中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (4): 491-504 DOI: 10.7536/PC181006 Previous Articles   Next Articles

Syntheses and Functionality of Pillararene-Based Mechanically Interlocked Structures

Min Xue1,**(), Fangfang Fan1, Yong Yang1, Chuanfeng Chen2   

  1. 1. Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
    2. Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
  • Received: Online: Published:
  • Contact: Min Xue
  • About author:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(21772178); 521 Talent Program of Zhejiang Sci-Tech University.()
Richhtml ( 22 ) PDF ( 943 ) Cited
Export

EndNote

Ris

BibTeX

Pillararene, a type of macrocyclic host containing a pillar-shaped cavity, has recently become an important building block to construct supramolecular systems based on host-guest interactions. Pillararenes contain family members from pillar[5]arene to pillar[15]arene. Pillar[5]arene consisting of five hydroquinone units is thermostable product and can be obtained in highest yield; then the yield of pillar[6]arene is relatively low, but still show its various functionality. Using pillar[5]arene or pillar[6]arene hosts, a variety of mechanically selflocked molecules such as(pseudo)[1]rotaxanes and(pseudo)[1]catenanes, and mechanically interlocked molecules such as [n]rotaxanes(n≥2), [2]catenanes and [c2]daisy chains have been fabricated. The independent units in such supramolecular systems often show their relative motion compared with other units. For example, the pillararene ring in a [2]rotaxane molecule generally shuttles along the axle unit of the system. Various derivative groups on these interlocked structures endow them with different functions, such as chirality inversion, F?rster resonance energy transfer, supramolecular gels, Langmuir film, organic catalyst, and even construction of rotaxane-branched dendrimers. In this review, we summarize the research progress of pillararene-based supramolecular self- and interlocked systems. The synthetic strategies and functions of these molecules are focused on, suggesting its prospective application in construction of molecular devices and other complicated supramolecular architectures.

Fig. 1 Examples of mechanically interlocked molecules
Fig. 2 (a) The first example of pillar[5]arene-based [2]rotaxane 1[30],(b) pillar[5]arene-based [2]rotaxane 2 stopped by amide formation reaction[32]
Fig. 3 Construction of [2]rotaxane 4 using liquid pillar[5]arene 3 as the solvent[35]
Fig. 4 Synthesis of pillar[5]arene-based [2]rotaxanes 6 and 7 through Slipping method[36]
Fig. 5 Construction of [4]rotaxanes and [5]rotaxanes through orthogonal template interactions[37]
Fig. 6 Construction of pillar[5]arene-based [2]rotaxane 10a and pillar[6]arene-based [2]rotaxane 10b through “Click” reaction[38]
Fig. 7 Synthesis of [c2]daisy chain 12[40]
Fig. 8 Self-assembly of noncovalent [c2]daisy chain 15[41]
Fig. 9 Self-assembly of dynamic [1]catenane 17[43]
Fig. 10 Synthesis of pillar[5]arene-based [2]catenane 19[44]
Fig. 11 Syntheses of mechanically selflocked molecules 21~23[29]
Fig. 12 Syntheses of [1]rotaxane 25[48] and pseudo[1]rotaxane 26[49]
Fig. 13 Synthesis of [1]rotaxane 28[51]
Fig. 14 Shuttling mobility of pillar[5]arene in [2]rotaxane 29[52]
Fig. 15 Shuttling mobility of pillar[5]arene in [2]rotaxane 30[55]
Fig. 16 Shuttling mobility of pillar[6]arene in [2]rotaxane 10b[38]:(a) chemical structure of [2]rotaxane 10b,(b) partial variable-temperature 1H NMR spectra of [2]rotaxane 10b in CDCl3
Fig. 17 Stretching/contraction mobility of pillar[5]arene in [c2]daisy chain 12 in(a) CDCl3,(b) CDCl3∶DMSO=2∶1(v/v),(c) DMSO[40]
Fig. 18 (a) Isomers of pillar[5]arenes containing small groups,(b) chemical structures of [2]rotaxane 31[34], [3]rotaxane 32[34] and [4]rotaxane 33[39]
Fig. 19 Chiral inversion of [1]pseudocatenane 34[45]
Fig. 20 The chemical structure and F?rster resonance energy transfer of [2]rotaxane 36[59]
Fig. 21 The chemical structure and fluorescence emission spectra of [2]rotaxane 37 in CHCl3([c]=1×10-5 mol/L):(a) upon addition of TEA,(b) upon addition of TFA[53]
Fig. 22 The chemical structure and self-assembly stimuli-responsive gel of [2]rotaxane 29:(a) reversible sol-gel transitions,(b~e) SEM images of freeze-dried supramolecular gels[52]
Fig. 23 (a) The chemical structure of [2]rotaxane 38a,b, the Langmuir films of(b) [2]rotaxane 38a with the surface pressure at 45 mN/m and(c) [2]rotaxane 38b with the surface pressure at 12 mN/m[61]
Fig. 24 Construction of rotaxane-branched dendrimers G1~G4[63]
Fig. 25 Shuttling motivition of [2]rotaxane 40 and the relative rotaxane-branched dendrimers[64]
[1]
Gokel G W, Leevy W M ,Weber M E . Chem. Rev, 2004,104:2723.
[2]
Harada A, Hashidzume A, Yamaguchi H, Takashima Y . Chem. Rev 2009,109:5974.
[3]
Bhasikuttan A C, Pal H, Mohanty J . Chem. Commun 2011,47:9959.
[4]
Li C, Han K, Li J, Zhang H, Ma J, Shu X, Chen Z, Weng L, Jia X . Org. Lett 2012,14:42.
[5]
Chen C F ,Han Y . Acc. Chem. Res, 2018,51:2093.
[6]
Xue M, Yang Y, Chi X, Zhang Z ,Huang F . Acc. Chem. Res, 2012,45:1294.
[7]
Ogoshi T, Yamagishi T A, Nakamoto Y . Chem. Rev 2016,116:7937.
[8]
Jie K, Zhou Y, Li E ,Huang F . Acc. Chem. Res, 2018,51:2064.
[9]
Zhang Z, Luo Y, Chen J, Dong S, Yu Y, Ma Z ,Huang F . Angew. Chem. Int. Ed., 2011,50:1397.
[10]
Shu X, Chen S, Li J, Chen Z, Weng L, Jia X, Li C . Chem. Commun 2012,48:2967.
[11]
Li C, Ma J, Zhao L, Zhang Y, Yu Y, Shu X, Li J, Jia X . Chem. Commun 2013,49:1924.
[12]
Ogoshi T, Nishida Y, Yamagishi T A, Nakamoto Y . Macromolecules, 2010,43:7068.
[13]
Han C, Zhang Z, Yu G, Huang F . Chem. Commun 2012,48:9876.
[14]
Jie K, Liu M, Zhou Y, Little M A, Pulido A, Chong S Y, Stephenson A, Hughes A R, Sakakibara F, Ogoshi T, Blanc F, Day G M, Huang F, Cooper A I . Am. Chem. Soc., 2018,140:6921. https://www.ncbi.nlm.nih.gov/pubmed/29754488

