fu J X, Yang X F, Wang Y, Guo H L, Fu X H, Liang C L, Wu M M, Shen P K, Gao Q M. Adv. Funct. Mater., 2010, 20: 617-623
[30] Zou G F, Li H, Zhang D W, Xiong K, Chao D, Qian Y T. J. Phys. Chem. B, 2006, 110: 1632-1637
[31] Li Y G, Tan B, Wu Y Y. Chem. Mater., 2008, 20: 567-576
[32] Wang X, Li L, Zhang Y G, Wang S T, Zhang Z D, Fei L F, Qian Y T. Cryst. Growth Des., 2006, 6: 2163-2165
[33] Yao W L, Yang J, Wang J L, Nuli Y N. J. Electrochem. Soc., 2008, 155: A903-A908
[34] Zhan F M, Geng B Y, Guo Y J. Chem. Eur. J., 2009, 15: 6169-6174
[35] Xiang J Y, Wang X L, Xia X H, Zhang L, Zhou Y, Shi S J, Tu J P. Electrochim. Acta, 2010, 55: 4921-4925
[36] Yuan Y F, Xia X H, Wu J B, Yang J L, Chen Y B, Guo S Y. Electrochem. Commun., 2010, 12: 890-893
[37] Zhu X J, Guo Z P, Zhang P, Du G D, Zeng R, Chen Z X, Li S, Liu H K. J. Mater. Chem., 2009, 19: 8360-8365
[38] Zhang P, Guo Z P, Kang S G, Choi Y J, Kim C J, Kim K W, Liu H K. J. Power Sources, 2009, 189: 566-570
[39] Wang C, Wang D L, Wang Q M, Chen H J. J. Power Sources, 2010, 195: 7432-7437
[40] Yu Y, Chen C H, Shui J L, Xie S. Angew. Chem. Int. Ed., 2005, 44: 7247-7251
[41] Yu Y, Shi Y, Chen C H. Chem. Asian J., 2006, 1: 826-831
[42] Yu Y, Shi Y, Chen C H. Nanotechnology, 2007, 18: art. no. 055706
[43] Guo Y G, Hu J S, Wan L J. Adv. Mater., 2008, 20: 2878-2887
[44] Binotto G, Larcher D, Prakash A S, Urbina H R, Hegde M S, Tarascon J M. Chem. Mater., 2007, 19: 3032-3040
[45] Xiang J Y, Tu J P, Zhang L, Zhou Y, Wang X L, Shi S J. J. Power Sources, 2010, 195: 313-319
[46] Zeng S Y, Tang K B, Li T W, Liang Z H, Wang D, Wang Y K, Qi Y X, Zhou W W. J. Phys. Chem. C, 2008, 112: 4836-4843
[47] Pan Q T, Huang K, Ni S B, Yang F, Lin S M, He D Y. J. Alloys Compd., 2009, 484: 322-326
[48] Lee K T, Jung Y S, Oh S M. J. Am. Chem. Soc., 2003, 125: 5652-5653
[49] Cheng M Y, Hwang B J. J. Power Source, 2010, 195: 4977-4983
[50] Zhang H J, Tao H H, Jiang Y. J. Power Sources, 2010, 195: 2950-2955
[51] Li F, Zou Q Q, Xia Y Y. J. Power Sources, 2008, 177: 546-552
[52] Liu H J, Bo S H, Cui W J, Li F, Wang C X, Xia Y Y. Electrochim. Acta, 2008, 53: 6497-6503
[53] Yang R Z, Wang Z X, Liu J Y, Chen L Q. Electrochem. Solid-State Lett., 2004, 7: A496-A499
[54] Hassan M F, Rahman M M, Guo Z P, Chen Z X, Liu H K. Electrochim. Acta, 2010, 55: 5006-5013
[55] Rahman M M, Chou S L, Zhong C, Wang J Z, Wexler D, Liu H K. Solid State Ionics, 2010, 180: 1646-1651
[56] Zhi L J, Hu Y S, Hamaoui B E, Wang X, Lieberwirth I, Kolb U, Maier J, Müllen K. Adv. Mater., 2008, 20: 1727-1731
[57] Zhang W M, Wu X L, Hu J S, Guo Y G, Wan L J. Adv. Funct. Mater., 2008, 18: 3941-3946
[58] Qiao H, Xiao L F, Zheng Z, Liu H W, Jia F L, Zhang L Z. J. Power Sources, 2008, 185: 486-491
