中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (5): 616-627 DOI: 10.7536/PC171201 Previous Articles   Next Articles

• Review •

The Directional Threading of Guests and Construction of Orientational Assemblies Based on Three-Dimensional Nonsymmetrical Hosts

Hanxiao Wang, Ying Han, Chuanfeng Chen*   

  1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21332008, 91527301, 21521002).
PDF ( 365 ) Cited
Export

EndNote

Ris

BibTeX

In host-guest chemistry, taking precise control over the isomerism in the complexation process can not only simplify and regulate the structures of the final assemblies including mechanical interlocked molecules, but also exert great influence on their performance in carrying out tasks as molecular machines. When a linearly nonsymmetrical guest threads into the cavity of a three-dimensionally nonsymmetrical host, orientational isomers will be formed in theory resulting from the nondegenerate threading directions of the guest. This type of isomerism has been attracting the interest of researchers, and much progress has been made in how to control the threading direction of the guest by rationally designing the structures of both the host and the guest. In this review, the characterization methods of the relative host-guest orientation, the mechanism of the threading process and the construction of assemblies based on the complexation between three-dimensionally nonsymmetrical hosts, including cyclodextrins, calixarenes and triptycene-derived macrocycles, and linearly nonsymmetrical guests are summarized. The prospect and future application are also discussed.
Contents
1 Introduction
2 The general strategies of determining the threading direction and its selectivity of the guest molecule
2.1 The strategies of determining the relative orientation of host and guest
2.2 The strategies of determining the relative amount of orientational isomers
3 Directional threading of guests and construction of assemblies based on cyclodextrins
3.1 Thermodynamically controlled directional threading
3.2 Kinetically controlled directional threading
4 Directional threading of guests and construction of assemblies based on calixarenes
4.1 Directional threading based on urea-derived calix[6]arenes
4.2 Directional threading based on classical calix[6]arenes
5 Directional threading and construction of assemblies based on triptycene-derived macrocyclic hosts
6 Conclusion and outlook

CLC Number: 

