English
新闻公告
More
化学进展 2020, Vol. 32 Issue (9): 1352-1367 DOI: 10.7536/PC200102 前一篇   后一篇

• 综述 •

敏化型电致发光器件原理与技术

郑超1, 戴一仲1, 陈铃峰1, 李明光1,**(), 陈润锋1,**(), 黄维1   

  1. 1. 南京邮电大学有机电子与信息显示国家重点实验室培育基地 江苏省生物传感材料与技术重点实验室 信息材料与纳米技术研究院 江苏先进生物与化学制造协同创新中心 南京 210023
  • 收稿日期:2020-01-02 修回日期:2020-04-24 出版日期:2020-09-24 发布日期:2020-06-30
  • 通讯作者: 李明光, 陈润锋
  • 作者简介:
    ** Corresponding author e-mail: (Mingguang Li); (Runfeng Chen)
  • 基金资助:
    *国家自然科学基金项目(21772095, 91833306, 61875090, 21674049); 江苏省教育厅重大项目(19KJA180005)

Principle and Technique of Sensitized Fluorescent Organic Light-Emitting Diodes

Chao Zheng1, Yizhong Dai1, Lingfeng Chen1, Mingguang Li1,**(), Runfeng Chen1,**(), Wei Huang1   

  1. 1. Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
  • Received:2020-01-02 Revised:2020-04-24 Online:2020-09-24 Published:2020-06-30
  • Contact: Mingguang Li, Runfeng Chen
  • Supported by:
    the National Natural Science Foundation of China(21772095, 91833306, 61875090, 21674049); the Major Program of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(19KJA180005)

近年来,高性能荧光有机电致发光器件(FOLEDs)的开发受到了广泛关注。由于荧光材料仅能利用25%的单重态激子辐射发光,FOLEDs的外量子效率(EQE)理论极限为5%。通过能量转移,充分利用主体分子的单重态与三重态激子敏化荧光客体发光,可以提高激子利用率。目前敏化型FOLEDs(SFOLEDs)的最高EQE已达26.1%。本文详细介绍了SFOLEDs的敏化原理和机制,并根据敏化机制的不同,系统地总结了热活化延迟荧光敏化、激基复合物敏化、三重态湮灭敏化和局域电荷转移杂化激发态(HLCT)敏化等各类SFOLEDs的材料与器件结构特点及其研究进展。最后本综述对该类器件的研究前景进行了展望,期待吸引更多专业的研究人员的研究兴趣,进而推动该领域的发展。

In recent years, the development of high-performance fluorescent organic light-emitting devices(FOLEDs) has attracted extensive attention in both academic and industry research areas. Since only 25% electronically excited excitons can be used for electroluminescence, the external quantum efficiencies(EQEs) of conventional FOLEDs are generally less than 5%. In order to increase the exciton utilizing efficiency for enhanced performance of FOLEDs, the architecture of sensitized FOLEDs(SFOLEDs) are designed to harvest both singlet and triplet excitons by means of efficient energy transfer processes from the host or sensitizer to the fluorescent dopant. Great progress has been made in the efficiency enhancement of FOLEDs and the maximum EQE values of the reported SFOLEDs have reached 26.1% to date. This review intents to introduce the sensitization principles and working mechanisms of various SFOLEDs in detail. Also, the latest research progress on the device structures and performance are summarized and discussed for various SFOLEDs based on thermally activated delayed fluorescent(TADF) sensitization, exciplex sensitization, triplet exciton annihilation sensitization, and hybridized local and charge-transfer(HLCT) sensitization, etc. Finally, the future research directions of SFOLEDs are discussed to give an outlook of the prospect trends and future challenges. We hope that this review attracts more researchers with different disciplinary areas to devote themselves to this interesting research field.

