English
新闻公告
More
化学进展 2011, Vol. 23 Issue (7): 1446-1453 前一篇   后一篇

• 放射化学专辑 •

炭材料对铀的吸附

李兴亮1,2,3,*, 宋强1, 刘碧君2, 刘春霞1, 王航1, 耿俊霞1, 陈震1, 刘宁3, 李首建1,3   

  1. 1. 四川大学化学学院 成都 610064;
    2. 中国工程物理研究院核物理与化学研究所 绵阳 621900;
    3. 辐射物理及技术教育部重点实验室(四川大学) 成都 610064
  • 收稿日期:2011-01-01 修回日期:2011-03-01 出版日期:2011-07-24 发布日期:2012-03-15
  • 通讯作者: e-mail: sjli000616@163.com E-mail:sjli000616@163.com
  • 基金资助:

    国家自然科学基金项目(No.20871086, 20571053)资助

Adsorption of Uranium by Carbon Materials from Aqueous Solutions

Li Xingliang1,2,3,*, Song Qiang1, Liu Bijun2, Liu Chunxia1, Wang Hang1, Geng Junxia1, Chen Zhen1, Liu Ning3, Li Shoujian1,3   

  1. 1. College of Chemistry, Sichuan University, Chengdu 610064, China;
    2. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China;
    3. Key Laboratory of Radiation Physics and Technology (Sichuan University), Ministry of Education, Chengdu 610064, China
  • Received:2011-01-01 Revised:2011-03-01 Online:2011-07-24 Published:2012-03-15

铀既是核燃料的主要成分又是乏燃料后处理的关键核素。将铀从乏燃料后处理流程中的高放射性料液或者其他含铀废水中分离出来既可以将此宝贵的核燃料回收使用,又有利于降低乏燃料处理后期的处置费用,以及减少铀对环境的污染。而从海水、盐湖水、尾矿废水等贫铀水体中提取铀则可能是解决将来铀资源匮乏的主要方法。炭质材料具有较大的比表面积、较高的孔隙率,耐高温,抗辐射,对各种酸碱环境有很高稳定性,而且本身无毒,环境友好,有望作为吸附剂或固相萃取材料用于从水体中吸附分离铀。本文介绍了活性炭、介孔炭、碳纳米管等材料对铀的吸附研究进展。表面功能化可以提高炭材料对铀酰离子的吸附容量与选择性,对炭材料功能化的方法主要有表面氧化、浸渍、负载和接枝等手段。由于化学稳定性高,采用化学方法在炭材料表面接枝功能分子是具有应用前景的研究方向。采用碳纤维作电极,电吸附铀的方法可以大量地从水溶液中将铀吸附到电极表面,再通过电脱附回收铀,具有工业化应用前景。

Uranium is both the major constituent of nuclear fuel and one of the key nuclides in spent fuel reprocessing. Separation of uranium in various aqueous effluent streams via adsorption or solid-phase extraction can not only recycle this precious resource, but also reduce the cost for the final disposal of radioactive wastes. Carbon based sorbents, at least potentially, should play a correspondingly important role for this purpose. Carbon materials were chosen as the adsorbing material because of their large specific surface area, better acid and alkaline stability and higher radiation and thermal resistance. The adsorption capacity of carbon materials can be improved by surface oxidization and other chemical or physical modifications, such as impregnating, coating, or grafting functional molecules or groups that can extract uranium selectively from liquid solution. Comparing with other modification methods, grafting technology is a promising method because of its excellent affinity and high selectivity. Uranium in aqueous wastes can be effectively removed by electrosorption onto electrode made of carbon fibers. It seems that electrosorption process for the removal of uranium has a prospect of industrialization because of the high electrosorption efficiency and the low-cost regeneration of carbon fiber electrode.