[59] Cui Z M, Jiang L Y, Song W G, Guo Y G. Chem. Mater., 2009, 21: 1162-1166
[60] Piao Y Z, Kim H S, Sung Y E, Hyeon T. Chem. Commun., 2010, 46: 118-120
[61] Wang L, Yu Y, Chen P C, Zhang D W, Chen C H. J. Power Sources, 2008, 183: 717-723
[62] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306: 666-669
[63] Wu Z S, Ren W C, Wen L, Gao L B, Zhao J P, Chen Z P, Zhou G M, Li F, Cheng H M. ACS Nano, 2010, 4: 3178-3194
[64] Zhou G M, Wang D W, Li F, Zhang L L, Li N, Wu Z S, Wen L, Lu G Q, Cheng H M. Chem. Mater., 2010, 22: 5306-5313
[65] Hang B T, Watanabe I, Doi T, Okada S, Yamaki J I. J. Power Sources, 2006, 161: 1281-1287
[66] Hang B T, Doi T, Okada S, Yamaki J I. J. Power Sources, 2007, 74: 493-500
[67] Yao W L, Yang J, Wang J L, Tao L. Electrochim. Acta, 2008, 53: 7326-7330
[68] Yao W L, Wang J L, Yang J, Du G D. J. Power Sources, 2008, 176: 369-372
[69] Zheng S F, Hu J S, Zhong L S, Song W G, Wan L J, Guo Y G. Chem. Mater., 2008, 20: 3617-3622
[70] Xiang J Y, Tu J P, Zhang J, Cheng J P. Electrochem. Commun., 2010, 12: 1103-1107
[71] Gao S Y, Yang S X, Shu J, Zhang S X, Li Z D, Jiang K. J. Phys. Chem. C, 2008, 112: 19324-19328
[72] Park J C, Kim J H, Kwon H, Song H. Adv. Mater., 2009, 21: 803-807
[73] Yu Y, Chen C H, Shi Y. Adv. Mater., 2007, 19: 993-997
[74] Wu Z C, Yu K, Zhang S D, Xie Y. J. Phys. Chem. C, 2008, 112: 11307-11313
[75] Wang X, Yu L J, Wu X L, Yuan F L, Guo Y G, Ma Y, Yao J N. J. Phys. Chem. C, 2009, 113: 15553-15558
[76] Wang X, Wu X L, Guo Y G, Zhong Y T, Cao X Q, Ma Y, Yao J N. Adv. Funct. Mater., 2010, 20: 1680-1686
[77] Fu L J, Gao J, Zhang T, Cao Q, Yang L C, Wu Y P, Holze R, Wu H Q. J. Power Source, 2007, 174: 1197-1200
[78] Liu H, Wang G X, Wang J Z, Wexler D. Electrochem. Commun., 2008, 10: 1879-1882
[79] Muraliganth T, Murugan A V, Manthiram A. Chem. Commun., 2009, 7360-7362
[80] Du N, Zhang H, Yu J X, Wu P, Zhai C X, Xu Y F, Wang J Z, Yang D R. Chem. Mater., 2009, 21: 5264-5271

[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[3] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[6] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[7] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[8] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[9] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[10] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[11] 耿莹, 张默贺, 付锦, 周瑞莎, 宋江锋. MOF-74及其复合物:多样合成与广泛应用[J]. 化学进展, 2021, 33(12): 2283-2307.
[12] 郑超, 戴一仲, 陈铃峰, 李明光, 陈润锋, 黄维. 敏化型电致发光器件原理与技术[J]. 化学进展, 2020, 32(9): 1352-1367.
[13] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[14] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[15] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.