[1] Amabilino D B, Stoddart J F. Chem. Rev., 1995, 95(8):2725.
[2] Stoddart J F. Angew. Chem. Int. Ed., 2014, 53(42):11102.
[3] Beves J E, Blight B A, Campbell C J, Leigh D A, McBurney R T. Angew. Chem. Int. Ed., 2011, 50(40):9260.
[4] Forgan R S, Sauvage J P, Stoddart J F. Chem. Rev., 2011, 111(9):5434.
[5] Beves J E, Danon J J, Leigh D A, Lemonnier J F, Vitorica-Yrezabal I J. Angew. Chem. Int. Ed., 2015, 54(26):7555.
[6] Balzani V, Venturi M, Credi A. Molecular devices and machines:a journey into the nanoworld. John Wiley & Sons, 2006.
[7] Balzani V, Credi A, Venturi M. Chem. Eur. J., 2002, 8(24):5524.
[8] Stoddart J F. Angew. Chem. Int. Ed., 2017, 56(37):11094.
[9] Barrell M J, Campana A G, Von Delius M, Geertsema E M, Leigh D A. Angew. Chem. Int. Ed., 2011, 50(1):285.
[10] Lewandowski B, De Bo G, Ward J W, Papmeyer M, Kuschel S, Aldegunde M, Gramlich P M E, Heckmann D, Goldup S M, D'Souza D M, Fernandes A E, Leigh D A. Science, 2013, 339(6116):189.
[11] Evans N H, Beer P D. Chem. Soc. Rev., 2014, 43(13):4658.
[12] Crowley J D, Goldup S M, Lee A L, Leigh D A, McBurney R T. Chem. Soc. Rev., 2009, 38(6):1530.
[13] Tian H, Wang Q C. Chem. Soc. Rev., 2006, 35(4):361.
[14] Ma X, Tian H. Chem. Soc. Rev., 2010, 39(1):70.
[15] Isnin R, Kaifer A E. J. Am. Chem. Soc., 1991, 113(21):8188.
[16] Oshikiri T, Takashima Y, Yamaguchi H, Harada A. Chem. Eur. J., 2007, 13(25):7091.
[17] Talotta C, Gaeta C, Qi Z H, Schalley C A, Neri P. Angew. Chem. Int. Ed., 2013, 52(29):7437.
[18] Liu Y, Chen Y. Acc. Chem. Res., 2006, 39(10):681.
[19] Chen Y, Liu Y. Chinese J. Org. Chem., 2012, 32(5):805.
[20] Chen Y, Liu Y. Chem. Soc. Rev., 2010, 39(2):495.
[21] Jacques V, Böhmer V. Calixarenes:A Versatile Class of Macrocyclic Compounds. Springer Science & Business Media, 2012.
[22] Neri P, Sessler J L, Wang M X. Calixarenes and Beyond. Springer, 2016.
[23] Craig M R, Hutchings M G, Claridge T D W, Anderson H L. Angew. Chem. Int. Ed., 2001, 40(9):1071.
[24] Wang H X, Meng Z, Xiang J F, Xia Y X, Sun Y, Hu S Z, Chen H, Yao J, Chen C F. Chem. Sci., 2016, 7(1):469.
[25] Wang H X, Hu S Z, Shi Q, Chen C F. Org. Biomol. Chem., 2016, 14(44):10481.
[26] Casati C, Franchi P, Pievo R, Mezzina E, Lucarini M. J. Am. Chem. Soc., 2012, 134(46):19108.
[27] Xue M, Su Y S, Chen C F. Chem. Eur. J., 2010, 16(28):8537.
[28] Arduini A, Bussolati R, Credi A, Faimani G, Garaudée S, Pochini A, Secchi A, Semeraro M, Silvi S, Venturi M. Chem. Eur. J., 2009, 15(13):3230.
[29] Gaeta C, Troisi F, Neri P. Org. Lett., 2010, 12(9):2092.
[30] Hu X Y, Xiao T X, Lin C, Huang F H, Wang L Y. Acc. Chem. Res., 2014, 47(7):2041.
[31] Braga S S, Gonçalves I S, Herdtweck E, Teixeira-Dias J J C. New J. Chem., 2003, 27(3):597.
[32] Park J W, Song H J. Org. Lett., 2004, 6(26):4869.
[33] Wang Q C, Ma X, Qu D H, Tian H. Chem. Eur. J., 2006, 12(4):1088.
[34] Tomatsu I, Hashidzume A, Harada A. Angew. Chem. Int. Ed., 2006, 45(28):4605.
[35] Oshikiri T, Takashima Y, Yamaguchi H, Harada A. J. Am. Chem. Soc., 2005, 127(35):12186.
[36] Oshikiri T, Yamaguchi H, Takashima Y, Harada A. Chem. Commun., 2009, (37):5515.
[37] Ikeda A, Shinkai S. Chem. Rev., 1997, 97(5):1713.
[38] Rodler F, Schade B, Jager C M, Backes S, Hampel F, Böttcher C, Clark T, Hirsch A. J. Am. Chem. Soc., 2015, 137(9):3308.
[39] Rathore R, Lindeman S V, Rao K S S P, Sun D, Kochi J K. Angew. Chem. Int. Ed., 2000, 39(12):2123.
[40] Duynhoven J P, Janssen R G, Verboom W, Franken S M, Casnati A, Pochini A, Ungaro R, Mendoza J, Nieto P M. J. Am. Chem. Soc., 1994, 116(13):5814.
[41] Arora S, Sharma S, Mithu V S, Hee-Lee C, Singh K. Chem. Commun., 2015, 51(20):4227.
[42] Kanamathareddy S, Gutsche C D. J. Org. Chem., 1995, 60(19):6070.
[43] Arduini A, Fabbi M, Mantovani M, Mirone L, Pochini A, Secchi A, Ungaro R. J. Org. Chem., 1995, 60(5):1454.