Contents
1 Introduction
2 Adsorption of uranium on activated carbon
2.1 Adsorption of uranium on raw carbon
2.2 Adsorption of uranium on modified carbon
3 Adsorption of uranium on mesoporous carbon
4 Adsorption of uranium on carbon nanotubes
5 Electrosorption of uranium on carbon fiber electrode
6 Conclusion and prospects

中图分类号: 

()


[1] Winde F. Abstracts of the international mine water conference. Pretoria, South Africa, 19th-23rd, October, 2009. 772-781

[2] Johnson T. Global uranium supply and demand. (2010-01-14). . http: //www.cfr.org/publication/14705/global_uranium_supply_and_demand.html

[3] Supply of Uranium. World nuclear association 2009 market report. . http: //www.world-nuclear.org/info/inf75.html

[4] Pyrzynska K. Anal. Sci., 2007, 23: 631-637

[5] Feng M, Wang L, Zhao Y S, Liu C X, Chen Z, Yan L, Tian G, Wang H, Li S J. Radiochim. Acta, 2009, 98(1): 39-44

[6] Wang L, Feng M, Liu C X, Zhao Y S, Li S Q, Wang H, Yan L, Tian G, Li S J. Sep. Sci. Tech., 2009, 44(16): 4023 - 4035

[7] Zhao Y S, Liu C X, Feng M, Chen Z, Li S Q, Tian G, Wang L, Huang J B, Li S J. J. Hazard. Mater., 2010, 176(1/3): 119-124

[8] Tian G, Geng J X, Jin Y D, Wang C L, Li S Q, Chen Z, Wang H, Li S J. J. Hazard. Mater., 2011, 190(11): 442-450

[9] 赵永生(Zhao Y S), 陈震(Chen Z), 宋强(Song Q), 蒲朕(Pu Z), 王春丽(Wang C L), 李书琼(Li S Q), 王航(Wang H), 耿俊霞(Geng J X), 李首建(Li S J). 第九届全国核化学与放射化学学术研讨会论文摘要集(CNRCS2010)(Proceedings of the 9th National Symposium on Nuclear Chemistry and Radiochemistry). 149-150

[10] Kütahyali C, Eral M. Sep. Purif. Technol., 2004, 40: 109-114

[11] 曾宪富(Zeng X F), 吴全武(Wu Q W), 曾惠典(Zeng H D). 华南工学院学报(Journal of South China University of Technology),1965, 3(2): 6-11

[12] Gorman-Lewis D, Fein J B, Burns P C, Szymanowski J E S, Converse J. J. Chem. Thermodyn., 2008, 40: 980-990

[13] Hyun S P, Cho Y H, Hahn P S, Kim S J. J. Radioanal. Nucl. Chem., 2001, 250: 55-62

[14] Kowal-Fouchard A, Drot R, Simoni E, Ehrhardt J J. Environ. Sci. Technol., 2004, 38(5): 1399-1407

[15] Taskaev E, Apostolov D. J. Radioanal. Nucl. Chem., 1978, 45: 65-71

[16] 唐国梁(Tang G L). 理化检验2化学分册(Physical Testing and Chemical Analysis Part B: Chemical Analysis),2001,36(7): 261-265

[17] El-Sayed A A, Hamed M M, Hmmad H A, El-Reefy S. Radiochim. Acta, 2007, 95: 43-48

[18] Saleem M, Afzal M, Qadeer R, Hanif J. Sep. Sci., Tech., 1992, 27(2): 239-253

[19] Mellah A, Chegrouche S, Barkat M. J. Colloid Interface Sci., 2006, 296: 434-441

[20] Qadeer R, Hanif J, Saleem M, Afzal M. J. Radioanal. Nucl. Chem., 1992, 165(4): 243-253

[21] Madrakian T, Mousavi A. Can. J. Anal. Sci. Spectros., 2008, 53(5): 232-239

[22] 苏龙能(Su L N). 国际放射医学核医学杂志 ( International Journal of Radiation Medicine and Nuclear Medicine), 1977, (1): 54-54

[23] El-Sayed A A. Radiochim. Acta, 2008, 96: 481-486

[24] 文传玺(Wen C X), 刘峙嵘(Liu S R), 桑国辉(Sang G H). 铀矿冶(Uranium Mining and Metallurgy), 2010, 29(2): 74-77

