English
新闻公告
More
化学进展 2011, Vol. 23 Issue (10): 2055-2064 前一篇   后一篇

• 综述与评论 •

液相合成金纳米团簇

刘钊, 金申申, 朱满洲*   

  1. 安徽大学化学化工学院 合肥 230039
  • 收稿日期:2010-12-01 修回日期:2011-03-01 出版日期:2011-10-24 发布日期:2011-09-15
  • 作者简介:e-mail:zmz@ahu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20871112,21072001)和安徽大学211工程项目资助

Liquid-Phase Synthesis of Gold Nanoclusters

Liu Zhao, Jin Shenshen, Zhu Manzhou*   

  1. School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, China
  • Received:2010-12-01 Revised:2011-03-01 Online:2011-10-24 Published:2011-09-15

作为过渡金属团簇的一种,金纳米团簇由于具有不同于其它纳米材料的特殊物化性能,在催化、光学、电学及生物技术等领域具有潜在的应用前景。本文综述了液相合成金纳米团簇的研究进展,主要包括有机膦化物和硫醇保护的金纳米团簇的合成方法与晶体结构,这将为金纳米团簇的研究者提供一定的参考。

As a kind of transition metal nanoclusters, gold nanoclusters have potential applications in catalysis, optics, electronics and biotechnology due to the advantages of their special physical and chemical properties that are different from other nanomaterials. The progress in liquid-phase synthesis of gold nanoclusters is summarized here, which includes the synthetic method and crystal structure of gold clusters protected by phosphides or thiols. We hope that this paper could be helpful for the scientists to research the gold nanoclusters in future.

Contents
1 Introduction
2 Gold nanoclusters protected by phosphides
2.1 [Au5(dppmH)3(dppm)](NO3)2
2.2 [Au8(PR3)7](NO3)2
2.3 [Au9(PR3)8](BF4)3
2.4 Au10Cl3(PCy2Ph)6(NO3)(Cy=cyclohexyl)
2.5 Au11(PAr3)7X3(X:Cl or I)
2.6 [Au13(dppmH)6](NO3)4
2.7 [Au39 (PPh3)14Cl6]Cl2
2.8 Au55(PPh3)12Cl6
3 Gold nanoclusters protected by thiols
3.1 Au25(SCH2CH2Ph)18q (q= -1 or 0)
3.2 [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ (n=2-18)
3.3 Au38(SC2H4Ph)24
3.4 Au102(p-MBA)44
4 Summary and outlook

中图分类号: 

()

