中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (6): 763-774 DOI: 10.7536/PC150228 Previous Articles   Next Articles

• Review and evaluation •

Self-Assembly of Mechanically Interlocked Structures via Metal-Mediated Coordination Cooperating with Host-Guest Recognition

Ye Yang, Lin Zheping, Jin Wenlu, Wang Shuping, Wu Jing, Li Shijun*   

  1. College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
  • Received: Revised: Online: Published:
  • Contact: 10.7536/PC150228 E-mail:l_shijun@hznu.edu.cn
  • Supported by:
    The work is supported by the National Natural Science Foundation of China (No. 21072039, 21172049, 91127010), the Program for Changjiang Scholars and Innovative Research Team in Chinese University (IRT 1231), and the Zhejiang Provincial Natural Science Foundation of China (No. LZ13B030001).
PDF ( 790 ) Cited
Export

EndNote

Ris

BibTeX

Mechanically interlocked structures are a kind of supramolecular entities with unique properties. They have attracted much attention not only because of their fascinating aspect of topologies, but also due to their great potential applications in nanotechnology, biology, and material science, as well as important bases for the preparation of molecular machines. This article summarizes new progress in the preparation of rotaxanes, catenanes, and other mechanically interlocked structures assembled via coordination interactions, especially focuses on the examples using metal-mediated coordination interactions as building ways cooperating with host-guest chemistry. Because coordination bonds are easy bonding, dynamically reversible, and easily controllable, the usage of metal-mediated coordination for constructing mechanically interlocked structures can greatly improve the preparation efficiency, and benefit to realizing the reversible regulation of mechanically interlocked structures.

Contents
1 Introduction
2 Self-assembly of rotaxanes via metal-mediated coordination
3 Self-assembly of catenanes via metal-mediated coordination
4 Self-assembly of other mechanically interlocked structures via metal-mediated coordination
5 Conclusion

CLC Number: 

