English
新闻公告
More
化学进展 2011, Vol. 23 Issue (6): 1050-1059 前一篇   后一篇

• 特约稿 •

取代型钒氧簇合物

高元哲1,2, 胡长文1*, 李晓芳1*   

  1. 1. 北京理工大学原子分子簇科学教育部重点实验室 北京 100081;
    2. 河北师范大学化学与材料科学学院 石家庄 050016
  • 收稿日期:2010-05-01 修回日期:2011-02-01 出版日期:2011-06-24 发布日期:2011-05-29
  • 作者简介:e-mail:cwhu@bit.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20731002)、北京市教委项目(No.20091739006)和高等学校学科创新引智计划项目(No.B07012)资助

Substituted Vanadium-Oxide Clusters

Gao Yuanzhe1,2, Hu Changwen1*, Li Xiaofang1*   

  1. 1. Key Laboratory of Cluster Science, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China;
    2. College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050016, China
  • Received:2010-05-01 Revised:2011-02-01 Online:2011-06-24 Published:2011-05-29

钒氧簇是多金属氧簇的一个重要分支。由于钒氧簇具有多样的结构、优良的物理特性,使得其在催化、磁性及光学材料等方面具有广阔的应用前景,引起了人们的日益关注。将主族的金属或非金属元素引入到钒氧簇体系,可以形成结构新颖的取代型钒氧簇。新颖构型及其拓展结构取代型钒氧簇合物的合成,极大地丰富了钒氧簇的结构类型,推动了钒氧簇合成化学的持续发展。该类化合物在磁性方面有着潜在的应用前景。本文总结了近十年来取代型钒氧簇合物的研究成果,综述了已有化合物的磁学性质,并对其今后研究前景进行了展望。

Vanadium-oxide clusters are one class of the most important polyoxometalates. The design and assembly of polyoxovanadates (POVs) are currently of great interest in the field of crystal engineering, not only because of their structural diversity, but also their potential applications in the fields of catalytic, magnetic and optical materials. To date, a brand-new class of POVs with the incorporation of main group elements into vanadium-oxide clusters has been widely investigated. In recent years, transition-metal complexes (TMCs) are utilized to combine with different substituted vanadium-oxide clusters for the construction of various novel structural types with desired properties, which not only greatly enriched the structure of vanadium-oxide clusters, but also promoted its continuous development in the synthesis. A review has been mainly given to the new development of the substituted vanadium-oxide clusters in the aspects of structural characteristics and magnetic properties over the past several years. The prospects of them are also discussed in this paper.

中图分类号: 

()