[1] Belyakova O A, Slovokhotov Y L. Russ. Chem. Bull., 2003, 52: 2299-2327
[2] Homberger M, Simon U. Phil. Trans. R. Soc. A, 2010, 368: 1405-1453
[3] Turner M, Golovko V B, Vaughan O P H, Abdulkin P, Berenguer-Murcia A, Tikhov M S, Johnson B F G, Lambert R M. Nature, 2008, 454: 981-983
[4] Corma A, Serna P. Science, 2006, 313: 332-334
[5] Yang Y, Chen S. Nano Lett., 2003, 3: 75-79
[6] Valden M, Lai X, Goodman D W. Science, 1998, 281: 1647-1650
[7] Carrettin S, Guzman J, Corma A. Angew. Chem. Int. Ed., 2005, 44: 2242-2245
[8] Milone C, Ingoglia R, Pistone A, Neri G, Frusteri F, Galvagno S. J. Catal., 2004, 222: 348-356
[9] Zhu Y, Wu Z K, Gayathri C, Qian H F, Gil R R, Jin R C. J. Catal., 2010, 271: 155-160
[10] Zhu Y, Qian H, Zhu M, Jin R. Adv. Mater., 2010, 22: 1915-1920
[11] Liu Y M, Tsunoyama H, Akita T, Tsukuda T. Chem. Commun., 2010, 46: 550-552
[12] Zhu Y, Qian H F, Drake B A, Jin R C. Angew. Chem. Int. Ed., 2010, 49: 1295-1298
[13] Liu X, Li C, Xu J, Lv J, Zhu M, Guo Y, Cui S, Liu H, Wang S, Li Y. J. Phys. Chem. C, 2008, 112: 10778-10783
[14] Zheng J, Nicovich P R, Dickson R M. Annu. Rev. Phys. Chem., 2007, 58: 409-431
[15] Huang T, Murray R W. J. Phys. Chem. B, 2001, 105: 12498-12502
[16] Huang C C, Yang Z, Lee K H, Chang H T. Angew. Chem. Int. Ed., 2007, 46: 6824-6828
[17] Werts M H V, Lambert M, Bourgoin J P, Brust M. Nano Lett., 2002, 2: 43-47
[18] Liu S, Maoz R, Schmid G, Sagiv J. Nano Lett., 2002, 2: 1055-1060
[19] Schmid G, Liu Y P, Schumann M, Raschke T, Radehaus C. Nano Lett., 2001, 1: 405-407
[20] Templeton A C, Wuelfing M P, Murray R W. Acc. Chem. Res., 2000, 33: 27-36
[21] Bertino M F, Sun Z M, Zhang R, Wang L S. J. Phys. Chem. B, 2006, 110: 21416-21418
[22] Yanagimoto Y, Negishi Y, Fujihara H, Tsukuda T. J. Phys. Chem. B, 2006, 110: 11611-11614
[23] van der Velden J W A, Vollenbroek F A, Bour J J, Beurskens P I, Smits J M M, Bosman W P. Recl. J. R. Neth. Chem. Soc., 1981, 100: 148-152
[24] van der Velden J W A, Bour J J, Bosman W P, Noordik J H. J. Chem. Soc. Chem. Commun., 1981, 1218-1219
[25] Hall K P, Theoblad B R C, Gilmour D I, Mingos D M P, Welch A J. J. Chem. Soc. Chem. Commun., 1982, 528-530
[26] Wen F, Englert U, Gutrath B, Simon U. Eur. J. Inorg. Chem., 2008, 106-111
[27] Briant C E, Hall K P, Wheeler A C, Mingos D M P. J. Chem. Soc. Chem. Commun., 1984, 248-250
[28] Bellon P, Manassero M, Sansoni M. J. Chem. Soc. Dalton Trans., 1972, 1481-1487
[29] Bartlett P A, Bauer B, Singer S J. J. Am. Chem. Soc., 1978, 100: 5085-5089
[30] Bos W, Bour J J, Steggerda J J, Pignolet L H. Inorg. Chem., 1985, 24: 4298-4301
[31] Nunokawa K, Onaka S, Ito M, Horibe M, Yonezawa T, Nishihara H, Ozeki T, Chiba H, Watase S, Nakamoto M. J. Organomet. Chem., 2006, 691: 638-642
[32] Teo B K, Shi X, Zhang H. J. Am. Chem. Soc., 1992, 114: 2743-2745
[33] Aiken J D III, Finke R G. J. Mol. Catal. A: Chem., 1999, 145: 1-44
[34] Schmid G. Chem. Soc. Rev., 2008, 37: 1909-1930
[35] Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. J. Chem. Soc. Chem. Commun., 1994, 801-802
[36] Link S, Beeby A, FitzGerald S, El-Sayed M A, Schaaff T G, Whetten R L. J. Phys. Chem. B, 2002, 106: 3410-3415
[37] Negishi Y, Nobusada K, Tsukuda T. J. Am. Chem. Soc., 2005, 127: 5261-5270
[38] Negishi Y, Takasugi Y, Sato S, Yao H, Kimura K, Tsukuda T. J. Am. Chem. Soc., 2004, 126: 6518-6519
[39] Negishi Y, Chaki N K, Yukatsu S, Whetten R L, Tsukuda T. J. Am. Chem. Soc., 2007, 129: 11322-11323
[40] Choi J P, Fields-Zinna C A, Stiles R L, Balasubramanian R, Douglas A D, Crowe M C, Murray R W. J. Phys. Chem. C, 2010, 114: 15890-15896
[41] Jadzinsky P D, Calero G, Ackerson C J, Bushnell D A, Kornberg R D. Science, 2007, 318: 430-433
[42] Zhu M, Qian H, Jin R. J. Am. Chem. Soc., 2009, 131: 7220-7221
[43] Zhu M Z, Qian H F, Jin R C. J. Phys. Chem. Lett., 2010, 1: 1003-1007
[44] Zhu M Z, Aikens C M, Hollander F J, Schatz G C, Jin R C. J. Am. Chem. Soc., 2008, 130: 5883-5885
[45] Zhu M Z, Eckenhoff W T, Pintauer T, Jin R C. J. Phys. Chem. C, 2008, 112: 14221-14224
[46] Zhu M Z, Lanni E, Garg N, Bier M E, Jin R C. J. Am. Chem. Soc., 2008, 130: 1138-1139
[47] Wu Z K, Suhan J, Jin R C. J. Mater. Chem., 2009, 19: 622-626
[48] Zhu M Z, Aikens C M, Hendrich M P, Gupta R, Qian H F, Schatz G C, Jin R C. J. Am. Chem. Soc., 2009, 131: 2490-2492
[49] Qian H F, Eckenhoff W T, Zhu Y, Pintauer T, Jin R. J. Am. Chem. Soc., 2010, 132: 8280-8281
[50] Qian H F, Jin R C. Nano Lett., 2009, 9: 4083-4087
[51] Woehrle G H, Hutchison J E. Inorg. Chem., 2005, 44: 6149-6158
[52] Shichibu Y, Negishi Y, Watanabe T, Chaki N K, Kawaguchi H, Tsukuda T. J. Phys. Chem. C, 2007, 111: 7845-7847
[53] Balasubramanian R, Guo R, Mills A J, Murray R W. J. Am. Chem. Soc., 2005, 127: 8126-8132
[54] Teo B K, Zhang H. Coord. Chem. Rev., 1995, 143: 611-636
[55] Jin R. Nanoscale, 2010, 2: 343-362
[56] Heaven M W, Dass A, White P S, Holt K M, Murray R W. J. Am. Chem. Soc., 2008, 130: 3754-3755
[57] Price R C, Whetten R L. J. Am. Chem. Soc., 2005, 127: 13750-13751
[58] Teo B K, Zhang H. Inorg. Chem., 1991, 30: 3115-3116
[59] Lee S, Molina L M, López M J, Alonso J A, Hammer B, Lee B, Seifert S, Winans R E, Elam J W, Pellin M J, Vajda S. Angew. Chem. Int. Ed., 2009, 48: 1467-1471
[60] Herzing A A, Kiely C J, Carley A F, Landon P, Hutchings G J. Science, 2008, 321: 1331-1335
[61] Gao W, Chen X F, Li J C, Jiang Q. J. Phys. Chem. C, 2010, 114: 1148-1153

[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[4] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[5] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[6] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[7] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[8] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[11] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[12] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[13] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[14] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[15] 曾毅, 任永生, 马文会, 陈辉, 詹曙, 曹静. 冶金法生产太阳能级硅的除硼方法、技术及工艺[J]. 化学进展, 2022, 34(4): 926-949.
阅读次数
全文


摘要

液相合成金纳米团簇