doi: 10.1021/jacs.8b02621 pmid: 29754488
[15]
Jie K, Zhou Y, Li E, Zhao R ,Huang F . Angew. Chem. Int. Ed., 2018,57:12845.
[16]
Wu X, Duan Q P, Ni M F, Hu X Y ,Wang L Y . Chin. J. Org. Chem., 2014,34:437.
[17]
Si W, Chen L, Hu X B, Tang G, Chen Z, Hou J L ,Li Z T . Angew. Chem. Int. Ed., 2011,50:12564.
[18]
Duan Q, Cao Y, Li Y, Hu X, Xiao T, Lin C, Pan Y, Wang L . Am. Chem. Soc., 2013,135:10542. https://www.ncbi.nlm.nih.gov/pubmed/23795864

doi: 10.1021/ja405014r pmid: 23795864
[19]
Yu G, Yu W, Mao Z, Gao C, Huang F . Small, 2015,11:919.
[20]
Chang Y, Yang K, Wei P, Huang S, Pei Y, Zhao W ,Pei Z . Angew. Chem. Int. Ed., 2014,53:13126.
[21]
Li H, Chen D X, Sun Y L, Zheng Y B, Tan L L, Weiss P S, Yang Y W . Am. Chem. Soc., 2013,135:1570. https://www.ncbi.nlm.nih.gov/pubmed/23256789

doi: 10.1021/ja3115168 pmid: 23256789
[22]
Tan L L, Li H, Tao Y, Zhang S X, Wang B ,Yang Y W . Adv. Mater, 2014,26:7027.
[23]
Zhang H, Ma X, Nguyen K T, Zhao Y . ACS Nano, 2013,7:7853.
[24]
Jie K, Liu M, Zhou Y, Little M A, Bonakala S, Chong S Y, Stephenson A, Chen L, Huang F, Cooper A I . Am. Chem. Soc., 2017,139:2908. https://www.ncbi.nlm.nih.gov/pubmed/28182420

doi: 10.1021/jacs.6b13300 pmid: 28182420
[25]
Stoddart J F. Angew. Chem. Int. Ed., 2017,56:11094.
[26]
Xue M, Yang Y, Chi X, Yan X, Huang F . Chem. Rev 2015,115:7398.
[27]
Langton M J ,Beer P D . Acc. Chem. Res, 2014,47:1935.
[28]
Lu Y, Zhang H N ,Jin G X . Acc. Chem. Res, 2018,51:2148.
[29]
Li S H, Zhang H Y, Xu X, Liu Y . Nat.Commun., 2015,6:7590.
[30]
Strutt N L, Forgan R S, Spruell J M, Botros Y Y, Stoddart J F . Am. Chem. Soc., 2011,133:5668. https://www.ncbi.nlm.nih.gov/pubmed/21443238