Contents

1 Introduction

2 The basic principle of sensitized FOLEDs

3 TADF-sensitized FOLEDs

3.1 Single TADF-sensitized FOLEDs

3.2 Multiple hosts TADF-sensitized FOLEDs

4 Exciplex sensitized FOLEDs

4.1 Pure exciplex sensitized FOLEDs

4.2 Phosphorescence assisted exciplex sensitized FOLEDs

4.3 TADF assisted exciplex sensitized FOLEDs

5 Other materials sensitized FOLEDs

6 Conclusion and outlook

()
图1 SFOLEDs的原理
Fig.1 Mechanism of SFOLEDs
图2 (a) 单主体TASFOLEDs工作原理,(b) 荧光材料的吸收光谱以及主体材料的发射光谱,(c) 器件EQE与电流密度特性曲线,(d) 器件的电致发光光谱[9]
Fig.2 (a) Device principle of single TASFOLEDs. (b) The absorption spectrum of fluorescent material and the emission spectra of host materials measured in dichloromethane. (c) External quantum efficiency(EQE) versus current density characteristics. (d) Electroluminescence(EL) spectra of the single TASFOLEDs[9]
图3 (a) 多主体TASFOLEDs工作原理,(b~e)器件的效率-亮度曲线[10]
Fig.3 (a) Device principle of multiple hosts TASFOLEDs,(b~e) EQE-luminance curves[10]
图式1 (a)TADF材料分子式,(b)荧光材料的分子式
Scheme 1 Molecular structures of (a) TADF and (b) fluorescent materials
表1 热活化延迟荧光材料敏化荧光型有机电致发光器件性能汇总
Table 1 Summary of device performances of the TASFOLEDs
图4 (a)激基复合物SFOLEDs原理图,(b)器件结构图,(c)不同掺杂浓度下的电致发光光谱(d) 不同掺杂浓度下器件的亮度-效率曲线[11]
Fig.4 (a)The principle of exciplex SFOLEDs.(b) Diagram of device structure.(c) EQE and power efficiency versus luminance characteristics.(d) Electroluminescence spectra at different doping concentrations[11]
图5 (a) 空间分离的激基复合物SFOLEDs结构图,(b) 在不同厚度mCP下的DBP瞬态EL谱,(c) 在不同mCP厚度下的器件电致发光光谱图,(d) EQE-电流密度曲线[60]
Fig.5 (a) Schematic diagram of exciplex SFOLEDs, in which exciplex was separated in space,(b) Transient EL decay profiles of the OLEDs based on DBP with different mCP interlayer thickness,(c) EL spectra of the devices with 0~10 nm thin mCP interlayers,(d) EQE versus current density characteristics[60]
图6 (a) 磷光材料辅助激基复合物敏化荧光器件原理,(b) 器件结构图,(c) EL光谱,(d) EQE-电流密度曲线[52]
Fig.6 (a) The principle of phosphorescence assisted exciplex SFOLEDs,(b) Diagram of device structure,(c) Electroluminescence(EL) spectra,(d) EQE versus current density characteristics[52]
图7 (a) 激基复合物作第一主体构筑的多主体TADF敏化型荧光器件结构,(b) 能量转移原理示意图,(c) 不同材料的器件量子效率与掺杂浓度的关系,(d) 荧光分子结构[13]
Fig.7 (a) Schematic diagram of multiple hosts TASFOLEDs, in which exciplex was used as the main host,(b) Schematic illustration of energy transfer mechanism,(c) The EQE-dopant concentration relationships of different materials,(d) Molecular structure of fluorescent materials[13]
图式2 (a) 激基复合物中给体部分的结构,(b) 激基复合物中受体部分的结构,(c) 磷光材料
Scheme 2 Molecular structures of (a) donor materials and(b) acceptor materials used in exciplex,(c) molecular structures of phosphorescent materials
