中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (12): 1899-1913 DOI: 10.7536/PC140801 Previous Articles   Next Articles

• Review •

Chemically Driven [2] Rotaxane Molecular Shuttles

Yang Zaiwen*, Liu Xiangrong, Zhao Shunsheng, He Jinmei   

  1. College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21301139, 21373158, 21103135) and the Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 2013JK0651)

PDF ( 1642 ) Cited
Export

EndNote

Ris

BibTeX

Mechanically interlocked rotaxane molecular shuttles occupy an important position in the area of molecular machines chemistry, and is a good "bottom-up" strategy for the self-assembly of new materials at the molecular level. In such shuttles, a macrocycle can be translocated between different "stations" or recognition sites of the thread in response to an external stimulus. The alternation of relative positions of the interlocked components can result in varying physical or chemical properties. The alternative variation of properties constitutes a basic kind of mechanical switch, capable of performing particular functions. The above-mentioned molecular shuttles have attracted wide attentions of supramolecular chemists due to their potential applications as molecular devices for switches, information storage and processing, and so on. In this paper, the new research progress in chemically driven [2]rotaxane molecular shuttles on syntheses and applications in recent years is reviewed, based on the driving forces (i.e. external stimuli) such as acid/base driven, ion coordination interaction driven, hydrophobic interaction driven induced by the change of solvent polarity. And the other forces driven [2]rotaxane molecular shuttles are also summarized such as thermodynamical entropy, the size of the decorated groups in the interlocked system, chemical oxidants or reductants, electrochemical redox related to electron gain or loss, photoisomerization of the azobenzene unit between trans and cis isomer induced by UV or visible light irradiation, and so on. Furthermore, the future development of such [2]rotaxane molecular shuttles is prospected.

Contents
1 Introduction
2 Chemically driven [2]rotaxane molecular shuttles
2.1 Acid/base driven [2]rotaxane molecular shuttles
2.2 Ion coordination interaction driven [2]rotaxane molecular shuttles
2.3 Hydrophobic interaction driven induced by the change of solvent polarity [2]rotaxane molecular shuttles
2.4 Other forces driven [2]rotaxane molecular shuttles
3 Conclusion and outlook

CLC Number: 