[1] (a) 刘育(Liu Y),张衡益(Zhang H Y),李莉(Li L),王浩(Wang H). 纳米超分子化学——从合成受体到功能组装体(Nanoscale Supramolecular Chemistry——From Synthetic Acceptors to Functional Self-Assemblies). 北京:化学工业出版社(Beijing: Chemical Industry Press), 2004; (b) Balzani V, Credi A, Venturi M;马骧(Ma X),田禾(Tian H) 译(Trans.). 分子器件与分子机器:纳米世界的概念和前景 (Molecular Devices and Machines: Concepts and Perspectives for the Nanoworld). 上海:华东理工大学出版社(Shanghai: East China University of Science and Technology Press), 2009.
[2] (a) Lehn J M. Pure Appl. Chem., 1978, 50: 871; (b) Tian H, Wang Q C. Chem. Soc. Rev., 2006, 35: 361; (c) Zhu B, Chen H, Lin W, Ye Y, Wu J, Li S. J. Am. Chem. Soc., 2014, 136: 15126; (d) Zhang D W, Zhao X, Li Z T. Acc. Chem. Res., 2014, 47: 1961; (e) Han Y, Meng Z, Ma Y X, Chen C F. Acc. Chem. Res., 2014, 47: 2026; (f) Hu X Y, Xiao T, Lin C, Huang F, Wang L. Acc. Chem. Res., 2014, 47: 2041; (g) Guo D S, Liu Y. Acc. Chem. Res., 2014, 47: 1925.
[3] (a) Amabilino D B, Stoddart J F. Chem. Rev., 1995, 95: 2725; (b) Kay E R, Leigh D A, Zerbetto F. Angew. Chem. Int. Ed., 2007, 46: 72; (c) Ma X, Tian H. Chem. Soc. Rev., 2010, 39: 70; (d) Ambrogio M W, Thomas C R, Zhao Y L, Zink J I, Stoddart J F. Acc. Chem. Res., 2011, 44: 903; (e) Coskun A, Spruell J M, Barin G, Dichtel W R, Flood A H, Botros Y Y, Stoddart J F. Chem. Soc. Rev., 2012, 41: 4827; (f) Bruns C J, Stoddart J F. Acc. Chem. Res., 2014, 47: 2186;(g) Xue M, Yang Y, Chi X, Yan X, Huang F. Chem. Rev., 2015, DOI: 10.1021/cr5005869.
[4] (a) Zhang C, Li S, Zhang J, Zhu K, Li N, Huang F. Org. Lett., 2007, 9, 5553; (b) Li S, Liu M, Zhang J, Zheng B, Zhang C, Wen X, Li N, Huang F. Org. Biomol. Chem., 2008, 6: 2103; (c) Li S, Liu M, Zhang J, Zheng B, Wen X, Li N, Huang F. Eur. J. Org. Chem., 2008, 6128; (d) Li S, Zhu K, Zheng B, Wen X, Li N, Huang F. Eur. J. Org. Chem., 2009, 1053; (e) Li S, Liu M, Zheng B, Zhu K, Wang F, Li N, Zhao X L, Huang F. Org. Lett., 2009, 11: 3350; (f) Liu M, Li S, Hu M, Wang F, Huang F.Org. Lett., 2010, 12: 760; (g) 张志君(Zhang Z J),张衡益(Zhang H Y),刘育(Liu Y).高等学校化学学报(Chem. J. Chin. Univ.), 2011, 32: 1913; (h) 周其忠(Zhou Q Z), 何春林(He C L), 翟春熙(Zhai C X), 黄飞鹤(Huang F H), 化学通报(Chemistry), 2008, 809; (i) 孙书(Sun S), 石建兵(Shi J B), 董宇平(Dong Y P), 胡晓玉(Hu X Y), 王乐勇(Wang L Y). 化学进展(Progress in Chemistry), 2014, 26: 1409.
[5] (a) Champin B, Mobian P, Sauvage J P. Chem. Soc. Rev., 2007, 36: 358; (b) Beves J E, Blight B A, Campbell C J, Leigh D A, McBurney R T. Angew. Chem. Int. Ed., 2011, 50: 9260; (c) Chambron J C, Sauvage J P. New J. Chem., 2013, 37: 49; (d) 隋锡娜(Sui X N), 鲁晓明(Lu X M). 化学通报(Chemistry), 2007, 494.
[6] (a) 马骧(Ma X), 王巧纯(Wang Q C), 田禾(Tian H). 化学进展(Progress in Chemistry), 2009, 21: 106; (b) 杨再文(Yang Z W), 刘向荣(Liu X R), 赵顺省(Zhao S S), 何金梅(He J M).化学进展(Progress in Chemistry), 2014, 26: 1899; (c) 翁官欢(Weng G H), 朱彬(Zhu B), 叶杨(Ye Y), 李世军(Li S). 有机化学(Chin. J. Org. Chem.), 2015, 35: 309.
[7] (a) Ogino H. J. Am. Chem. Soc., 1981, 103: 1303; (b) Ogino H, Ohata K. Inorg. Chem., 1984, 23: 3312.
[8] (a) Loeb S J, Wisner J A. Chem. Commun., 1998, 2757; (b) Davidson G J E, Loeb S J. Dalton. Trans., 2003, 4319.
[9] Davidson G J E, Loeb S J, Parekh N A, Wisner J A. J. Chem. Soc. Dalton Trans., 2001, 3135.