doi: 10.1021/ja111418j pmid: 21443238
[31]
Wei P F, Yan X Z, Li J Y, Ma Y J, Yao Y, Huang F H . Tetrahedron, 2012,68:9179.
[32]
Milev R, Lopez-Pacheco A, Nierengarten I , Trinh T M N, Holler M, Deschenaux R, Nierengarten J F . Eur. Org. Chem., 2015,2015:479.
[33]
Dong S Y, Han C Y, Zheng B, Zhang M M ,Huang F H . Tetrahedron Lett, 2012,53:3668.
[34]
Ogoshi T, Yamafuji D, Aoki T, Kitajima K, Yamagishi T A, Hayashi Y, Kawauchi S . Chem.-Eur. J., 2012,18:7493.
[35]
Ogoshi T, Aoki T, Shiga R, Iizuka R, Ueda S, Demachi K, Yamafuji D, Kayama H, Yamagishi T A . Am. Chem. Soc., 2012,134:20322. https://www.ncbi.nlm.nih.gov/pubmed/23205818

doi: 10.1021/ja310757p pmid: 23205818
[36]
Ogoshi T, Tamura Y, Yamafuji D, Aoki T ,Yamagishi T A . Chem. Commun, 2016,52:10297.
[37]
Ke C, Strutt N L, Li H, Hou X, Hartlieb K J, McGonigal P R, Ma Z, Iehl J, Stern C L, Cheng C, Zhu Z, Vermeulen N A, Meade T J, Botros Y Y, Stoddart J F. . Am. Chem. Soc., 2013,135:17019. https://www.ncbi.nlm.nih.gov/pubmed/24059594

doi: 10.1021/ja407229h pmid: 24059594
[38]
Ogoshi T, Yamafuji D, Aoki T ,Yamagishi T A . Chem. Commun, 2012,48:6842.
[39]
Hou X, Ke C, Cheng C, Song N, Blackburn A K, Sarjeant A A, Botros Y Y, Yang Y W ,Stoddart J F . Chem. Commun, 2014,50:6196.
[40]
Zhang Z B, Han C Y, Yu G C ,Huang F H . Chem. Sci, 2012,3:3026.
[41]
Zhang Q, Zhang C H, Yang J H, Xin P Y, Xuan X P, Wang J G, Ma N N, Guo H M ,Qu G R . Chem. Commun, 2015,51:15253.
[42]
Zhu X Z, Chen C F . Am. Chem. Soc., 2005,127:13158. https://www.ncbi.nlm.nih.gov/pubmed/16173739