图8 (a) TTA材料SFOLEDs的原理,(b) HLCT材料SFOLEDs的原理
Fig.8 (a) Principle of TTA material SFOLEDs,(b) principle of HLCT material SFOLEDs
图式3 其他类型敏化器件所采用的主体与客体材料分子式
Scheme 3 Molecular structures of hosts and guests used in other materials sensitized FOLEDs
表2 激基复合物及其他材料敏化荧光型有机电致发光器件性能汇总
Table 2 Summary of device performances of exciplex and the other materials SFOLEDs
[1]
Tang C W , Vanslyke S A. Appl. Phys. Lett., 1987, 51: 913.
[2]
Burroughes J H , Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burn P L, Holmes A B. Nature, 1990, 347: 539.
[3]
Shin H , Lee S , Kim K H , Moon C K , Yoo S J , Lee J H , Kim J J. Adv. Mater., 2014, 26: 4730.
[4]
Kim M , Lee J Y. Adv. Funct. Mater., 2014, 24: 4164.
[5]
Kim K H , Ahn E S , Huh J S , Kim Y H , Kim J J. Chem. Mater., 2016, 28: 7505.
[6]
Udagawa K , Sasabe H , Cai C , Kido J. , Adv. Mater. 2014, 26: 5062.
[7]
Shin H , Lee J H , Moon C K , Huh J S , Sim B , Kim J J. Adv. Mater., 2016, 28: 4920.
[8]
Kim K H , Lee S , Moon C K , Kim S Y , Park Y S , Lee J H , Lee J W , Huh J , You Y , Kim J J. Nat. Commun., 2014, 5: 4769.
[9]
Zhang D , Duan L , Li C , Li Y , Li H , Zhang D , Qiu Y. Adv. Mater., 2014, 26: 5050.
[10]
Nakanotani H , Higuchi T , Furukawa T , Masui K , Morimoto K , Numata M , Tanaka H , Sagara Y , Yasuda T , Adachi C. Nat. Commun., 2014, 5: 4016.
[11]
Liu X K , Chen Z , Zheng C J , Chen M , Liu W , Zhang X H , Lee C S. Adv. Mater., 2015, 27: 2025.
[12]
Kim H G , Kim K H , Kim J J. Adv. Mater., 2017, 29: 1702159.
[13]
Zhang D , Song X , Cai M , Duan L. Adv. Mater., 2018, 30: 1705250.
[14]
Brown A R , Pichler K , Greenham N C , Bradley D D C, Friend R H, Holmes A B. Chem. Phys. Lett., 1993, 210: 61.
[15]
Rothberg L J , Lovinger A J. J. Mater. Res., 1996, 11: 3174.
[16]
Friend R H , Gymer R W , Holmes A B , Burroughes J H , Marks R N , Taliani C , Bradley D D C, Dos Santos D A, Bredas J L, Logdlund M, Salaneck W R. Nature, 1999, 397: 121.
[17]
Garten F , Hilberer A , Cacialli F , Esselink E , Vandam Y , Schlatmann B , Friend R H , Klapwijk T M , Hadziioannou G. Adv. Mater., 1997, 9: 127.
[18]
Brown A R , Bradley D D C, Burroughes J H, Friend R H, Greenham N C, Burn P L, Holmes A B, Kraft A. Appl. Phys. Lett., 1992, 61: 2793.
[19]
Baldo M A , O'brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395: 151.
[20]
Baldo M A , Thompson M E , Forrest S R. Nature, 2000, 403: 750.
[21]
Yang X , Zhou G , Wong W Y. Chem. Soc. Rev., 2015, 44: 8484.
[22]
Duan C , Fan C , Wei Y , Han F , Huang W , Xu H. Sci. Rep., 2016, 6: 19904.
[23]
Tao Y , Yuan K , Chen T , Xu P , Li H , Chen R , Zheng C , Zhang L , Huang W. , Adv. Mater. 2014, 26: 7931.
[24]