[10] (a) Ashton P R, Ballardini R, Balzani V, Credi A, Dress K R, Ishow E, Kleverlaan C J, Kocian O, Preece J A, Spencer N, Stoddart J F, Venturi M, Wenger S. Chem. Eur. J., 2000, 6: 3558; (b) Kay E R, Leigh D A. Nature, 2006, 440: 286; (c) Balzani V, Bergamini G, Ceroni P. Coord. Chem. Rev., 2008, 252: 2456.
[11] Hannak B, Farber G, Konrat R, Kräutler B. J. Am. Chem. Soc., 1997, 119: 2313.
[12] Chichak K, Walsh M C, Branda N R. Chem. Commun., 2000, 847.
[13] Gunter M J, Bampos N, Johnstone K D, Sanders J K M. New J. Chem., 2001, 25: 166.
[14] Ikeda T, Asakawa M, Shimizu T. New J. Chem., 2004, 28: 870.
[15] (a) Jeong K S, Choi J S, Chang S Y, Chang H Y. Angew. Chem. Int. Ed., 2000, 112: 175; (b) Jeong K S, Choi J S, Chang S Y, Chang H Y. Angew. Chem. Int. Ed., 2000, 39: 1692.
[16] Hunter C A, Low C M R, Packer M J, Spey S E, Vinter J G, Vysotsky M O, Zonta C. Angew. Chem. Int. Ed., 2001, 113: 2750.
[17] Yoon I, Narita M, Shimizu T, Asakawa M. J. Am. Chem. Soc., 2004, 126: 16740.
[18] (a) Lee C F, Leigh D A, Pritchard R G, Schultz D, Teat S J, Timco G A, Winpenny R E. Nature, 2009, 458: 314; (b) Ballesteros B, Faust, T B, Lee C F, Leigh D A, Muryn C A, Pritchard R G, Schultz D, Teat S J, Timco G A, Winpenny R E P. J. Am. Chem. Soc., 2010, 132: 15435.
[19] Zhao Y Z, Chen Y, Wang M, Liu Y. Org. Lett., 2006, 8: 1267.
[20] Nepogodiev S A, Stoddart J F. Chem. Rev., 1998, 98: 1959.
[21] Fujita M, Aoyagi M, Ibukuro F, Ogura K, Yamaguchi K. J. Am. Chem. Soc., 1998, 120: 611.
[22] Fujita M, Fujita N, Ogura K, Yamaguchi K. Nature, 1999, 400: 52.
[23] Yamauchi Y, Yoshizawa M, Fujita M. J. Am. Chem. Soc., 2008, 130: 5832.
[24] Westcott A, Fisher J, Harding L P, Rizkallah P, Hardie M J. J. Am. Chem. Soc., 2008, 130: 2950.
[25] Fukuda M, Sekiya R, Kuroda R. Angew. Chem. Int. Ed., 2008, 47: 706.
[26] Freye S, Hey J, Galan A T, Stalke D, Irmer R H, John M, Clever G H. Angew. Chem. Int. Ed., 2012, 51: 2191.
[27] (a) Chas M, Pia E, Toba R, Peinador C, Quintela J M. Inorg. Chem., 2006, 45: 6117; (b) Blanco V, Chas M, Abella D, Peinador C, Quintela J M. J. Am. Chem. Soc., 2007, 129: 13978; (c) Blanco V, Garcia M D, Peinador C, Quintela J M. Chem. Sci., 2011, 2: 2407.
[28] Forgan R S, Friedman D C, Stern C L, Bruns C J, Stoddart J F. Chem. Commun., 1998, 2757.
[29] Liu Y, Bruneau A, He J, Abliz Z. Org. Lett., 2008, 10: 765.
[30] Wu J, Fang F, Lu W Y, Hou J L, Li C, Wu Z Q, Jiang X K, Li Z T, Yu Y H. J. Org. Chem., 2011, 76: 4682.
[31] Li S J, Huang J Y, Cook T R, Pollock J B, Kim K, Chi K W, Stang P J. J. Am. Chem. Soc., 2013, 135: 2084.
[32] (a) Whang D M, Park K M, Heo J, Ashton P, Kim K. J. Am. Chem. Soc., 1998, 120: 4899; (b) Park K M, Kim S Y, Heo J, Whang D, Sakamoto S, Yamaguchi K, Kim K. J. Am. Chem. Soc., 2002, 124: 2140.
[33] Roh S G, Park K M, Park G J, Sakamoto S, Yamaguchi K, Kim K. Angew. Chem. Int. Ed., 1999, 38: 637.
[34] Li S J, Huang J Y, Zhou F Y, Cook T R, Yan X Z, Ye Y, Zhu B, Zheng B, Stang P J. J. Am. Chem. Soc., 2014, 136: 5908.
[35] Peinador C, Blanco V, Quintela J M. J. Am. Chem. Soc., 2009, 131: 920.
[36] (a) De Greef T F A, Smulders M M J, Wolffs M, Schenning A P H J, Sijbesma R P, Meijer E W. Chem. Rev., 2009, 109: 5687; (b) Wang F, Zhang J, Ding X, Dong S, Liu M, Zheng B, Li S, Wu L, Yu Y, Gibson H W, Huang F. Angew. Chem. Int. Ed., 2010, 49: 1090; (c) Zheng B, Wang F, Dong S, Huang F. Chem. Soc. Rev., 2012, 41: 1621; (d) Yan X, Wang F, Zheng B, Huang F. Chem. Soc. Rev., 2012, 41: 604; (e) Guo D S, Liu Y. Chem. Soc. Rev., 2012, 41: 5907; (f) Li S L, Xiao T, Lin C, Wang L. Chem. Soc. Rev., 2012, 41: 59508; (g) Dong S, Zheng B, Wang F, Huang F. Acc. Chem. Res., 2014, 47: 1982; (h) 郭明雨(Guo M Y), 江明(Jiang M). 化学进展(Progress in Chemistry), 2007, 19: 557; (i) 杨勇(Yang Y), 窦丹丹(Dou D D).化学进展(Progress in Chemistry), 2014, 26: 706.