doi: 10.1021/ja0546020 pmid: 16173739
[43]
Yan X, Wei P, Li Z, Zheng B, Dong S, Huang F H, Zhou Q . Chem.Commun ., 2013,49:2512.
[44]
Kitajima K, Ogoshi T ,Yamagishi T A . Chem. Commun, 2014,50:2925.
[45]
Ogoshi T, Akutsu T, Yamafuji D, Aoki T ,Yamagishi T A . Angew. Chem. Int. Ed., 2013,52:8111.
[46]
Cheng M, Wang Q, Cao Y H, Pan Y, Yang Z, Jiang J L ,Wang L Y . Tetrahedron Lett, 2016,57:4133.
[47]
Yao J, Wu W, Liang W, Feng Y, Zhou D, Chruma J J, Fukuhara G, Mori T, Inoue Y ,Yang C . Angew. Chem. Int. Ed., 2017,56:6869.
[48]
Xia B, Xue M . Chem.Commun ., 2014,50:1021.
[49]
Jiang S, Han Y, Cheng M, Sun J, Yan C G, Jiang J L ,Wang L Y . New J Chem., 2018,42:7603.
[50]
Han Y, Huo G F, Sun J, Xie J, Yan C G, Zhao Y, Wu X, Lin C, Wang L . Sci. Rep ., 2016,6:28748.
[51]
Du X S, Wang C Y, Jia Q, Deng R, Tian H S, Zhang H Y, Meguellati K ,Yang Y W . Chem. Commun, 2017,53:5326.
[52]
Dong S Y, Yuan J Y ,Huang F H . Chem. Sci, 2014,5:247.
[53]
Sun N, Xiao X, Li W, Jiang J . Adv. Sci 2015,2:1500082.
[54]
Liu Y, Chipot C, Shao X, Cai W . J. Phys. Chem. C, 2016,120:6287.
[55]
Ogoshi T, Iizuka R, Kotera D ,Yamagishi T A . Org. Lett, 2015,17:350.
[56]
Wang S S, Shao X G, Cai W S . J. Phys. Chem. C, 2017,121:25547.
[57]
Ogoshi T, Kotera D, Nishida S, Kakuta T, Yamagishi T A, Brouwer A M . Chem.-Eur. J., 2018,24:6325.
[58]
Yuan L, Lin W, Zheng K ,Zhu S . Acc. Chem. Res, 2013,46:1462.
[59]
Ogoshi T, Yamafuji D, Yamagishi T A ,Brouwer A M . Chem. Commun, 2013,49:5468.
[60]
Krafft M P . Acc. Chem. Res., 2012,45:514.
[61]
Trinh T M, Nierengarten I, Holler M, Gallani J L, Nierengarten J F . Chem.-Eur. J., 2015,21:8019.
[62]
Rosen B M, Wilson C J, Wilson D A, Peterca M, Imam M R ., Percec V. Chem. Rev 2009,109:6275.
[63]
Wang W, Chen L J, Wang X Q, Sun B, Li X, Zhang Y, Shi J, Yu Y, Zhang L, Liu M ,Yang H B . Proc. Natl. Acad. Sci. U.S. A., 2015,112:5597.
[64]
Wang X Q, Wang W, Li W J, Chen L J, Yao R, Yin G Q, Wang Y X, Zhang Y, Huang J, Tan H, Yu Y, Li X, Xu L ,Yang H B . Nat. Commun., 2018,9:3190.
[1] Yawen Li, Wantong Ao, Huilin Jin, Liping Cao. Aggregation-Induced Emission of Tetraphenylethene Derivatives with Macrocycles via Host-Guest Interactions [J]. Progress in Chemistry, 2019, 31(1): 121-134.
[2] Hanxiao Wang, Ying Han, Chuanfeng Chen*. The Directional Threading of Guests and Construction of Orientational Assemblies Based on Three-Dimensional Nonsymmetrical Hosts [J]. Progress in Chemistry, 2018, 30(5): 616-627.
[3] Dong Yunhong, Cao Liping. Functionalization of Cucurbit uril [J]. Progress in Chemistry, 2016, 28(7): 1039-1053.
[4] Zhang Shuangjin, Yang Yang, Sun Xiaoqiang, Yin Fanghua, Jiang Juli, Wang Leyong. Molecular Machines Driven by Acid-Base Chemistry and Their Applications [J]. Progress in Chemistry, 2016, 28(2/3): 244-259.
[5] Xia Mengchan, Yang Yingwei. Organic Functional Materials Based on Pillarenes [J]. Progress in Chemistry, 2015, 27(6): 655-665.
[6] Ye Yang, Lin Zheping, Jin Wenlu, Wang Shuping, Wu Jing, Li Shijun. Self-Assembly of Mechanically Interlocked Structures via Metal-Mediated Coordination Cooperating with Host-Guest Recognition [J]. Progress in Chemistry, 2015, 27(6): 763-774.
[7] Yang Zaiwen, Liu Xiangrong, Zhao Shunsheng, He Jinmei. Chemically Driven [2] Rotaxane Molecular Shuttles [J]. Progress in Chemistry, 2014, 26(12): 1899-1913.
[8] Sun Shu, Shi Jianbing, Dong Yuping, Hu Xiaoyu, Wang Leyong. Research Advances of Polypseudorotaxanes [J]. Progress in Chemistry, 2014, 26(08): 1409-1426.
[9] Liu Peng, Shao Xueguang, Cai Wensheng*. Application of Pesudorotaxanes/Rotaxanes in Drug Carriers [J]. Progress in Chemistry, 2013, 25(05): 692-697.
[10] Dong Haiqing, Li Yongyong, Li Lan, Shi Donglu. Cyclodextrins/Polymer Based (Pseudo)Polyrotaxanes for Biomedical Applications [J]. Progress in Chemistry, 2011, 23(5): 914-922.
[11] . Cyclodextrin-Containing Supramolecular Hydrogels [J]. Progress in Chemistry, 2010, 22(05): 916-926.
[12]

Yang Hui|Tan Yebang**|Huang Xiaoling|Wang Yuexia

. Research Progress of Cucurbituril [J]. Progress in Chemistry, 2009, 21(01): 164-173.
[13] Bo Jing,Xiao Chen**,Yongcun Chai. Assembling Poly(pseudo)rotaxanes from Cyclodextrins and Macromolecules [J]. Progress in Chemistry, 2006, 18(10): 1361-1368.
[14] Zhang Fenglei,Zhao Wenyi,Shen Tao. Progress in Research on Rotaxane Complexes [J]. Progress in Chemistry, 1996, 8(01): 43-.