Kondakov D Y , Pawlik T D , Hatwar T K , Spindler J P. J. Appl. Phys., 2009, 106: 124510.
[25]
Luo Y , Aziz H. Adv. Funct. Mater., 2010, 20: 1285.
[26]
Chen C H , Tierce N T , Leung M K , Chiu T L , Lin C F , Bardeen C J , Lee J H. Adv. Mater., 2018, 30: 1804850.
[27]
Fukagawa H , Shimizu T , Ohbe N , Tokito S , Tokumaru K , Fujikake H. Org. Electron., 2012, 13: 1197.
[28]
Zhou J , Chen P , Wang X , Wang Y , Wang Y , Li F , Yang M , Huang Y , Yu J , Lu Z. Chem. Commun., 2014 50: 7586.
[29]
Zhang S , Yao L , Peng Q , Li W , Pan Y , Xiao R , Gao Y , Gu C , Wang Z , Lu P , Li F , Su S , Yang B , Ma Y. Adv. Funct. Mater., 2015, 25: 1755.
[30]
Pan Y , Li W , Zhang S , Yao L , Gu C , Xu H , Yang B , Ma Y. Adv. Opt. Mater., 2014, 2: 510.
[31]
Liang X , Wang Z , Wang L , Hanif M , Hu D , Su S , Xie Z , Gao Y , Yang B , Ma Y. Chin. J. Chem., 2017, 35: 1559.
[32]
Tang X , Li X L , Liu H , Gao Y , Shen Y , Zhang S , Lu P , Yang B , Su S J , Ma Y. Dyes Pigm., 2018, 149: 430.
[33]
Zhou C , Xiao S , Wang M , Jiang W , Liu H , Zhang S , Yang B. Front. Chem., 2019, 7: 141.
[34]
Chen Y , Yang L , Huang Y , Obolda A , Abdurahman A , Lu Z , Li F. J. Phys. Chem. Lett., 2019, 10: 48.
[35]
Kawamura Y , Goushi K , Brooks J , Brown J J , Sasabe H , Adachi C. Appl. Phys. Lett., 2005, 86: 71104.
[36]
Adachi C , Kwong R C , Djurovich P , Adamovich V , Baldo M A , Thompson M E , Forrest S R. Appl. Phys. Lett., 2001, 79: 2082.
[37]
Tsuboi T , Murayama H , Yeh S J , Chen C T. Opt. Mater., 2007, 29: 1299.
[38]
Zhao B , Zhang T , Li W , Su Z , Chu B , Yan X , Jin F , Gao Y , Wu H. , Org. Electron. 2015, 23: 208.
[39]
Zhao B , Miao Y , Wang Z , Wang K , Wang H , Hao Y , Xu B , Li W. Nanophotonics, 2017, 6: 1133.
[40]
Liu Z W , Helander M G , Wang Z B , Lu Z H. J. Phys. Chem. C, 2010, 114: 11931.
[41]
Song W , Lee I , Lee J Y. Adv. Mater., 2015, 27: 4358.
[42]
Furukawa T , Nakanotani H , Inoue M , Adachi C. , Sci.Rep. 2015, 5: 8429.
[43]
Song W , Lee I H , Hwang S H , Lee J Y. Org. Electron., 2015, 23: 138.
[44]
Wu Z , Yu L , Zhou X , Guo Q , Luo J , Qiao X , Yang D , Chen J , Yang C , Ma D. Adv. Opt. Mater., 2016, 4: 1067.
[45]
Han S H , Lee J Y. J. Mater. Chem. C, 2018, 6: 1504.
[46]
Wang Z , Li X L , Ma Z , Cai X , Cai C , Su S J. Adv. Funct. Mater., 2018, 28: 1706922.
[47]
Song X , Zhang D , Lu Y , Yin C , Duan L. , Adv. Mater. 2019, 31: 1901923.
[48]
Goushi K , Adachi C. Appl. Phys. Lett., 2012, 101: 023306.
[49]
Goushi K , Yoshida K , Sato K , Adachi C. Nat. Photonics, 2012, 6: 253.
[50]
Sarma M , Wong K T. ACS Appl. Mater. Interfaces, 2018, 10: 19279.
[51]
Jankus V , Chiang C J , Dias F , Monkman A P. Adv. Mater., 2013, 25: 1455.