[37] (a) Niu Z, Gibson H W. Chem. Rev., 2009, 109: 6024; (b) Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Chem. Rev., 2009, 109: 5974; (c) Li S, Zheng B, Chen J, Dong S, Ma Z, Huang F, Gibson H W. J. Polym. Sci.: Polym. Chem., 2010, 48: 4067.
[38] (a) Vukotic V N, Loeb S J. Chem. Soc. Rev., 2012, 41: 5896; (b) Yan X, Li S, Pollock B J, Cook T R, Chen J, Zhang Y, Ji X, Yu Y, Huang F, Stang P J. Proc. Natl. Acad. Sci. USA, 2013, 110: 15585; (c) Yan X, Li S, Cook T R, Ji X, Yao Y, Pollock B J, Shi Y, Yu G, Li J, Huang F, Stang P J. J. Am. Chem. Soc., 2013, 135: 14036; (d) Yan X, Cook T R, Pollock B J, Wei P, Zhang Y, Yu Y, Huang F, Stang P J. J. Am. Chem. Soc., 2014, 136: 4460; (e) Li Z Y, Zhang Y, Zhang C W, Chen L J, Wang C, Tan H, Yu Y, Li X, Yang H B. J. Am. Chem. Soc., 2014, 136: 8577; (f) Wei P, Li S, Zhang Y, Yu Y, Yan X. Polym. Chem., 2014, 5: 3972; (g) Tian Y K, Shi Y G, Yang Z S, Wang F. Angew. Chem. Int. Ed., 2014, 53: 6090; (h) Tian Y K, Yang Z S, Lv X Q, Yao R S, Wang F. Chem. Commun., 2014, 50: 9477; (i) Wei P, Yan X, Huang F. Chem. Soc. Rev., 2015, 44: 815.
[39] (a) Liu Y, Zhao Y L, Zhang H Y, Song H B. Angew. Chem. Int. Ed., 2003, 42: 3260; (b) Liu Y, Li L, Zhang H Y, Zhao Y L, Wu X. Macromolecules, 2002, 35: 9934; (c) Liu Y, Song Y, Wang H, Zhang H Y, Li X Q. Macromolecules, 2004, 37: 6370.
[40] Du G, Moulin E, Jouault N, Buhler E, Giuseppone N. Angew. Chem. Int. Ed., 2012, 51: 12504.
[41] Gao L, Zhang Z, Zheng B, Huang F. Polym. Chem., 2014, 5: 5734.
[42] Li S, Weng G H, Lin W, Sun Z B, Zhou M, Zhu B, Ye Y, Wu J. Polym. Chem., 2014, 5: 3994.
[43] Zhu L L, Lu M Q, Zhang Q W, Qu D H, Tian H. Macrmolecules, 2011, 44: 4092.
[1] Liangchun Li, Renlin Zheng, Yi Huang, Rongqin Sun. Self-Sorting Assembly in Multicomponent Self-Assembled Low Molecular Weight Hydrogels [J]. Progress in Chemistry, 2023, 35(2): 274-286.
[2] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[5] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[6] Xuebing Tao, Jipan Yu, Lei Mei, Changming Nie, Zhifang Chai, Weiqun Shi. Dinitrogen Activation by Uranium Complex [J]. Progress in Chemistry, 2021, 33(6): 907-913.
[7] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[8] Jinke Wu, Jianjun Wang, Lixing Dai, Donghao Sun, Jiajia Chen. Metal Coordination Polyurethanes [J]. Progress in Chemistry, 2021, 33(12): 2188-2202.
[9] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[10] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[11] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[12] Lixu Lei, Yiming Zhou. Solvent-Free or Less-Solvent Solid State Reactions [J]. Progress in Chemistry, 2020, 32(8): 1158-1171.
[13] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[14] Kangkang Zhi, Xin Yang. Natural Product Gels and Their Gelators [J]. Progress in Chemistry, 2019, 31(9): 1314-1328.
[15] Min Xue, Fangfang Fan, Yong Yang, Chuanfeng Chen. Syntheses and Functionality of Pillararene-Based Mechanically Interlocked Structures [J]. Progress in Chemistry, 2019, 31(4): 491-504.