[1] 黄飞鹤(Hang F H), 翟春熙(Zhai C X), 郑波(Zheng B), 李世军(Li S J). 超分子聚合物(Supramolecular Polymers). 杭州:浙江大学出版社(Hangzhou: Zhejiang University Press), 2012.
[2] 莱恩(Lehn J M). 沈兴海(Shen X H)(译). 超分子化学:概念和展望(Supramolecular Chemistry: Concepts and Perspectives). 北京:北京大学出版社(Beijing: Peking University Press), 2002.
[3] 罗勤慧(Luo Q H). 大环化学——主-客体化合物和超分子(Macrocyclic Chemistry——Host-guest Compounds and Supramolecules). 北京:科学出版社(Beijing: Science Press), 2009.
[4] Kay E R, Leigh D A, Zerbetto F. Angew. Chem. Int. Ed., 2007, 46: 72.
[5] Neal E A, Goldup S M. Chem. Commun., 2014, 50: 5128.
[6] Yang W, Li Y, Liu H, Chi L, Li Y. Small, 2012, 8 (4): 504.
[7] Sauvage J P, Collin J P, Durot S, Frey J, Heitz V, Sour A, Tock C. C. R. Chimie, 2010, 13: 315.
[8] Silvi S, Venturi M, Credi A. J. Mater. Chem., 2009, 19: 2279.
[9] Berná J, Alajarín M, Orenes R A. J. Am. Chem. Soc., 2010, 132: 10741.
[10] Guenet A, Graf E, Kyritsakas N, Hosseini M W. Chem. Eur. J., 2011, 17: 6443.
[11] Leontiev A V, Serpell C J, White N G, Beer P D. Chem. Sci., 2011, 2: 922.
[12] Zhang Z, Han C, Yu G, Huang F. Chem. Sci., 2012, 3: 3026.
[13] Bruns C J, Stoddart J F. Acc. Chem. Res., 2014, 47 (7): 2186.
[14] Liu Y, Flood A H, Bonvallet P A, Vignon S A, Northrop B H, Tseng H R, Jeppesen J O, Huang T J, Brough B, Baller M, Magonov S, Solares S D, Goddard W A, Ho C M, Stoddart J F. J. Am. Chem. Soc., 2005, 127 (27): 9745.
[15] Sherman W B, Seeman N C. Nano. Lett., 2004, 4 (7): 1203.
[16] Shin J S, Pierce N A. J. Am. Chem. Soc., 2004, 126 (35): 10834.
[17] Badji D? J D, Balzani V, Credi A, Silvi S, Stoddart J F. Science, 2004, 303: 1845.
[18] Badji D? J D, Ronconi C M, Stoddart J F, Balzani V, Silvi S, Credi A. J. Am. Chem. Soc., 2006, 128 (5): 1489.
[19] Zhang J N, Li H, Zhou W, Yu S L, Qu D H, Tian H. Chem. Eur. J., 2013, 19: 17192.
[20] Li Y, Liu H, Li Y. Curr. Org. Chem., 2011, 15: 96.
[21] Barnes J C, Fahrenbach A C, Dyar S M, Frasconi M, Giesener M A, Zhu Z, Liu Z, Hartlieb K J, Carmieli R, Wasielewski M R, Stoddart J F. Proc. Natl. Acad. Sci. U.S.A., 2012, 109 (29): 11546.
[22] Baggerman J, Haraszkiewicz N, Wiering P G, Fioravanti G, Marcaccio M, Paolucci F, Kay E R, Leigh D A, Brouwer A M. Chem. Eur. J., 2013, 19: 5566.
[23] Dongen S F M, Cantekin S, Elemans J A A W, Rowan A E, Nolte R J M. Chem. Soc. Rev., 2014, 43: 99.
[24] Mercurio J M, Tyrrell F, Cookson J, Beer P D. Chem. Commun., 2013, 49: 10793.
[25] Zapata F, Blackburn O A, Langton M J, Faulkner S, Beer P D. Chem. Commun., 2013, 49: 8157.
[26] Lin Y H, Lai C C, Liu Y H, Peng S M, Chiu S H. Angew. Chem. Int. Ed., 2013, 52: 10231.
[27] Chiu C W, Lai C C, Chiu S H. J. Am. Chem. Soc., 2007, 129 (12): 3500.
[28] Crowley J D, Goldup S M, Lee A L, Leigh D A, McBurney R T. Chem. Soc. Rev., 2009, 38: 1530.
[29] 翟春熙(Zhai C X), 黄飞鹤(Huang F H). 中国科学B辑:化学(Science in China B: Chemistry),2009, 39 (4): 315.
[30] 马骧(Ma X), 王巧纯(Wang Q C), 田禾(Tian H). 化学进展(Progress in Chemistry), 2009, 21 (1): 106.
[31] 吴旋(Wu X), 段群鹏(Duan Q P), 倪梦飞(Ni M F), 胡晓玉(Hu X Y), 王乐勇(Wang L Y). 有机化学(Chinese Journal of Organic Chemistry), 2014, 34: 437.
[32] Rescifina A, Chiacchio U, Corsaro A, Romeo G. Curr. Org. Chem., 2012, 16: 127.
[33] Tokunaga Y, Ikezaki S, Kimura M, Hisada K, Kawasaki T. Chem. Commun., 2013, 49: 11749.
[34] Scarel F, Valenti G, Gaikwad S, Marcaccio M, Paolucci F, Mateo-Alonso A. Chem. Eur. J., 2012, 18: 14063.
[35] Dey S K, Coskun A, Fahrenbach A C, Barin G, Basuray S N, Trabolsi A, Botros Y Y, Stoddart J F. Chem. Sci., 2011, 2: 1046.