[25] Kütahyali C, Eral M. J. Nucl. Mater., 2010, 396: 251-256

[26] Sheng W Z, Li Z J, Liu Y H. Recent Patents on Chemical Engineering, 2008, 1: 27-40

[27] Park G I, Park H S, Woo S I. Sep. Sci. Technol., 1999, 34(5): 833-854

[28] Abbasi W A, Streat M. Sep. Sci. Technol., 1994, 29(9): 1217-1230

[29] Abbasi W A, Streat M. Solvent Extr. Ion Exch., 1998, 16(5): 1303-1320

[30] Starvin A M, Rao T P. Talanta, 2004, 63: 225-232

[31] Choi K C, Jung Y J, Kim S, Park S J, Lee H I, Kim J M. Solid State Phenom., 2007, 124/126: 1257-1260

[32] Someda H H, Sheha R R. Radiochemistry, 2008, 50(1): 56-63

[33] Coleman S J, Coronado P R, Maxwell R, Reynolds J G. Environ. Sci. Technol., 2003, 37: 2286-2290

[34] Kim J H, Lee H I, Yeon J W, Jung Y, Kim J M. J. Radioanal. Nucl. Chem., 2010, 286: 129-133

[35] Jung Y, Kim S, Park S J, Kim J M. Colloids Surf. A, 2008, 313/314: 292-295

[36] Jung Y, Lee H I, Kim J K, Yun M H, Hwang J, Ahn D H, Park J N, Boo J H, Choi K S, Kim J M. J. Mater. Chem., 2010, 20: 4663-4668

[37] 彭先佳(Peng X J), 贾建军(Jia J J), 栾兆坤(Luan Z K), 王军(Wang J). 化学进展 ( Progress in Chemistry), 2009, 21(9): 1987-1992

[38] Rao G P, Lu C, Su F. Sep. Purif. Technol., 2007, 58: 224-231

[39] Schierz A, Znker H. Environ. Pollut., 2009, 157: 1088-1094

[40] Shao D D, Jiang Z Q, Wang X K, Li J X, Meng Y D. J. Phys. Chem. B, 2009, 113(4): 860-864

[41] Arnold T, Zorn T, Znker H, Bernhard G, Nitsche H. J. Contam. Hydrol., 2001, 47: 219-231

[42] Salzmann C G, Llewellyn S A, Tobias G, Ward M A H, Huh Y, Green M L H. Adv. Mater., 2007, 19: 883-887

[43] Dumitrescu I, Wilson N R, Macpherson J V. J. Phys. Chem. C, 2007, 111: 12944-12953

[44] Belloni F, Kütahyali C, Rondinella V V, Carbol P, Wiss T, Mangione A. Environ. Sci. Technol., 2009, 43: 1250-1255

[45] 陈榕(Chen R), 胡熙恩(Hu X E). 化学进展( Progress in Chemistry),2006,18(1): 80-86

[46] Foo K Y, Hameed B H. J. Hazard. Mater., 2009, 170: 552-559

[47] 范丽(Fan L),周艳伟(Zhou Y W),杨卫身(Yang W S),杨凤林(Yang F L). 新型炭材料 ( New Carbon Materials),2004, 19(2): 145-150

[48] Xu Y, Zondlo J W, Finklea H O, Brennsteiner A. Fuel Process. Technol., 2000, 68: 189-208

[49] Stover S M S. Dissertation of West Virginia University, 1999

[50] Jung C H, Lee H H, Moon J K, Won H J, Shul Y G. J. Radioanal. Nucl. Chem., 2010, 287(3): 833-839

[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[3] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[4] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[5] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[6] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[7] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[8] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[9] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[10] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[11] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[12] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[13] 陶学兵, 于吉攀, 梅雷, 聂长明, 柴之芳, 石伟群. 铀催化的氮气活化[J]. 化学进展, 2021, 33(6): 907-913.
[14] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[15] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
阅读次数
全文


摘要

炭材料对铀的吸附