[52]
Kim H G , Kim K H , Moon C K , Kim J J. Adv. Opt. Mater., 2017, 5: 1600749.
[53]
Ki K H , Moon C K , Sun J W , Sim B , Kim J J. Adv. Opt. Mater., 2015, 3: 895.
[54]
Zhao B , Zhang T , Chu B , Li W , Su Z , Wu H , Yan X , Jin F , Gao Y , Liu C. Sci. Rep., 2015, 5: 10697.
[55]
Hung W Y , Chiang P Y , Lin S W , Tang W C , Chen Y T , Liu S H , Chou P T , Hung Y T , Wong K T. ACS Appl.Mater. Interfaces, 2016, 8: 4811.
[56]
Yuan S , Du X , Zhao J , Liu W , Lin H , Zheng C , Tao S , Zhang X. , Org. Electron. 2016, 39: 10.
[57]
Zhao J , Du X , Yuan S , Zheng C , Lin H , Tao S. Org. Electron., 2017, 43: 136.
[58]
Chen D , Liu K , Gan L , Liu M , Gao K , Xie G , Ma Y , Cao Y , Su S J. Adv. Mater., 2016, 28: 6758.
[59]
Zhao B , Miao Y , Wang Z , Chen W , Wang K , Wang H , Hao Y , Xu B , Li W. , Org. Electron. 2016, 37: 1.
[60]
Li, Gan L , Cai X , Li X L , Wang Z , Gao K , Chen D , Cao Y , Su S J. Adv. Mater. Interfaces, 2018, 5: 1800025.
[61]
Ki K H , Yoo S J , Kim J J. Chem. Mater., 2016, 28: 1936.
[62]
Kim H G , Shin H , Ha Y H , Kim R , Kwon S K , Kim Y H , Kim J J. ACS Appl. Mater. Interfaces, 2019, 11: 26.
[63]
Liu T , Xie G , Zhong C , Gong S , Yang C. Adv. Funct. Mater., 2018, 28: 1706088.
[64]
Chen L , Zhang S , Li H , Chen R , Jin L , Yuan K , Li H , Lu P , Yang B , Huang W. J. Phys. Chem. Lett., 2018, 9: 5240.
[65]
Zhang S , Li W , Yao L , Pan Y , Shen F , Xiao R , Yang B , Ma Y. Chem. Commun., 2013, 49: 11302.
[66]
Dey A , Kabra D. J Phys Chem A., 2019, 123: 4858.
[1] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[2] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[3] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[4] 姜贺, 靳继彪, 陈润锋, 郑超, 黄维. 基于给-受体结构的热活化延迟荧光材料[J]. 化学进展, 2016, 28(12): 1811-1823.
[5] 钟渤凡, 王世荣, 肖殷, 李祥高. 有机电致发光器件中的双极性蓝光荧光材料[J]. 化学进展, 2015, 27(8): 986-1001.
[6] 马昀, 周妍, 杜文琦, 缪智辉, 祁争健. 基于共轭聚合物的核酸生物传感器的应用[J]. 化学进展, 2015, 27(12): 1799-1807.
[7] 范霄, 李艳艳, 刘迎亚, 曹昌盛, 李海涛. 单分子荧光技术在端粒和端粒酶研究中的应用[J]. 化学进展, 2014, 26(12): 1987-1996.
[8] 孙花飞, 泮廷廷, 胡桂祺, 孙元伟, 王东亭, 张宪玺. 染料敏化太阳电池钌系敏化剂[J]. 化学进展, 2014, 26(04): 609-625.
[9] 张幸林, 杨会然, 孙会彬, 刘淑娟, 赵强*, 黄维*. 基于三线态-三线态湮灭的能量上转换[J]. 化学进展, 2012, (10): 1880-1889.
[10] 张伟伟, 钟欣欣, 司玉冰, 赵仪*. Non-Condon电子转移速率理论与含时波包方法[J]. 化学进展, 2012, 24(06): 1166-1174.
[11] 武国华, 孔凡太, 翁坚, 戴松元, 奚小网, 张昌能. 有机染料及其在染料敏化太阳电池中的应用[J]. 化学进展, 2011, 23(9): 1929-1935.
[12] 刘世洪 高放 高镱萌 侯莹 李红茹 张胜涛. 枝状体系中分子内光诱导能量转移*[J]. 化学进展, 2010, 22(10): 2033-2052.
[13] 杨新国 张登 唐瑞仁. 以卟啉为中心核的树枝状化合物[J]. 化学进展, 2009, 21(12): 2595-2604.
[14] 刘玲芝,刘志洪,何治柯,蔡汝秀. 量子点:FRET的新发展[J]. 化学进展, 2006, 18(0203): 337-343.
[15] 牛军峰,余刚,刘希涛. 水相中POPs光化学降解研究进展*[J]. 化学进展, 2005, 17(05): 938-948.
阅读次数
全文


摘要

敏化型电致发光器件原理与技术