[36] Brouwer A M, Frochot C, Gatti F G, Leigh D A, Mottier L, Paolucci F, Roffia S, Wurpel G W H. Science, 2001, 291: 2124.
[37] Saha S, Stoddart J F. Chem. Soc. Rev., 2007, 36: 77.
[38] Zhang T, Mu L, She G, Shi W. Chem. Commun., 2012, 48: 452.
[39] Jia C, Wu B, Li S, Yang Z, Zhao Q, Liang J, Li Q S, Yang X J. Chem. Commun., 2010, 46: 5376.
[40] Jia C, Wu B, Li S, Huang X, Zhao Q, Li Q S, Yang X J. Angew. Chem. Int. Ed., 2011, 50: 486.
[41] Li S, Jia C, Wu B, Luo Q, Huang X, Yang Z, Li Q S, Yang X J. Angew. Chem. Int. Ed., 2011, 50: 5721.
[42] Yang Z, Wu B, Huang X, Liu Y, Li S, Xia Y, Jia C, Yang X J. Chem. Commun., 2011, 47: 2880.
[43] Yang Z, Huang X, Zhao Q, Li S, Wu B. CrystEngComm, 2012, 14: 5446.
[44] Nguyen T D, Tseng H R, Celestre P C, Flood A H, Liu Y, Stoddart J F, Zink J I. Proc. Natl. Acad. Sci. U.S.A., 2005, 102 (29): 10029.
[45] Kihara N, Hashimoto M, Takata T. Org. Lett., 2004, 6 (11): 1693.
[46] Vella S J, Tiburcio J, Loeb S J. Chem. Commun., 2007: 4752.
[47] Berná J, Goldup S M, Lee A L, Leigh D A, Symes M D, Teobaldi G, Zerbetto F. Angew. Chem. Int. Ed., 2008, 47: 4392.
[48] Li J, Li Y, Guo Y, Xu J, Lv J, Li Y, Liu H, Wang S, Zhu D. Chem. Asian J., 2008, 3: 2091.
[49] Leigh D A, Lusby P J, McBurney R T, Symes M D. Chem. Commun., 2010, 46: 2382.
[50] Crowley J D, Leigh D A, Lusby P J, McBurney R T, Perret-Aebi L E, Petzold C, Slawin A M Z, Symes M D. J. Am. Chem. Soc., 2007, 129 (48): 15085.
[51] Tokunaga Y, Kawabata M, Matsubara N. Org. Biomol. Chem., 2011, 9: 4948.
[52] Yang W, Li Y, Zhang J, Yu Y, Liu T, Liu H, Li Y. Org. Biomol. Chem., 2011, 9: 6022.
[53] Zhu K, Vukotic V N, Noujeim N, Loeb S J. Chem. Sci., 2012, 3: 3265.
[54] Liu L, Liu Y, Liu P, Wu J, Guan Y, Hu X, Lin C, Yang Y, Sun X, Ma J, Wang L. Chem. Sci., 2013, 4: 1701.
[55] Jiang L, Okano J, Orita A, Otera J. Angew. Chem. Int. Ed., 2004, 43: 2121.
[56] Zhou W, Li J, He X, Li C, Lv J, Li Y, Wang S, Liu H, Zhu D. Chem. Eur. J., 2008, 14: 754.
[57] Goldup S M, Leigh D A, Lusby P J, McBurney R T, Slawin A M Z. Angew. Chem. Int. Ed., 2008, 47: 3381.
[58] Barrell M J, Leigh D A, Lusby P J, Slawin A M Z. Angew. Chem. Int. Ed., 2008, 47: 8036.
[59] Crowley J D, Hänni K D, Leigh D A, Slawin A M Z. J. Am. Chem. Soc., 2010, 132: 5309.
[60] Berná J, Franco-Pujante C, Alajarín M. Org. Biomol. Chem., 2014, 12: 474.
[61] Meng Z, Xiang J F, Chen C F. Chem. Sci., 2014, 5: 1520.
[62] Mateo-Alonso A, Ehli C, Rahman G M A, Guldi D M, Fioravanti G, Marcaccio M, Paolucci F, Prato M. Angew. Chem. Int. Ed., 2007, 46: 3521.
[63] Moretto A, Menegazzo I, Crisma M, Shotton E J, Nowell H, Mammi S, Toniolo C. Angew. Chem. Int. Ed., 2009, 48: 8986.
[64] Günba? D D, Zalewskiz L, Brouwer A M. Chem. Commun., 2011, 47: 4977.
[65] Dong S, Yuan J, Huang F. Chem. Sci., 2014, 5: 247.
[66] Umehara T, Kawai H, Fujiwara K, Suzuki T. J. Am. Chem. Soc., 2008, 130: 13981.
[67] Lee C F, Leigh D A, Pritchard R G, Schultz D, Teat S J, Timco G A, Winpenny R E P. Nature, 2009, 458: 314.
[68] Tramontozzi D A, Suhan N D, Eichhorn S H, Loeb S J. Chem. Eur. J., 2010, 16: 4466.
[69] Altieri A, Aucagne V, Carrillo R, Clarkson G J, D'Souza D M, Dunnett J A, Leigh D A, Mullen K M. Chem. Sci., 2011, 2: 1922.
[70] Ye T, Kumar A S, Saha S, Takami T, Huang T J, Stoddart J F, Weiss P S. ACS Nano, 2010, 4 (7): 3697.
[71] Yasuda T, Tanabe K, Tsuji T, Coti K K, Aprahamian I, Stoddart J F, Kato T. Chem. Commun., 2010, 46: 1224.
[72] Coskun A, Friedman D C, Li H, Patel K, Khatib H A, Stoddart J F. J. Am. Chem. Soc., 2009, 131: 2493.
[73] Zhu L, Yan H, Wang X J, Zhao Y. J. Org. Chem., 2012, 77: 10168.