[1] Pope M T. Heteropoly and Isopoly Oxometalates. New York: Springer-Verlag, 1983. 31-32
[2] 王恩波(Wang E B), 胡长文(Hu C W), 许林(Xu L). 多酸化学导论(Introduction in Polyoxometalates). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 1998. 184-201
[3] Sun C Y, Liu S X, Liang D D, Shao K Z, Ren Y H, Su Z M. J. Am. Chem. Soc., 2009, 131: 1883-1888
[4] Zhao J W, Zhang J, Zheng S T, Yang G Y. Chem. Commun., 2008, 570-572
[5] Wang J P, Duan X Y, Du X D, Niu J Y. Gryst. Growth. Des., 2006, 6: 2266-2270
[6] Long D L, Burkholder E, Cronic L. Chem. Soc. Rev., 2007, 36: 105-121
[7] 王恩波(Wang E B), 李阳光(Li Y G), 鹿颖(Lu Y), 王新龙(Wang X L). 多酸化学概论(Introduction in Polyoxometalates). 长春: 东北师范大学出版社(Changchun: Northeast Normal University Press), 2009. 119-125
[8] Chen L, Jiang F L, Lin Z Z, Zhou Y F, Yue C Y, Hong M C. J. Am. Chem. Soc., 2005, 127: 8588-8589
[9] Calzado C J, Clemente-Juan J M, Coronado E, Gaita-Arino A, Suaud N. Inorg. Chem., 2008, 47: 5889-5901
[10] Liu S X, Xie L H, Gao B, Zhang C D, Sun C Y, Li D H, Su Z M. Chem. Commun., 2005, 5023-5025
[11] Klemperer W G, Marquart T A, Yaghi O M N. Angew. Chem. Int. Ed., 1992, 31: 49-51
[12] 徐如人(Xu R R), 庞文琴(Pang W Q)主编. 无机合成与制备化学(Inorganic Synthesis and Preparative Chemistry). 北京: 高等教育出版社(Beijing: Higher Education Press), 2001
[13] 洪茂椿(Hong M C), 陈荣(Chen R), 梁文平(Liang W P). 21世纪的无机化学(Inorganic Chemistry in the 21st Century). 北京: 科学出版社(Beijing: Science Press), 2005. 213-233
[14] Zhang L R, Shi Z, Yang G Y, Chen X M, Feng S H. J. Solid State Chem., 1999, 148: 450-454
[15] Wu M M, Law T S C, Sung H H Y, Cai J W, Williams I D. Chem. Commun., 2005, 1827-1829
[16] Müller A, Dring J. Angew. Chem. Int. Ed. Engl., 1988, 27: 1721-1722
[17] Han G, Greaney M A, Jacobson A J. J. Chem. Soc. Chem. Commun., 1991, 260-261
[18] Zheng S T, Zhang J, Yang G Y. Z. Anorg. Allg. Chem., 2005, 631: 170-173
[19] Qi Y F, Li Y G, Wang E B, Jin H, Zhang Z Z, Wang X L, Chang S. J. Solid State Chem., 2007, 180: 382-389
[20] Zheng S T, Zhang J, Li B, Yang G Y. Dalton. Trans., 2008, 5584-5587
[21] Cui X B, Xu J Q, Li Y, Sun Y H, Yang G Y. Eur. J. Inorg. Chem., 2004, 1051-1055
[22] Zheng S T, Zhang J, Xu J Q, Yang G Y. J. Solid State Chem., 2005, 178: 3740-3746
[23] Qi Y F, Li Y G, Wang E B, Jin H, Zhang Z M, Wang X L, Chang S. Inorg. Chim. Acta, 2007, 360: 1841-1853
[24] Dong B X, Peng J, Gómez-García C J, Benmansour S, Jia H Q, Hu N H. Inorg. Chem., 2007, 46: 5933-5941
[25] Cui X B, Xu J Q, Sun Y H, Li Y, Ye L, Yang G Y. Inorg. Chem. Commun., 2004, 7: 58-61
[26] Zheng S T, Chen Y M, Zhang J, Xu J Q, Yang G Y. Eur. J. Inorg. Chem., 2006, 397-406
[27] Zhou J, Zheng S T, Fang W H, Yang G Y. Eur. J. Inorg. Chem., 2009, 5075-5078
[28] Cui X B, Xu J Q, Meng H, Zheng S T, Yang G Y. Inorg. Chem., 2004, 43: 8005-8009
[29] Zheng S T, Zhang J, Yang G Y. Inorg. Chem., 2005, 44: 2426-2430
[30] Zheng S T, Wang M H, Yang G Y. Inorg. Chem., 2007, 46: 9503-9508
[31] Zheng S T, Zhang J, Yang G Y. Eur. J. Inorg. Chem., 2004, 2004-2007
[32] Zhao D, Zheng S T, Yang G Y. J. Solid State Chem., 2008, 181: 3071-3077
[33] Qi Y F, Li Y G, Qin C, Wang E B, Jin H, Xiao D R, Wang X L, Chang S. Inorg. Chem., 2007, 46: 3217-3230
[34] Zhang L J, Zhao X L, Xu J Q, Wang T G. J. Chem. Soc. Dalton. Trans., 2002, 3275-3276
[35] Li Y, Liu J P, Wang J P, Niu J Y. Chem. Res. Chinese Universities, 2009, 25(4): 426-429
[36] Wutkowski A, Nther C, Kgerler P, Bensch W. Inorg. Chem., 2008, 47: 1916-1918
[37] Gao Y Z, Han Z G, Xu Y Q, Hu C W. J. Clust. Sci., 2010, 21: 163-171
[38] Li H, Eddaoude M, O’Keeffe M, Yaghi O M. Nature, 1999, 402: 276-279
[39] Wang X Q, Liu L M, Zhang G, Jacobson A J. Chem. Commun., 2001, 2472-2473
[40] Tripathi A, Hughbanks T, Clearfield A. J. Am. Chem. Soc., 2003, 125: 10528-10529
[41] Chen Y M, Wang E B, Lin B Z, Wang S T. Dalton. Trans., 2003, 519-520
[42] Whitfield T, Wang X, Jacobson A J. Inorg. Chem., 2003, 42: 3728-3733
[43] Pitzschke D, Wang J, Hoffmann R D, Pttgen R, Bensch W. Angew. Chem. Int. Ed., 2006, 45: 1305-1308
[44] Gao Y Z, Xu Y Q, Li S, Han Z G, Cao Y, Cui F Y, Hu C W. J. Coord. Chem., 2010, 63: 3373-3383
[45] Barra A L, Gatteschi D, Pardi L, Müller A, Dring J. J. Am. Chem. Soc., 1992, 114: 8509-8514
[46] Müller A, Sarkar S, Shah S Q N, Bgge H, Schmidtmann M, Kgerler P, Hauptfleisch B, Trautwein A X, Schünemann V. Angew. Chem. Int. Ed., 1999, 38: 3238-3241
[47] Barra A L, Gatteschi D, Pardi L, Müller A, Dring J. J. Am. Chem. Soc., 1992, 114: 8509-8514
[48] Müller A, Peters F. Chem. Rev., 1998, 98: 261-267

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[4] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[7] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[10] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[11] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[12] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[13] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[14] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[15] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
阅读次数
全文


摘要

取代型钒氧簇合物