[44] De Rosa M, Soriente A, Concilio G, Talotta C, Gaeta C, Neri P. J. Org. Chem., 2015, 80(14):7295.
[45] Arduini A, Ferdani R, Pochini A, Secchi A, Ugozzoli F. Angew. Chem. Int. Ed., 2000, 39(19):3453.
[46] Arduini A, Calzavacca F, Pochini A, Secchi A. Chem. Eur. J., 2003, 9(3):793.
[47] Arduini A, Ciesa F, Fragassi M, Pochini A, Secchi A. Angew. Chem. Int. Ed., 2004, 44(2):278.
[48] Arduini A, Bussolati R, Credi A, Monaco S, Secchi A, Silvi S, Venturi M. Chem. Eur. J., 2012, 18(50):16203.
[49] Arduini A, Bussolati R, Credi A, Secchi A, Silvi S, Semeraro M, Venturi M. J. Am. Chem. Soc., 2013, 135(26):9924.
[50] Orlandini G, Ragazzon G, Zanichelli V, Secchi A, Venturi M, Arduini A, Credi A. Chem. Commun., 2017, 53(45):6172.
[51] Zanichelli V, Ragazzon G, Orlandini G, Venturi M, Credi A, Silvi S, Arduini A, Secchi A. Org. Biomol. Chem., 2017, 15(32):6753.
[52] Talotta C, Gaeta C, Pierro T, Neri P. Org. Lett., 2011, 13(8):2098.
[53] Talotta C, Gaeta C, Neri P. Org. Lett., 2012, 14(12):3104.
[54] Gaeta C, Talotta C, Mirra S, Margarucci L, Casapullo A, Neri P. Org. Lett., 2013, 15(1):116.
[55] Ciao R, Talotta C, Gaeta C, Margarucci L, Casapullo A, Neri P. Org. Lett., 2013, 15(22):5694.
[56] Gaeta C, Talotta C, Neri P. Chem. Commun., 2014, 50(69):9917.
[57] Hart H, Shamouilian S, Takehira Y. J. Org. Chem., 1981, 46(22):4427.
[58] Bartlett P D, Ryan M J, Cohen S G. J. Am. Chem. Soc., 1942, 64:2649.
[59] Zong Q S, Chen C F. Org. Lett., 2006, 8(2):211.
[60] Han T, Zong Q S, Chen C F. J. Org. Chem., 2007, 72(8):3108.
[61] Tian X H, Hao X, Liang T L, Chen C F. Chem. Commun., 2009, (44):6771.
[62] Guo J B, Han Y, Cao J, Chen C F. Org. Lett., 2011, 13(20):5688.
[63] Han Y, Cao J, Li P F, Zong Q S, Zhao J M, Guo J B, Xiang J F, Chen C F. J. Org. Chem., 2013, 78(7):3235.
[64] Meng Z, Han Y, Wang L N, Xiang J F, He S G, Chen C F. J. Am. Chem. Soc., 2015, 137(30):9739.
[65] Zhang G W, Li P F, Meng Z, Wang H X, Han Y, Chen C F. Angew. Chem. Int. Ed., 2016, 55(17):5304.
[66] Zhang C, Chen C F. J. Org. Chem., 2007, 72(10):3880.
[67] Hu S Z, Chen C F. Chem. Commun., 2010, 46(23):4199.
[68] Xue M, Chen C F. Org. Lett., 2009, 11(22):5294.
[69] Xue M, Chen C F. Chem. Commun., 2008, (46):6128.
[70] Li P F, Chen C F. Chem. Commun., 2011, 47(44):12170.
[71] Xue M, Chen C F. Chem. Commun., 2008, (46):6128.
[72] Hu S Z, Chen C F. Chem. Eur. J., 2011, 17(19):5424.
[73] Pierro T, Gaeta C, Talotta C, Casapullo A, Neri P. Org. Lett., 2011, 13(10):2650.
[74] Nakamura T, Yamaguchi G, Nabeshima T. Angew. Chem. Int. Ed., 2016, 55(33):9606.
[1] Min Xue, Fangfang Fan, Yong Yang, Chuanfeng Chen. Syntheses and Functionality of Pillararene-Based Mechanically Interlocked Structures [J]. Progress in Chemistry, 2019, 31(4): 491-504.
[2] Yawen Li, Wantong Ao, Huilin Jin, Liping Cao. Aggregation-Induced Emission of Tetraphenylethene Derivatives with Macrocycles via Host-Guest Interactions [J]. Progress in Chemistry, 2019, 31(1): 121-134.
[3] Dong Yunhong, Cao Liping. Functionalization of Cucurbit uril [J]. Progress in Chemistry, 2016, 28(7): 1039-1053.
[4] Xia Mengchan, Yang Yingwei. Organic Functional Materials Based on Pillarenes [J]. Progress in Chemistry, 2015, 27(6): 655-665.
[5] Ye Yang, Lin Zheping, Jin Wenlu, Wang Shuping, Wu Jing, Li Shijun. Self-Assembly of Mechanically Interlocked Structures via Metal-Mediated Coordination Cooperating with Host-Guest Recognition [J]. Progress in Chemistry, 2015, 27(6): 763-774.
[6] Wang Guangxia, Che Yanke, Jiang Hua. Single Molecular Rotary Machine [J]. Progress in Chemistry, 2014, 26(06): 909-918.
[7] Jiang Bangping, Guo Dongsheng, Liu Yu*. Self-Assemblies Based on Perylene Bisimides and Macrocyclic Hosts [J]. Progress in Chemistry, 2013, 25(06): 869-880.