[1] Min Xue, Fangfang Fan, Yong Yang, Chuanfeng Chen. Syntheses and Functionality of Pillararene-Based Mechanically Interlocked Structures [J]. Progress in Chemistry, 2019, 31(4): 491-504.
[2] Zhang Shuangjin, Yang Yang, Sun Xiaoqiang, Yin Fanghua, Jiang Juli, Wang Leyong. Molecular Machines Driven by Acid-Base Chemistry and Their Applications [J]. Progress in Chemistry, 2016, 28(2/3): 244-259.
[3] Ye Yang, Lin Zheping, Jin Wenlu, Wang Shuping, Wu Jing, Li Shijun. Self-Assembly of Mechanically Interlocked Structures via Metal-Mediated Coordination Cooperating with Host-Guest Recognition [J]. Progress in Chemistry, 2015, 27(6): 763-774.
[4] Xu Guohe, Li Jie, Deng Jinni, Yin Lv, Zheng Zhaohui, Ding Xiaobin. Molecular Shuttles Based on Host-Guest Recognition Driven by External-Stimuli [J]. Progress in Chemistry, 2015, 27(12): 1732-1742.
[5] Sun Shu, Shi Jianbing, Dong Yuping, Hu Xiaoyu, Wang Leyong. Research Advances of Polypseudorotaxanes [J]. Progress in Chemistry, 2014, 26(08): 1409-1426.
[6] Liu Peng, Shao Xueguang, Cai Wensheng*. Application of Pesudorotaxanes/Rotaxanes in Drug Carriers [J]. Progress in Chemistry, 2013, 25(05): 692-697.
[7] Dong Haiqing, Li Yongyong, Li Lan, Shi Donglu. Cyclodextrins/Polymer Based (Pseudo)Polyrotaxanes for Biomedical Applications [J]. Progress in Chemistry, 2011, 23(5): 914-922.
[8] . Cyclodextrin-Containing Supramolecular Hydrogels [J]. Progress in Chemistry, 2010, 22(05): 916-926.
[9] Ms Xiang|Wang Qiaochun|Tian He**. Photo-Driven Molecular Shuttles [J]. Progress in Chemistry, 2009, 21(01): 106-115.
[10]

Yang Hui|Tan Yebang**|Huang Xiaoling|Wang Yuexia

. Research Progress of Cucurbituril [J]. Progress in Chemistry, 2009, 21(01): 164-173.
[11] Bo Jing,Xiao Chen**,Yongcun Chai. Assembling Poly(pseudo)rotaxanes from Cyclodextrins and Macromolecules [J]. Progress in Chemistry, 2006, 18(10): 1361-1368.
[12] Zhang Fenglei,Zhao Wenyi,Shen Tao. Progress in Research on Rotaxane Complexes [J]. Progress in Chemistry, 1996, 8(01): 43-.